
Data-Driven Science
and Engineering

Machine Learning, Dynamical Systems, and Control

Steven L. Brunton
Department of Mechanical Engineering
University of Washington

J. Nathan Kutz
Department of Applied Mathematics
University of Washington

iv

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Contents

Preface ix

Acknowledgments xiv

Optimization, Equations, Symbols, and Acronyms xvii

I Dimensionality Reduction and Transforms 1

1 Singular Value Decomposition (SVD) 3
1.1 Overview . 4
1.2 Matrix Approximation . 8
1.3 Mathematical Properties and Manipulations 14
1.4 Pseudo-Inverse, Least-Squares, and Regression 19
1.5 Principal Component Analysis (PCA) 27
1.6 Eigenfaces Example . 34
1.7 Truncation and Alignment . 41
1.8 Randomized Singular Value Decomposition 48
1.9 Tensor Decompositions and N -Way Data Arrays 55

2 Fourier and Wavelet Transforms 64
2.1 Fourier Series and Fourier Transforms 65
2.2 Discrete Fourier Transform (DFT) and Fast Fourier Transform

(FFT) . 76
2.3 Transforming Partial Differential Equations 85
2.4 Gabor Transform and the Spectrogram 91
2.5 Laplace Transform . 98
2.6 Wavelets and Multi-Resolution Analysis 102
2.7 Two-Dimensional Transforms and Image Processing 105

3 Sparsity and Compressed Sensing 118
3.1 Sparsity and Compression . 119
3.2 Compressed Sensing . 123
3.3 Compressed Sensing Examples . 128

v

vi CONTENTS

3.4 The Geometry of Compression . 132
3.5 Sparse Regression . 137
3.6 Sparse Representation . 142
3.7 Robust Principal Component Analysis (RPCA) 145
3.8 Sparse Sensor Placement . 148

II Machine Learning and Data Analysis 158

4 Regression and Model Selection 160
4.1 Classic Curve Fitting . 162
4.2 Nonlinear Regression and Gradient Descent 168
4.3 Regression and Ax = b: Over- and Under-Determined Systems . 174
4.4 Optimization as the Cornerstone of Regression 181
4.5 The Pareto Front and Lex Parsimoniae 186
4.6 Model Selection: Cross-Validation 190
4.7 Model Selection: Information Criteria 195

5 Clustering and Classification 203
5.1 Feature Selection and Data Mining 204
5.2 Supervised versus Unsupervised Learning 210
5.3 Unsupervised Learning: k-Means Clustering 215
5.4 Unsupervised Hierarchical Clustering: Dendrogram 219
5.5 Mixture Models and the Expectation-Maximization Algorithm . . 223
5.6 Supervised Learning and Linear Discriminants 228
5.7 Support Vector Machines (SVM) 232
5.8 Classification Trees and Random Forest 239
5.9 Top 10 Algorithms of Data Mining circa 2008 (Before the Deep

Learning Revolution) . 244

6 Neural Networks and Deep Learning 252
6.1 Neural Networks: Single-Layer Networks 253
6.2 Multi-Layer Networks and Activation Functions 257
6.3 The Backpropagation Algorithm 263
6.4 The Stochastic Gradient Descent Algorithm 268
6.5 Deep Convolutional Neural Networks 271
6.6 Neural Networks for Dynamical Systems 275
6.7 Recurrent Neural Networks . 281
6.8 Autoencoders . 285
6.9 Generative Adversarial Networks (GANs) 289
6.10 The Diversity of Neural Networks 291

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

CONTENTS vii

III Dynamics and Control 303

7 Data-Driven Dynamical Systems 305
7.1 Overview, Motivations, and Challenges 306
7.2 Dynamic Mode Decomposition (DMD) 313
7.3 Sparse Identification of Nonlinear Dynamics (SINDy) 331
7.4 Koopman Operator Theory . 344
7.5 Data-Driven Koopman Analysis 357

8 Linear Control Theory 376
8.1 Closed-Loop Feedback Control . 378
8.2 Linear Time-Invariant Systems . 383
8.3 Controllability and Observability 389
8.4 Optimal Full-State Control: Linear–Quadratic Regulator (LQR) . . 396
8.5 Optimal Full-State Estimation: the Kalman Filter 401
8.6 Optimal Sensor-Based Control: Linear–Quadratic Gaussian (LQG) 404
8.7 Case Study: Inverted Pendulum on a Cart 406
8.8 Robust Control and Frequency-Domain Techniques 418

9 Balanced Models for Control 435
9.1 Model Reduction and System Identification 435
9.2 Balanced Model Reduction . 436
9.3 System Identification . 451

IV Advanced Data-Driven Modeling and Control 467

10 Data-Driven Control 469
10.1 Model Predictive Control (MPC) 470
10.2 Nonlinear System Identification for Control 473
10.3 Machine Learning Control . 479
10.4 Adaptive Extremum-Seeking Control 491

11 Reinforcement Learning 504
11.1 Overview and Mathematical Formulation 505
11.2 Model-Based Optimization and Control 513
11.3 Model-Free Reinforcement Learning and Q-Learning 516
11.4 Deep Reinforcement Learning . 524
11.5 Applications and Environments . 529
11.6 Optimal Nonlinear Control . 534

12 Reduced-Order Models (ROMs) 541

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

viii CONTENTS

12.1 Proper Orthogonal Decomposition (POD) for Partial Differential
Equations . 542

12.2 Optimal Basis Elements: the POD Expansion 548
12.3 POD and Soliton Dynamics . 555
12.4 Continuous Formulation of POD 560
12.5 POD with Symmetries: Rotations and Translations 566
12.6 Neural Networks for Time-Stepping with POD 571
12.7 Leveraging DMD and SINDy for POD-Galerkin 577

13 Interpolation for Parametric Reduced-Order Models 585
13.1 Gappy POD . 585
13.2 Error and Convergence of Gappy POD 590
13.3 Gappy Measurements: Minimize Condition Number 594
13.4 Gappy Measurements: Maximal Variance 600
13.5 POD and the Discrete Empirical Interpolation Method (DEIM) . . 603
13.6 DEIM Algorithm Implementation 608
13.7 Decoder Networks for Interpolation 613
13.8 Randomization and Compression for ROMs 617
13.9 Machine Learning ROMs . 619

14 Physics-Informed Machine Learning 628
14.1 Mathematical Foundations . 629
14.2 SINDy Autoencoder: Coordinates and Dynamics 632
14.3 Koopman Forecasting . 636
14.4 Learning Nonlinear Operators . 640
14.5 Physics-Informed Neural Networks (PINNs) 644
14.6 Learning Coarse-Graining for PDEs 648
14.7 Deep Learning and Boundary Value Problems 653

Glossary 657

References 669

Index 731

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Preface

This book is about the growing intersection of data-driven methods, machine
learning, applied optimization, and the classical fields of engineering mathe-
matics and mathematical physics. We developed this material over a number of
years, primarily to educate our advanced undergraduate and beginning grad-
uate students from engineering and physical science departments. Typically,
such students have backgrounds in linear algebra, differential equations, and
scientific computing, with engineers often having some exposure to control the-
ory and/or partial differential equations. However, most undergraduate curric-
ula in engineering and science fields have little or no exposure to data methods
and/or optimization. Likewise, computer scientists and statisticians have little
exposure to dynamical systems and control. Our goal is to provide a broad en-
try point to applied machine learning for both of these groups of students. We
have chosen the methods discussed in this book for their (1) relevance, (2) sim-
plicity, and (3) generality, and we have attempted to present a range of topics,
from basic introductory material up to research-level techniques.

Data-driven discovery is currently revolutionizing how we model, predict,
and control complex systems. The most pressing scientific and engineering
problems of the modern era are not amenable to empirical models or deriva-
tions based on first principles. Increasingly, researchers are turning to data-
driven approaches for a diverse range of complex systems, such as turbulence,
the brain, climate, epidemiology, finance, robotics, and autonomy. These sys-
tems are typically nonlinear, dynamic, multi-scale in space and time, and high-
dimensional, with dominant underlying patterns that should be characterized
and modeled for the eventual goal of sensing, prediction, estimation, and con-
trol. With modern mathematical methods, enabled by the unprecedented avail-
ability of data and computational resources, we are now able to tackle previ-
ously unattainable problems. A small handful of these new techniques include
robust image reconstruction from sparse and noisy random pixel measure-
ments, turbulence control with machine learning, optimal sensor and actuator
placement, discovering interpretable nonlinear dynamical systems purely from
data, and reduced-order models to accelerate the optimization and control of
systems with complex multi-scale physics.

Driving modern data science is the availability of vast and increasing quan-
tities of data, enabled by remarkable innovations in low-cost sensors, orders-

ix

x Preface

of-magnitude increases in computational power, and virtually unlimited data
storage and transfer capabilities. Such vast quantities of data are affording en-
gineers and scientists across all disciplines new opportunities for data-driven
discovery, which has been referred to as the fourth paradigm of scientific dis-
covery [326]. This fourth paradigm is the natural culmination of the first three
paradigms: empirical experimentation, analytical derivation, and computational
investigation. The integration of these techniques provides a transformative
framework for data-driven discovery efforts. This process of scientific discov-
ery is not new, and indeed mimics the efforts of leading figures of the scien-
tific revolution: Johannes Kepler (1571–1630) and Sir Isaac Newton (1642–1727).
Each played a critical role in developing the theoretical underpinnings of celes-
tial mechanics, based on a combination of empirical data-driven and analytical
approaches. Data science is not replacing mathematical physics and engineer-
ing, but is instead augmenting it for the twenty-first century, resulting in more
of a renaissance than a revolution.

Data science itself is not new, having been proposed more than 50 years ago
by John Tukey, who envisioned the existence of a scientific effort focused on
learning from data, or data analysis [205]. Since that time, data science has been
largely dominated by two distinct cultural outlooks on data [109]. The machine
learning community, which predominantly comprises computer scientists, is
typically centered on prediction quality and scalable, fast algorithms. Although
not necessarily in contrast, the statistical learning community, often centered in
statistics departments, focuses on the inference of interpretable models. Both
methodologies have achieved significant success and have provided the math-
ematical and computational foundations for data science methods. For engi-
neers and scientists, the goal is to leverage these broad techniques to infer and
compute models (typically nonlinear) from observations that correctly iden-
tify the underlying dynamics and generalize qualitatively and quantitatively to
unmeasured parts of phase, parameter, or application space. Our goal in this
book is to leverage the power of both statistical and machine learning to solve
engineering problems.

Themes of This Book

There are a number of key themes that have emerged throughout this book.
First, many complex systems exhibit dominant low-dimensional patterns in the
data, despite the rapidly increasing resolution of measurements and compu-
tations. This underlying structure enables efficient sensing, and compact rep-
resentations for modeling and control. Pattern extraction is related to the sec-
ond theme of finding coordinate transforms that simplify the system. Indeed, the
rich history of mathematical physics is centered around coordinate transforma-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Preface xi

tions (e.g., spectral decompositions, the Fourier transform, generalized func-
tions, etc.), although these techniques have largely been limited to simple ide-
alized geometries and linear dynamics. The ability to derive data-driven trans-
formations opens up opportunities to generalize these techniques to new re-
search problems with more complex geometries and boundary conditions. We
also take the perspective of dynamical systems and control throughout the book,
applying data-driven techniques to model and control systems that evolve in
time. Perhaps the most pervasive theme is that of data-driven applied optimiza-
tion, as nearly every topic discussed is related to optimization (e.g., finding
optimal low-dimensional patterns, optimal sensor placement, machine learning
optimization, optimal control, etc.). Even more fundamentally, most data is orga-
nized into arrays for analysis, where the extensive development of numerical
linear algebra tools from the early 1960s onward provides many of the foun-
dational mathematical underpinnings for matrix decompositions and solution
strategies used throughout this text.

Overview of Second Edition

The integration of machine learning methods in science and engineering has
advanced significantly in the two years since publication of the first edition.
The field is fast-moving, with innovations coming in a diversity of application
areas that use creative mathematical architectures for advancing the state of the
art in data-driven modeling and control. This second edition is aimed at captur-
ing some of the more salient and successful advancements in the field. It helps
bring the reader to a modern understanding of what is possible using machine
learning in science and engineering. As with the first edition, extensive online
supplementary material can be found at the book’s website:

http://databookuw.com

Major changes in the second edition include the following.

• Homework: Extensive homework has been added to every chapter, with
additional homework and projects on the book’s website. Homework ranges
in difficulty from introductory demonstrations and concept-building to
advanced problems that reproduce modern research papers and may be
the basis of course projects.

• Code: Python code has been added throughout, in parallel to existing
MATLAB code, and both sets of codes have been streamlined consider-
ably. All extended codes are available in MATLAB and Python on the
book’s website and GitHub pages.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://databookuw.com

xii Preface

– Python Code:
https://github.com/dynamicslab/databook_python

– MATLAB Code:
https://github.com/dynamicslab/databook_matlab

Wherever possible, a minimal representation of code has been presented
in the text to improve readability. These code blocks are equivalently ex-
pressed in MATLAB and Python. In more advanced examples, it is often
advantageous to use either MATLAB or Python, but not both. In such
cases, this has been indicated and only a single code block is demon-
strated. The full code is available at the above GitHub sites as well as on
the book’s website. In addition, extensive codes are available in R online.
We encourage the reader to read the book and follow along with code to
help improve the learning process and experience.

• New chapters: Two new chapters have been added on “Reinforcement
Learning” and “Physics-Informed Machine Learning,” which are two of
the most exciting and rapidly growing fields of research in machine learn-
ing, modeling, and control.

– Reinforcement Learning: Reinforcement learning is a third major branch
of machine learning that is concerned with how to learn control laws
and policies to interact with a complex environment. This is a crit-
ical area of research, situated at the growing intersection of control
theory and machine learning.

– Physics-Informed Machine Learning: The integration of physics con-
cepts, constraints, and symmetries is providing exceptional opportu-
nities for training machine learning algorithms that are encoded with
knowledge of physics. This chapter features a number of recent in-
novations aimed at understanding how this can be done in principle
and in practice.

• New sections: We have added and improved material throughout, in-
cluding the following.

– Chapter 1: new sections discussing condition number, connections to
the eigendecomposition, and error bounds for SVD (singular value
decomposition) based approximations.

– Chapter 2: new section on the Laplace transform.

– Chapter 6: new sections devoted to autoencoders, recurrent neural
networks and generative adversarial networks.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/dynamicslab/databook_python
https://github.com/dynamicslab/databook_matlab

Preface xiii

– Chapter 7: addition of recent innovations to DMD (dynamic mode
decomposition), Koopman theory, and SINDy (sparse identification
of nonlinear dynamics).

– Chapter 10: new section on model predictive control.

– Chapter 12 (previously Chapter 11): new sections on using neural
networks for time-stepping in reduced-order models, as well as non-
intrusive methods such as DMD.

– Chapter 13 (previously Chapter 12): new sections on decoder net-
works for interpolation in model reduction as well as randomized
linear algebra methods for scalable reduced-order models.

• Videos: An extensive collection of video lectures are available on YouTube,
covering nearly every topic from each section of the book. Videos may be
found on our YouTube channels.

– www.youtube.com/c/eigensteve

– www.youtube.com/c/NathanKutzAMATH

– www.youtube.com/c/PhysicsInformedMachineLearning

• Typos: We have corrected typos and mistakes throughout the second edi-
tion.

Online Material

We have designed this book to make extensive use of online supplementary
material, including codes, data, videos, homework, and suggested course syl-
labi. All of this material can be found at the book’s website: http://databookuw.
com.

In addition to course resources, all of the code and data used in the book
are available on the book’s GitHub: https://github.com/dynamicslab/.
The codes online are more extensive than those presented in the book, includ-
ing code used to generate publication-quality figures. In addition to the Python
and MATLAB used throughout the text, online code is also available in R. Data
visualization was ranked as the top-used data science method in the Kaggle
2017 The State of Data Science and Machine Learning study, and so we highly
encourage readers to download the online codes and make full use of these
plotting commands.

We have also recorded and posted video lectures on YouTube for every sec-
tion in this book, available at www.youtube.com/c/eigensteve and www.
youtube.com/c/NathanKutzAMATH. We include supplementary videos for

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

www.youtube.com/c/eigensteve
www.youtube.com/c/NathanKutzAMATH
www.youtube.com/c/PhysicsInformedMachineLearning
http://databookuw.com
http://databookuw.com
https://github.com/dynamicslab/
www.youtube.com/c/eigensteve
www.youtube.com/c/NathanKutzAMATH
www.youtube.com/c/NathanKutzAMATH

xiv Preface

students to fill in gaps in their background on scientific computing and founda-
tional applied mathematics. We have designed this text to be both a reference
as well as the material for several courses at various levels of student prepara-
tion. Most chapters are also modular, and may be converted into stand-alone
boot camps, containing roughly 10 hours of materials each.

How to Use This Book

Our intended audience includes beginning graduate students, or advanced un-
dergraduates, in engineering and science. As such, the machine learning meth-
ods are introduced at a beginning level, whereas we assume students know
how to model physical systems with differential equations and simulate them
with solvers such as ode45. The diversity of topics covered thus range from in-
troductory to state-of-the-art research methods. Our aim is to provide an inte-
grated viewpoint and mathematical toolset for solving engineering and science
problems. Alternatively, the book can also be useful for computer science and
statistics students, who often have limited knowledge of dynamical systems
and control. Various courses can be designed from this material, and several
example syllabi may be found on the book’s website – this includes homework,
data sets, and code.

First and foremost, we want this book to be fun, inspiring, eye-opening, and
empowering for young scientists and engineers. We have attempted to make
everything as simple as possible, while still providing the depth and breadth
required to be useful in research. Many of the chapter topics in this text could
be entire books in their own right, and many of them are. However, we also
wanted to be as comprehensive as may be reasonably expected for a field that
is so big and moving so fast. We hope that you enjoy this book, master these
methods, and change the world with applied data science!

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Acknowledgments

We are indebted to many wonderful students, collaborators, and colleagues
for valuable feedback, suggestions, and support. We are especially grateful
to Joshua Proctor, who was instrumental in the origination of this book and
who helped guide much of the framing and organization. We have also ben-
efited from extensive interactions and conversations with Bing Brunton, Jean-
Christophe Loiseau, Bernd Noack, and Sam Taira. This work would also not
have been possible without our many great colleagues and collaborators, with
whom we have worked and whose research is featured throughout this book.

Throughout the writing of the first edition and teaching of related courses,
we have received great feedback and comments from our excellent students
and postdocs: Travis Askham, Michael Au-Yeung, Zhe Bai, Ido Bright, Kathleen
Champion, Emily Clark, Charles Delahunt, Daniel Dylewski, Ben Erichson,
Charlie Fiesler, Xing Fu, Chen Gong, Taren Gorman, Jacob Grosek, Seth Hirsh,
Mikala Johnson, Eurika Kaiser, Mason Kamb, James Kunert, Bethany Lusch,
Pedro Maia, Niall Mangan, Krithika Manohar, Ariana Mendible, Thomas Mohren,
Megan Morrison, Markus Quade, Sam Rudy, Susanna Sargsyan, Isabel Scherl,
Eli Shlizerman, George Stepaniants, Ben Strom, Chang Sun, Roy Taylor, Meghana
Velagar, Jake Weholt, and Matt Williams. Our students are our inspiration for
this book, and they make it fun and exciting to come to work every day.

For this second edition, special thanks are in order to Daniel Dylewsky for
his incredible efforts generating extensive Python code for the book. We are in-
debted to his efforts in helping generate the bulk of this code. We also thank
Richard Knight for generously sharing his R code online. We have also ben-
efited from extensive discussions with Bing Brunton. We are also grateful to
Scott Dawson for incredibly helpful, detailed, and insightful comments and er-
rata throughout the entire book. We would also like to thank the following for
contributing corrections, typos, errata, and suggestions throughout, and also
to all of those we have missed: Asude Aydin, Dammalapati Harshavardhan,
Zdenek Hurak, Jamie Johnson, Lance Larsen, Pietro Monticone, Matt Reeves,
Joel Rosenfeld, Simon Schauppenlehner, Csaba Szepesvari, Yuchan Tseng, Balint
Uveges, and Ning Zheng.

We are grateful for the continued support and encouragement of our pub-
lishers Katie Leach and Lauren Cowles at Cambridge University Press. We are
especially indebted to Katie for her patient handling of this second edition, and

xv

xvi Acknowledgments

to Charles Howell and Geoff Amor for greatly improving the book through
production and copyediting.

Steven L. Brunton and J. Nathan Kutz
Seattle, WA, March 2018
Second Edition, September 2021

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Common Optimization Techniques,
Equations, Symbols, and Acronyms

Most Common Optimization Strategies

Least-squares (discussed in Chapters 1 and 4) minimizes the sum of the squares
of the residuals between a given fitting model and data. Linear least-squares,
where the residuals are linear in the unknowns, has a closed-form solution
which can be computed by taking the derivative of the residual with respect
to each unknown and setting it to zero. It is commonly used in the engineering
and applied sciences for fitting polynomial functions. Nonlinear least-squares
typically requires iterative refinement based upon approximating the nonlinear
least-squares with a linear least-squares at each iteration.

Gradient descent (discussed in Chapters 4 and 6) is the industry-leading, con-
vex optimization method for high-dimensional systems. It minimizes residuals
by computing the gradient of a given fitting function. The iterative procedure
updates the solution by moving downhill in the residual space. The Newton–
Raphson method is a one-dimensional version of gradient descent. Since it is
often applied in high-dimensional settings, it is prone to find only local min-
ima. Critical innovations for big data applications include stochastic gradient
descent and the backpropagation algorithm, which makes the optimization
amenable to computing the gradient itself.

Alternating descent method (ADM) (discussed in Chapter 4) avoids compu-
tations of the gradient by optimizing in one unknown at a time. Thus all un-
knowns are held constant while a line search (non-convex optimization) can be
performed in a single variable. This variable is then updated and held constant
while another of the unknowns is updated. The iterative procedure continues
through all unknowns and the iteration procedure is repeated until a desired
level of accuracy is achieved.

Augmented Lagrange method (ALM) (discussed in Chapters 3 and 8) is a class
of algorithms for solving constrained optimization problems. They are similar
to penalty methods in that they replace a constrained optimization problem
by a series of unconstrained problems and add a penalty term to the objective

xvii

xviii Acknowledgments

which helps enforce the desired constraint. ALM adds another term designed
to mimic a Lagrange multiplier. The augmented Lagrangian is not the same as
the method of Lagrange multipliers.

Linear program and simplex method are the workhorse algorithms for con-
vex optimization. A linear program has an objective function which is linear
in the unknown, and the constraints consist of linear inequalities and equali-
ties. By computing its feasible region, which is a convex polytope, the linear
programming algorithm finds a point in the polyhedron where this function
has the smallest (or largest) value if such a point exists. The simplex method
is a specific iterative technique for linear programs which aims to take a given
basic feasible solution to another basic feasible solution for which the objective
function is smaller, thus producing an iterative procedure for optimizing.

Most Common Equations and Symbols

Linear Algebra

Linear System of Equations

Ax = b.

The matrix A ∈ Rp×n and vector b ∈ Rp are generally known, and the vector
x ∈ Rn is unknown.

Eigenvalue Equation

AT = TΛ.

The columns ξk of the matrix T are the eigenvectors of A ∈ Cn×n corresponding
to the eigenvalue λk: Aξk = λkξk. The matrix Λ is a diagonal matrix containing
these eigenvalues, in the simple case with n distinct eigenvalues.

Change of Coordinates

x = Ψa.

The vector x ∈ Rn may be written as a ∈ Rn in the coordinate system given by
the columns of Ψ ∈ Rn×n.

Measurement Equation

y = Cx.

The vector y ∈ Rp is a measurement of the state x ∈ Rn by the measurement
matrix C ∈ Rp×n.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Acknowledgments xix

Singular Value Decomposition

X = UΣV∗ ≈ ŨΣ̃Ṽ
∗
.

The matrix X ∈ Cn×m may be decomposed into the product of three matrices
U ∈ Cn×n, Σ ∈ Cn×m, and V ∈ Cm×m. The matrices U and V are unitary, so
that UU∗ = U∗U = In×n and VV∗ = V∗V = Im×m, where ∗ denotes complex
conjugate transpose. The columns of U (respectively V) are orthogonal, called
left (respectively right) singular vectors. The matrix Σ contains decreasing, non-
negative diagonal entries called singular values.

Often, X is approximated with a low-rank matrix X̃ = ŨΣ̃Ṽ
∗
, where Ũ and

Ṽ contain the first r � n columns of U and V, respectively, and Σ̃ contains the
first r × r block of Σ. The matrix Ũ is often denoted Ψ in the context of spatial
modes, reduced-order models, and sensor placement.

Regression and Optimization

Over-determined and Under-determined Optimization for Linear Systems

argmin
x

(‖Ax− b‖2 + λg(x)) or

argmin
x

g(x) subject to ‖Ax− b‖2 ≤ ε.

Here g(x) is a regression penalty (with penalty parameter λ for over-determined
systems). For over- and under-determined linear systems of equations, which
result in either no solutions or an infinite number of solutions of Ax = b, a
choice of constraint or penalty, which is also known as regularization, must be
made in order to produce a solution.

Over-determined and Under-determined Optimization for Nonlinear Sys-
tems

argmin
x

(f(A,x,b) + λg(x)) or

argmin
x

g(x) subject to f(A,x,b) ≤ ε.

This generalizes the linear system to a nonlinear system f(·) with regulariza-
tion g(·). These over- and under-determined systems are often solved using
gradient descent algorithms.

Compositional Optimization for Neural Networks

argmin
Aj

(fM(AM , . . . f2(A2, (f1(A1,x)) · · ·)) + λg(Aj)).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

xx Acknowledgments

Each Ak denotes the weight connecting the neural network from the kth to the
(k + 1)th layer. It is typically a massively under-determined system which is
regularized by g(Aj). Composition and regularization are critical for generat-
ing expressive representations and preventing overfitting. The full network is
often denoted fθ.

Dynamical Systems and Reduced-Order Models

Nonlinear Ordinary Differential Equation (Dynamical System)

d

dt
x(t) = f(x(t), t;β).

The vector x(t) ∈ Rn is the state of the system evolving in time t, β are param-
eters, and f is the vector field. Generally, f is Lipschitz continuous to guarantee
existence and uniqueness of solutions.

Linear Input–Output System

d

dt
x = Ax + Bu,

y = Cx + Du.

The state of the system is x ∈ Rn, the inputs (actuators) are u ∈ Rq, and the
outputs (sensors) are y ∈ Rp. The matrices A, B, C, and D define the dynamics,
the effect of actuation, the sensing strategy, and the effect of actuation feed-
through, respectively.

Nonlinear Map (Discrete-Time Dynamical System)

xk+1 = F(xk).

The state of the system at the kth iteration is xk ∈ Rn, and F is a possibly
nonlinear mapping. Often, this map defines an iteration forward in time, so
that xk = x(k∆t); in this case the flow map is denoted F∆t.

Koopman Operator Equation (Discrete-Time)

Ktg = g ◦ Ft =⇒ Ktϕ = λϕ.

The linear Koopman operator Kt advances measurement functions of the state
g(x) with the flow Ft. The eigenvalues and eigenvectors of Kt are λ and ϕ(x),
respectively. The operator Kt operates on a Hilbert space of measurements.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Acknowledgments xxi

Nonlinear Partial Differential Equation (PDE)

ut = N(u,ux,uxx, . . . , x, t;β).

The state of the PDE is u, the nonlinear evolution operator is N, subscripts de-
note partial differentiation, and x and t are the spatial and temporal variables,
respectively. The PDE is parameterized by values in β. The state u of the PDE
may be a continuous function u(x, t), or it may be discretized at several spatial
locations, u(t) =

[
u(x1, t) u(x2, t) . . . u(xn, t)

]T ∈ Rn.

Galerkin Expansion
The continuous Galerkin expansion is

u(x, t) ≈
r∑

k=1

ak(t)ψk(x).

The functions ak(t) are temporal coefficients that capture the time dynamics,
andψk(x) are spatial modes. For a high-dimensional discretized state, the Galerkin
expansion becomes u(t) ≈ ∑r

k=1 ak(t)ψk. The spatial modes ψk ∈ Rn may be
the columns of Ψ = Ũ.

Complete Symbols

Dimensions
K Number of non-zero entries in a K-sparse vector s
m Number of data snapshots (i.e., columns of X)
n Dimension of the state, x ∈ Rn

p Dimension of the measurement or output variable, y ∈ Rp

q Dimension of the input variable, u ∈ Rq

r Rank of truncated SVD, or other low-rank approximation

Scalars
s Frequency in Laplace domain
t Time
δ Learning rate in gradient descent

∆t Time-step
x Spatial variable

∆x Spatial step

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

xxii Acknowledgments

σ Singular value
λ Eigenvalue
λ Sparsity parameter for sparse optimization (Section 7.3)
λ Lagrange multiplier (Sections 3.7, 8.4, and 12.4)
τ Threshold

Vectors

a Vector of mode amplitudes of x in basis Ψ, a ∈ Rr

a Action of reinforcement learning agent (Chapter 11)
b Vector of measurements in linear system Ax = b
b Vector of DMD mode amplitudes (Section 7.2)
Q Vector containing potential function for PDE-FIND
r Residual error vector
s Sparse vector, s ∈ Rn (Chapter 3)
s State of the environment in reinforcement learning (Chapter 11)
u Control variable (Chapters 8, 9, and 10)
u PDE state vector (Chapters 12 and 13)
w Exogenous inputs

wd Disturbances to system
wn Measurement noise
wr Reference to track
x State of a system, x ∈ Rn

xk Snapshot of data at time tk
xj Data sample j ∈ Z := {1, 2, . . . ,m} (Chapters 5 and 6)
x̃ Reduced state, x̃ ∈ Rr, so that x ≈ Ũx̃
x̂ Estimated state of a system
y Vector of measurements, y ∈ Rp

yj Data label j ∈ Z := {1, 2, . . . ,m} (Chapters 5 and 6)
ŷ Estimated output measurement
z Transformed state, x = Tz (Chapters 8 and 9)
ε Error vector
β Bifurcation parameters
ξ Eigenvector of Koopman operator (Sections 7.4 and 7.5)
ξ Sparse vector of coefficients (Section 7.3)
θ Neural network parameters
φ DMD mode
ψ POD mode
Υ Vector of PDE measurements for PDE-FIND

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Acknowledgments xxiii

Matrices

A Matrix for system of equations or dynamics
Ã Reduced dynamics on r-dimensional POD subspace

AX Matrix representation of linear dynamics on the state x
AY Matrix representation of linear dynamics on the observables y

(A,B,C,D) Matrices for continuous-time state-space system
(Ad,Bd,Cd,Dd) Matrices for discrete-time state-space system

(Â, B̂, Ĉ, D̂) Matrices for state-space system in new coordinates z = T−1x

(Ã, B̃, C̃, D̃) Matrices for reduced state-space system with rank r
B Actuation input matrix
C Linear measurement matrix from state to measurements
C Controllability matrix
F Discrete Fourier transform
G Matrix representation of linear dynamics on the states and

inputs [xTuT]T

H Hankel matrix
H′ Time-shifted Hankel matrix

I Identity matrix
K Matrix form of Koopman operator (Chapter 7)
K Closed-loop control gain (Chapter 8)

Kf Kalman filter estimator gain
Kr LQR control gain
L Low-rank portion of matrix X (Chapter 3)
O Observability matrix
P Unitary matrix that acts on columns of X
Q Weight matrix for state penalty in LQR (Section 8.4)
Q Orthogonal matrix from QR factorization
R Weight matrix for actuation penalty in LQR (Section 8.4)
R Upper triangular matrix from QR factorization
S Sparse portion of matrix X (Chapter 3)
T Matrix of eigenvectors (Chapter 8)
T Change of coordinates (Chapters 8 and 9)
U Left singular vectors of X, U ∈ Rn×n

Û Left singular vectors of economy SVD of X, U ∈ Rn×m

Ũ Left singular vectors (POD modes) of truncated SVD of X, U ∈ Rn×r

V Right singular vectors of X, V ∈ Rm×m

Ṽ Right singular vectors of truncated SVD of X, V ∈ Rm×r

Σ Matrix of singular values of X, Σ ∈ Rn×m

Σ̂ Matrix of singular values of economy SVD of X, Σ ∈ Rm×m

Σ̃ Matrix of singular values of truncated SVD of X, Σ ∈ Rr×r

W Eigenvectors of Ã

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

xxiv Acknowledgments

Wc Controllability Gramian
Wo Observability Gramian

X Data matrix, X ∈ Rn×m

X′ Time-shifted data matrix, X′ ∈ Rn×m

Y Projection of X matrix onto orthogonal basis in randomized SVD (Section 1.8)
Y Data matrix of observables, Y = g(X), Y ∈ Rp×m (Chapter 7)
Y′ Shifted data matrix of observables, Y′ = g(X′), Y′ ∈ Rp×m (Chapter 7)
Z Sketch matrix for randomized SVD, Z ∈ Rn×r (Section 1.8)
Θ Measurement matrix times sparsifying basis, Θ = CΨ (Chapter 3)
Θ Matrix of candidate functions for SINDy (Section 7.3)
Γ Matrix of derivatives of candidate functions for SINDy (Section 7.3)
Ξ Matrix of coefficients of candidate functions for SINDy (Section 7.3)
Ξ Matrix of nonlinear snapshots for DEIM (Section 13.5)
Λ Diagonal matrix of eigenvalues
Υ Input snapshot matrix, Υ ∈ Rq×m

Φ Matrix of DMD modes, Φ , X′VΣ−1W
Ψ Orthonormal basis (e.g., Fourier or POD modes)

Tensors

(A,B,M) N -way array tensors of size I1 × I2 × · · · × IN

Norms

‖ · ‖0 `0 pseudo-norm of a vector x; the number of non-zero elements in x
‖ · ‖1 `1-norm of a vector x given by ‖x‖1 =

∑n
i=1 |xi|

‖ · ‖2 `2-norm of a vector x given by ‖x‖2 =
√∑n

i=1(x2
i)

‖ · ‖2 2-norm of a matrix X given by ‖X‖2 = maxv 6=0 ‖Xv‖2/‖v‖2

‖ · ‖F Frobenius norm of a matrix X given by ‖X‖F =
√∑n

i=1

∑m
j=1 |Xij|2

‖ · ‖∗ Nuclear norm of a matrix X given by ‖X‖∗ = trace(
√

X∗X) =
∑m

i=1 σi
(for m ≤ n)

〈·, ·〉 Inner product; for functions, 〈f(x), g(x)〉 =
∫∞
−∞ f(x)g∗(x) dx.

〈·, ·〉 Inner product; for vectors, 〈u,v〉 = u∗v.

Operators, Functions, and Maps

F Fourier transform
F Discrete-time dynamical system map
Ft Discrete-time flow map of dynamical system through time t
fθ Neural network (Chapter 6)
f Continuous-time dynamical system (Chapter 7)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Acknowledgments xxv

G Gabor transform
G Transfer function from inputs to outputs (Chapter 8)
g Scalar measurement function on x
g Vector-valued measurement functions on x
J Cost function for control
` Loss function for support vector machines (Chapter 5)
K Koopman operator (continuous-time)
Kt Koopman operator associated with time-t flow map
L Laplace transform
L Loop transfer function (Chapter 8)
L Linear partial differential equation (Chapters 12 and 13)
N Nonlinear partial differential equation
O Order of magnitude
Q Quality function (Chapter 11)
< Real part
S Sensitivity function (Chapter 8)
T Complementary sensitivity function (Chapter 8)
V Value function (Chapter 11)
W Wavelet transform
µ Incoherence between measurement matrix C and basis Ψ
κ Condition number
π Policy function for agent in reinforcement learning (Chapter 11)
ϕ Koopman eigenfunction
∇ Gradient operator
∗ Convolution operator

Most Common Acronyms

CNN Convolutional neural network
DL Deep learning

DMD Dynamic mode decomposition
FFT Fast Fourier transform

ODE Ordinary differential equation
PCA Principal component analysis
PDE Partial differential equation
POD Proper orthogonal decomposition

RL Reinforcement learning
ROM Reduced-order model
SVD Singular value decomposition

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

xxvi Acknowledgments

Other Acronyms

ADM Alternating directions method
AIC Akaike information criterion

ALM Augmented Lagrange multiplier
ANN Artificial neural network

ARMA Autoregressive moving average
ARMAX Autoregressive moving average with exogenous input

BIC Bayesian information criterion
BPOD Balanced proper orthogonal decomposition
DMDc Dynamic mode decomposition with control

CCA Canonical correlation analysis
CFD Computational fluid dynamics

CoSaMP Compressive sampling matching pursuit
CWT Continuous wavelet transform

DEIM Discrete empirical interpolation method
DCT Discrete cosine transform
DFT Discrete Fourier transform

DMDc Dynamic mode decomposition with control
DNS Direct numerical simulation

DP Dynamic programming
DQN Deep Q network
DRL Deep reinforcement learning

DWT Discrete wavelet transform
ECOG Electrocorticography
eDMD Extended DMD

EIM Empirical interpolation method
EM Expectation maximization

EOF Empirical orthogonal functions
ERA Eigensystem realization algorithm
ESC Extremum-seeking control

GMM Gaussian mixture model
HAVOK Hankel alternative view of Koopman

HER Hindsight experience replay
HJB Hamilton-Jacobi-Bellman equation

JL Johnson–Lindenstrauss
KL Kullback–Leibler

ICA Independent component analysis
KLT Karhunen–Loève transform

LAD Least absolute deviations
LASSO Least absolute shrinkage and selection operator

LDA Linear discriminant analysis

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Acknowledgments xxvii

LQE Linear–quadratic estimator
LQG Linear–quadratic Gaussian controller
LQR Linear–quadratic regulator

LTI Linear time-invariant system
MDP Markov decision process

MIMO Multiple-input, multiple-output
MLC Machine learning control
MPE Missing point estimation

mrDMD Multi-resolution dynamic mode decomposition
NARMAX Nonlinear autoregressive model with exogenous inputs

NLS Nonlinear Schrödinger equation
OKID Observer Kalman filter identification

PBH Popov–Belevitch–Hautus test
PCP Principal component pursuit

PDE-FIND Partial differential equation functional identification
of nonlinear dynamics

PDF Probability density function
PID Proportional–integral–derivative control

PINN Physics-informed neural network
PIV Particle image velocimetry
RIP Restricted isometry property

rSVD Randomized SVD
RKHS Reproducing kernel Hilbert space
RNN Recurrent neural network

RPCA Robust principal component analysis
SGD Stochastic gradient descent

SINDy Sparse identification of nonlinear dynamics
SINDYc SINDy with control

SISO Single-input, single-output
SRC Sparse representation for classification
SSA Singular spectrum analysis

STFT Short-time Fourier transform
STLS Sequential thresholded least-squares
SVM Support vector machine
TICA Time-lagged independent component analysis
VAC Variational approach of conformation dynamics

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

xxviii Acknowledgments

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Part I

Dimensionality Reduction and
Transforms

1

Chapter 1

Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is among the most important matrix
factorizations of the computational era, providing a foundation for nearly all of
the data methods in this book. The SVD provides a numerically stable matrix
decomposition that can be used for a variety of purposes and is guaranteed to
exist. We will use the SVD to obtain optimal low-rank approximations to ma-
trices and to perform pseudo-inverses of non-square matrices to find a solution
to the system of equations Ax = b. The SVD will also be used as the underly-
ing algorithm of principal component analysis (PCA), where high-dimensional
data is decomposed into its most statistically descriptive factors. SVD/PCA has
been applied to a wide variety of problems in science and engineering.

In a sense, the SVD generalizes the concept of the fast Fourier transform
(FFT), which will be the subject of the next chapter. Many engineering texts
begin with the FFT, as it is the basis of many classical analytical and numerical
results. However, the FFT works in idealized settings, and the SVD is a more
generic data-driven technique. Because this book is focused on data, we begin
with the SVD, which may be thought of as providing a basis that is tailored to
the specific data, as opposed to the FFT, which provides a generic basis.

In many domains, complex systems will generate data that is naturally ar-
ranged in large matrices, or more generally in arrays. For example, a time series
of data from an experiment or a simulation may be arranged in a matrix, with
each column containing all of the measurements at a given time. If the data at
each instant in time is multi-dimensional, as in a high-resolution simulation of
the weather in three spatial dimensions, it is possible to reshape or flatten this
data into a high-dimensional column vector, forming the columns of a large
matrix. Similarly, the pixel values in a grayscale image may be stored in a ma-
trix, or these images may be reshaped into large column vectors in a matrix
to represent the frames of a movie. Remarkably, the data generated by these
systems is typically low-rank, meaning that there are a few dominant patterns
that explain the high-dimensional data. The SVD is a numerically robust and
efficient method of extracting these patterns from data.

3

4 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

1.1 Overview

Here we introduce the singular value decomposition (SVD) and develop an
intuition for how to apply the SVD by demonstrating its use on a number of
motivating examples. The SVD will provide a foundation for many other tech-
niques developed in this book, including classification methods in Chapter 5,
the dynamic mode decomposition (DMD) in Chapter 7, and the proper orthog-
onal decomposition (POD) in Chapter 12. Detailed mathematical properties are
discussed in the following sections.

High dimensionality is a common challenge in processing data from com-
plex systems. These systems may involve large measured data sets including
audio, image, or video data. The data may also be generated from a physical
system, such as neural recordings from a brain, or fluid velocity measurements
from a simulation or experiment. In many naturally occurring systems, it is ob-
served that data exhibit dominant patterns, which may be characterized by a
low-dimensional attractor or manifold [334, 335].

As an example, consider images, which typically contain a large number of
measurements (pixels), and are therefore elements of a high-dimensional vector
space. However, most images are highly compressible, meaning that the rele-
vant information may be represented in a much lower-dimensional subspace.
The compressibility of images will be discussed in depth throughout this book.
Complex fluid systems, such as the Earth’s atmosphere or the turbulent wake
behind a vehicle, also provide compelling examples of the low-dimensional
structure underlying a high-dimensional state space. Although high-fidelity
fluid simulations typically require at least millions or billions of degrees of free-
dom, there are often dominant coherent structures in the flow, such as periodic
vortex shedding behind vehicles or hurricanes in the weather.

The SVD provides a systematic way to determine a low-dimensional ap-
proximation to high-dimensional data in terms of dominant patterns. This tech-
nique is data-driven in that patterns are discovered purely from data, without
the addition of expert knowledge or intuition. The SVD is numerically stable
and provides a hierarchical representation of the data in terms of a new coor-
dinate system defined by dominant correlations within the data. Moreover, the
SVD is guaranteed to exist for any matrix, unlike the eigendecomposition.

The SVD has many powerful applications beyond dimensionality reduction
of high-dimensional data. It is used to compute the pseudo-inverse of non-
square matrices, providing solutions to under-determined or over-determined
matrix equations, Ax = b. We will also use the SVD to de-noise data sets. The
SVD is likewise important to characterize the input and output geometry of a
linear map between vector spaces. These applications will all be explored in
this chapter, providing an intuition for matrices and high-dimensional data.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.1. OVERVIEW 5

Definition of the SVD

Generally, we are interested in analyzing a large data set X ∈ Cn×m:

X =

x1 x2 · · · xm

 . (1.1)

The columns xk ∈ Cn may be measurements from simulations or experiments.
For example, columns may represent images that have been reshaped into col-
umn vectors with as many elements as pixels in the image. The column vectors
may also represent the state of a physical system that is evolving in time, such
as the fluid velocity at a set of discrete points, a set of neural measurements, or
the state of a weather simulation with one square kilometer resolution.

The index k is a label indicating the kth distinct set of measurements. For
many of the examples in this book, X will consist of a time series of data, and
xk = x(k∆t). Often the state dimension n is very large, on the order of millions
or billions of degrees of freedom. The columns are often called snapshots, and
m is the number of snapshots in X. For many systems n � m, resulting in a
tall-skinny matrix, as opposed to a short-fat matrix when n� m.

The SVD is a unique matrix decomposition that exists for every complex-
valued matrix X ∈ Cn×m:

X = UΣV∗, (1.2)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices1 with orthonormal columns,
and Σ ∈ Rn×m is a matrix with real, non-negative entries on the diagonal and
zeros off the diagonal. Here ∗ denotes the complex conjugate transpose.2 As we
will discover throughout this chapter, the condition that U and V are unitary
is used extensively.

When n ≥ m, the matrix Σ has at most m non-zero elements on the diago-
nal, and may be written as

Σ =

[
Σ̂
0

]
.

Therefore, it is possible to exactly represent X using the economy SVD:

X = UΣV∗ =
[
Û Û

⊥
] [

Σ̂
0

]
V∗ = ÛΣ̂V∗. (1.3)

The full SVD and economy SVD are shown in Fig. 1.1. The columns of Û⊥ span
a vector space that is complementary and orthogonal to that spanned by Û. The

1A square matrix U is unitary if UU∗ = U∗U = I.
2For real-valued matrices, this is the same as the regular transpose X∗ = XT .

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)6 CHAPTER 1. SVD & PCA

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

| {z }

2
66666666666666664

3
77777777777777775

| {z }

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

Full SVD

X Û Û
⊥

U

Σ̂

0

Σ

V∗

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

Economy SVD

Û

Σ̂ V∗

Figure 1.1: Schematic of matrices in the full and economy SVD.

columns of U are called left singular vectors of X and the columns of V are right
singular vectors. The diagonal elements of Σ̂ ∈ Cm×m are called singular values
and they are ordered from largest to smallest. The rank of X is equal to the
number of non-zero singular values. We will show in Section 1.2 that the SVD
can also be used to obtain an optimal rank-r approximation of X for r < m.

Computing the SVD

The SVD is a cornerstone of computational science and engineering, and the
numerical implementation of the SVD is both important and mathematically
enlightening. That said, most standard numerical implementations are mature
and a simple interface exists in many modern computer languages, allowing
us to abstract away the details underlying the SVD computation. For most
purposes, we simply use the SVD as a part of a larger effort, and we take for
granted the existence of efficient and stable numerical algorithms. Numerically,
the SVD may be computed by first reducing the matrix X to a bidiagonal ma-
trix and then using an iterative algorithm to compute the SVD of the bidiag-
onal matrix. For matrices with high aspect ratio (i.e., n � m), then the first
step may be achieved by first computing a QR factorization to reduce X to an
upper triangular matrix, followed by Householder reflections to reduce this
upper triangular matrix into a bidiagonal form. The second step may be per-
formed using a modified QR algorithm developed by Golub & Kahan [285].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.1. OVERVIEW 7

Details of the QR factorization are beyond the scope of this book, although it
is a straightforward greedy method that is closely related to Gram–Schmidt
orthogonalization. There are numerous variations, alternatives, and important
results on the computation of the SVD; for a more thorough discussion, see
[144, 285, 286, 318, 389, 711]. Randomized numerical algorithms are increas-
ingly used to compute the SVD of very large matrices as discussed in Sec-
tion 1.8.

MATLAB

In MATLAB, computing the SVD is straightforward:

>> X = randn(5,3); % Create a 5x3 random data matrix
>> [U,S,V] = svd(X); % Singular value decomposition

For non-square matrices X, the economy SVD is more efficient:

>> [Uhat,Shat,V] = svd(X,’econ’); % Economy sized SVD

Python3

>>> import numpy as np
>>> X = np.random.rand(5, 3) # Create random data matrix
>>> U, S, VT = np.linalg.svd(X,full_matrices=True) #Full SVD
>>> Uhat, Shat, VThat = np.linalg.svd(X,full_matrices=False)

Economy SVD

R

> X <- replicate(3, rnorm(5))
> s <- svd(X)
> U <- s$u
> S <- diag(s$d)
> V <- s$v

Mathematica

In:= X=RandomReal[{0,1},{5,3}]
In:= {U,S,V} = SingularValueDecomposition[X]

3Note that Python outputs the transpose of V

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Other Languages

The SVD is also available in other languages, such as Fortran and C++. In fact,
most SVD implementations are based on the LAPACK (Linear Algebra Pack-
age) [19] in Fortran. The SVD routine is designated DGESVD in LAPACK, and
this is wrapped in the C++ libraries Armadillo and Eigen.

Historical Perspective

The SVD has a long and rich history, ranging from early work developing the
theoretical foundations to modern work on computational stability and effi-
ciency. There is an excellent historical review by Stewart [676], which provides
context and many important details. The review focuses on the early theoret-
ical work of Beltrami and Jordan (1873), Sylvester (1889), Schmidt (1907), and
Weyl (1912). It also discusses more recent work, including the seminal compu-
tational work of Golub and collaborators [285, 286]. In addition, there are many
excellent chapters on the SVD in modern texts [24, 420, 711].

Uses in This Book and Assumptions of the Reader

The SVD is the basis for many related techniques in dimensionality reduc-
tion. These methods include principal component analysis (PCA) in statistics
[339, 340, 552], the Karhunen–Loève transform (KLT) [374, 453], empirical or-
thogonal functions (EOFs) in climate [459], the proper orthogonal decomposi-
tion (POD) in fluid dynamics [335], and canonical correlation analysis (CCA)
[176]. Although developed independently in a range of diverse fields, many of
these methods only differ in how the data is collected and pre-processed. There
is an excellent discussion about the relationship between the SVD, the KLT, and
PCA by Gerbrands [275].

The SVD is also widely used in system identification and control theory
to obtain reduced-order models that are balanced in the sense that states are
hierarchically ordered in terms of their ability to be observed by measurements
and controlled by actuation [509].

For this chapter, we assume that the reader is familiar with linear algebra,
with some experience in computation and numerics. For review, there are a
number of excellent books on numerical linear algebra, with discussions on the
SVD [24, 420, 711].

1.2 Matrix Approximation

Perhaps the most useful and defining property of the SVD is that it provides
an optimal low-rank approximation to a matrix X. In fact, the SVD provides a

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.2. MATRIX APPROXIMATION 9

hierarchy of low-rank approximations, since a rank-r approximation is obtained
by keeping the leading r singular values and vectors, and discarding the rest.

Because Σ is diagonal, it is possible to express the matrix X = UΣV∗ as a
sum of rank-one matrices:

X =
m∑

k=1

σkukv
∗
k = σ1u1v

∗
1 + σ2u2v

∗
2 + · · ·+ σmumv∗m, (1.4)

where σk is the kth diagonal entry of Σ, and uk and vk are the kth columns of
U and V, respectively. This is known as the dyadic summation. The singular
values σk are arranged in decreasing order, σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0, so each
subsequent rank-one matrix σkukv∗k is less important than the previous matrix
in capturing the information in X. For many systems, the singular values σk
decrease rapidly, and it is possible to obtain a good approximation of X by
truncating at some rank r:

X ≈ X̃ =
r∑

k=1

σkukv
∗
k = σ1u1v

∗
1 + σ2u2v

∗
2 + · · ·+ σrurv

∗
r . (1.5)

Here, we establish the notation that a truncated SVD basis (and the resulting
approximated matrix X̃) will be denoted by X̃ = ŨΣ̃Ṽ∗, where Ũ and Ṽ con-
tain the first r columns of U and V, and Σ̃ contains the first r × r sub-block
of Σ. The truncated SVD is illustrated in Fig. 1.2, with Ũ, Σ̃, and Ṽ denoting
the truncated matrices. If X does not have full rank, then some of the singular
values in Σ̂ may be zero, and the truncated SVD may still be exact. However,
for truncation values r that are smaller than the number of non-zero singular
values (i.e., the rank of X), the truncated SVD only approximates X.

For a given rank r, there is no better approximation for X, in the `2 sense,
than the truncated SVD approximation X̃. The Eckart–Young theorem below
will state this precisely and provide expressions for the error of the truncated
approximation. There are numerous choices for the truncation rank r, and they
are discussed in Section 1.7. Thus, high-dimensional data may be well described
by a few dominant patterns given by the columns of Ũ and Ṽ.

This is an important property of the SVD, and we will return to it many
times. There are numerous examples of data sets that contain high-dimensional
measurements, resulting in a large data matrix X. However, there are often
dominant low-dimensional patterns in the data, and the truncated SVD basis Ũ
provides a coordinate transformation from the high-dimensional measurement
space into a low-dimensional pattern space. This has the benefit of reducing the
size and dimension of large data sets, yielding a tractable basis for visualization
and analysis. Finally, many systems considered in this text are dynamic (see
Chapter 7), and the SVD basis provides a hierarchy of modes that characterize
the observed attractor, on which we may project a low-dimensional dynamical
system to obtain reduced-order models (see Chapter 13).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

6 CHAPTER 1. SVD & PCA

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

| {z }

2
66666666666666664

3
77777777777777775

| {z }

2
6666664

3
7777775

6 CHAPTER 1. SVD & PCA

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

| {z }

2
66666666666666664

3
77777777777777775

| {z }

2
6666664

3
7777775

6 CHAPTER 1. SVD & PCA

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

| {z }

2
66666666666666664

3
77777777777777775

| {z }

2
6666664

3
7777775

Full SVD

X Ũ Ûrem Û
⊥

Σ̃

0

Σ̂rem

Ṽ∗

Vrem

︸ ︷︷ ︸
Û

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

⇡

Truncated SVD

Ũ

Σ̃ Ṽ∗

Figure 1.2: Schematic of truncated SVD. The subscript ‘rem’ denotes the remain-
der of Û, Σ̂, or V after truncation.

Optimal Approximation and Error Bounds

Schmidt (of Gram–Schmidt) generalized the SVD to function spaces and de-
veloped an approximation theorem, establishing the truncated SVD X̃ as the
optimal low-rank approximation of the underlying matrix X [639]. Schmidt’s
approximation theorem was rediscovered by Eckart and Young [228], and is
sometimes referred to as the Eckart–Young theorem.

Theorem 1.1 (Eckart–Young [228]) The optimal rank-r approximation to X, in a
least-squares sense, is given by the rank-r SVD truncation X̃:

argmin
X̃, s.t. rank(X̃)=r

‖X− X̃‖F = ŨΣ̃Ṽ∗. (1.6)

Again, Ũ and Ṽ denote the first r leading columns of U and V, and Σ̃ con-
tains the leading r × r sub-block of Σ. The Frobenius norm above is defined as
‖X‖F =

√∑n
i=1

∑m
j=1 |Xij|2, which is equivalent to the 2-norm of the vectorized

matrix X(:).
Thus, the Eckart–Young theorem guarantees that the truncated SVD pro-

vides the best matrix approximation of a given rank in the Frobenius norm. It

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.2. MATRIX APPROXIMATION 11

is also possible to exactly quantify the error of the rank-r SVD approximation:

‖X− X̃‖2
F =

m∑

k=r+1

σ2
k. (1.7)

Thus, all other rank-r matrices X̃ will have at least this much error. Because
the error scales with the size and magnitude of X, it is often more useful to
consider the relative error

‖X− X̃‖2
F

‖X‖2
F

. (1.8)

This expression for the relative error in the Frobenius norm has two intuitive
interpretations. If the columns of X are velocity fields, for example from a dis-
cretized fluid flow simulation, then this error is related to the fraction of the ki-
netic energy that is missing in the approximation X̃. More generally, the squared
Frobenius norm error of mean-subtracted data has the interpretation of the
amount of missing variance in the approximation X̃. This statistical interpre-
tation will be explored more in Section 1.5.

Remarkably, the SVD also provides an optimal rank-r approximation in the
matrix 2-norm, also known as the spectral norm:

argmin
X̃, s.t. rank(X̃)=r

‖X− X̃‖2 = ŨΣ̃Ṽ∗. (1.9)

The 2-norm of a matrix X is induced by the vector 2-norm and is given by

‖X‖2 = max
v 6=0

‖Xv‖2

‖v‖2

.

The error expression for the rank-r SVD approximation is even simpler in the
2-norm:

‖X− X̃‖2 = σr+1. (1.10)

This error expression is rather simple to derive by expanding

X− X̃ =
m∑

k=r+1

σkukv
∗
k. (1.11)

Since each of the vk vectors is orthonormal, the maximum ‖(X− X̃)v‖2 = σr+1

is achieved for v = vr+1.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Example: Image Compression

We demonstrate the idea of matrix approximation with a simple example: im-
age compression. A recurring theme throughout this book is that large data sets
often contain underlying patterns that facilitate low-rank representations. Nat-
ural images present a simple and intuitive example of this inherent compress-
ibility. A grayscale image may be thought of as a real-valued matrix X ∈ Rn×m,
where n and m are the number of pixels in the vertical and horizontal di-
rections, respectively.4 Depending on the basis of representation (pixel space,
Fourier frequency domain, SVD transform coordinates), images may have very
compact approximations.

Consider the image of Mordecai the snow dog in Fig. 1.3. This image has
2000 × 1500 pixels. It is possible to take the SVD of this image and plot the
diagonal singular values, as in Fig. 1.4. Figure 1.3 shows the approximate ma-
trix X̃ for various truncation values r. By r = 100, the reconstructed image is
quite accurate, and the singular values account for almost 80% of the total cu-
mulative sum of the singular values. The squared error is less than 4% in the
Frobenius norm. The SVD truncation results in a compression of the original
image, since only the first 100 columns of U and V, along with the first 100

diagonal elements of Σ, must be stored in Ũ, Σ̃, and Ṽ.

Code 1.1: [MATLAB] Use SVD to compress image.
% First, we load the image
A=imread(’../DATA/dog.jpg’);
X=double(rgb2gray(A)); % Convert RBG->gray, 256 bit->double.
nx = size(X,1); ny = size(X,2);
imagesc(X), axis off, colormap gray

% Take the SVD
[U,S,V] = svd(X);

% Approximate matrix with truncated SVD for various ranks r
for r=[5 20 100] % Truncation value

Xapprox = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % Approx. image
figure, imagesc(Xapprox), axis off
title([’r=’,num2str(r,’%d’)]);

end

% Plot singular values and cumulative sum
subplot(1,2,1), semilogy(diag(S),’k’)
subplot(1,2,2), plot(cumsum(diag(S))/sum(diag(S)),’k’)

4It is not uncommon for image size to be specified as horizontal by vertical, i.e., XT ∈ Rm×n,
although we stick with vertical by horizontal to be consistent with generic matrix notation.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.2. MATRIX APPROXIMATION 13

Original r = 5, 0.57% storage

r = 20, 2.33% storage r = 100, 11.67% storage

Figure 1.3: Image compression of Mordecai the snow dog, truncating the SVD
at various ranks r. Original image resolution is 2000× 1500.

Code 1.1: [Python] Use SVD to compress image.
First, we load the image
from matplotlib.image import imread
A = imread(os.path.join(’..’,’DATA’,’dog.jpg’))
X = np.mean(A, -1); # Convert RGB to grayscale
img = plt.imshow(X)
Take the SVD
U, S, VT = np.linalg.svd(X,full_matrices=False)
S = np.diag(S)
Approximate matrix with truncated SVD for various ranks r

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

0 500 1000 1500
10

0

10
2

10
4

10
6

(a)
Si

ng
ul

ar
va

lu
e,
σ
r

r
0 500 1000 1500

0

0.2

0.4

0.6

0.8

1
(b)

C
um

ul
at

iv
e

su
m

r

r = 5

r = 20

r = 100

Figure 1.4: (a) Singular values σr and (b) cumulative sum
∑r

k=1 σk of the first r
singular values.

for r in (5, 20, 100): # Construct approximate image
Xapprox = U[:,:r] @ S[0:r,:r] @ VT[:r,:]
img = plt.imshow(Xapprox)
plt.show()

Plot singular values and cumulative sum
plt.semilogy(np.diag(S))
plt.plot(np.cumsum(np.diag(S))/np.sum(np.diag(S)))

1.3 Mathematical Properties and Manipulations

Here we describe important mathematical properties of the SVD, including ge-
ometric interpretations of the unitary matrices U and V, as well as a discussion
of the SVD in terms of dominant correlations in the data X. The relationship be-
tween the SVD and correlations in the data will be explored more in Section 1.5
on principal component analysis.

Interpretation as Dominant Correlations

The SVD is closely related to an eigenvalue problem involving the correlation
matrices XX∗ and X∗X, shown in Fig. 1.5 for a specific image, and in Figs. 1.6
and 1.7 for generic matrices. If we plug (1.3) into the row-wise correlation ma-
trix XX∗ and the column-wise correlation matrix X∗X, we find

XX∗ = U

[
Σ̂
0

]
V∗V

[
Σ̂ 0

]
U∗ = U

[
Σ̂2 0
0 0

]
U∗, (1.12a)

X∗X = V
[
Σ̂ 0

]
U∗U

[
Σ̂
0

]
V∗ = VΣ̂2V∗. (1.12b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.3. MATHEMATICAL PROPERTIES AND MANIPULATIONS 15

X XX∗ X∗X

Figure 1.5: Correlation matrices XX∗ and X∗X for a matrix X obtained from an
image of a dog. Note that both correlation matrices are symmetric.

Recalling that U and V are unitary, U, Σ, and V are solutions to the following
eigenvalue problems:

XX∗U = U

[
Σ̂2 0
0 0

]
, (1.13a)

X∗XV = VΣ̂2. (1.13b)

In other words, each non-zero singular value of X is a positive square root of
an eigenvalue of X∗X and of XX∗, which have the same non-zero eigenvalues.
It follows that, if X is self-adjoint (i.e., X = X∗), then the singular values of X
are equal to the absolute value of the eigenvalues of X.

This provides an intuitive interpretation of the SVD, where the columns of
U are eigenvectors of the correlation matrix XX∗, and the columns of V are
eigenvectors of X∗X. We choose to arrange the singular values in descending
order by magnitude, and thus the columns of U are hierarchically ordered by
how much correlation they capture in the columns of X; similarly V captures
correlation in the rows of X.

Method of Snapshots

It is often impractical to construct the matrix XX∗ because of the large size of
the state dimension n, let alone solve the eigenvalue problem: if x has a million
elements, then XX∗ has a trillion elements. In 1987, Sirovich observed that it
is possible to bypass this large matrix and compute the first m columns of U
using what is now known as the method of snapshots [663].

Instead of computing the eigendecomposition of XX∗ to obtain the left sin-
gular vectors U, we only compute the eigendecomposition of X∗X, which is

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

16 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

X X∗ XX∗

Figure 1.6: Correlation matrix XX∗ is formed by taking the inner product of
rows of X.

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

1.2. MATHEMATICAL FORMULATION 5

1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].

2
66666666666666664

3
77777777777777775

=

2
66666666666666664

3
77777777777777775

2
66666666666666664

3
77777777777777775

2
6666664

3
7777775

X∗ X X∗X

Figure 1.7: Correlation matrix X∗X is formed by taking the inner product of
columns of X.

much smaller and more manageable. From (1.13b), we then obtain V and Σ̂. If
there are zero singular values in Σ̂, then we only keep the r non-zero part, Σ̃,
and the corresponding columns Ṽ of V. From these matrices, it is then possible
to approximate Ũ, the first r columns of U, as follows:

Ũ = XṼΣ̃
−1
. (1.14)

Generalization of the Eigendecomposition

In a sense, the singular value decomposition is a generalization of the eigen-
decomposition that is valid for all matrices, including non-square matrices and
defective square matrices that do not have a complete basis of eigenvectors.

The eigendecomposition of a diagonalizable square matrix X is given by

XV = VΛ =⇒ X = VΛV−1, (1.15)

where the columns of V are eigenvectors and the corresponding entries of the
diagonal matrix Λ are the eigenvalues. For Hermitian matrices (i.e., self-adjoint

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.3. MATHEMATICAL PROPERTIES AND MANIPULATIONS 17

matrices such that X = X∗), the eigendecomposition takes the form

XV = VΛ =⇒ X = VΛV∗ (1.16)

and the eigenvalues are real.
The singular value decomposition may be written in a similar form for a

generic matrix X as

XV = UΣ =⇒ X = UΣV∗. (1.17)

In this way, the singular value spectrum, given by the collection of singular val-
ues in Σ, generalizes the notion of an eigenvalue spectrum, given by the col-
lection of eigenvalues in Λ. Similarly, the left and right singular vectors have
an interpretation as a change of coordinates in the input space Cm and output
space Cn, much as the eigenvectors provide a change of coordinates to diago-
nalize a square matrix.

Geometric Interpretation

The columns of the matrix U provide an orthonormal basis for the column
space of X. Similarly, the columns of V provide an orthonormal basis for the
row space of X. If the columns of X are spatial measurements in time, then U
encodes spatial patterns, and V encodes temporal patterns.

One property that makes the SVD particularly useful is the fact that both U
and V are unitary matrices, so that UU∗ = U∗U = In×n and VV∗ = V∗V =
Im×m. This means that solving a system of equations involving U or V is as
simple as multiplication by the transpose, which scales asO(n2), as opposed to
traditional methods for the generic inverse, which scale as O(n3). As noted in
the previous section and in [79], the SVD is intimately connected to the spectral
properties of the compact self-adjoint operators XX∗ and X∗X.

The SVD of X may be interpreted geometrically based on how a hyper-
sphere, given by Sn−1 , {x | ‖x‖2 = 1} ⊂ Rn, maps into an ellipsoid, {y |y =
Xx for x ∈ Sn−1} ⊂ Rm, through X. This is shown graphically in Fig. 1.8 for
a sphere in R3 and a mapping X with three non-zero singular values. Because
the mapping through X (i.e., matrix multiplication) is linear, knowing how it
maps the unit sphere determines how all other vectors will map.

For the specific case shown in Fig. 1.8, we construct the matrix X out of
three rotation matrices, Rx, Ry, and Rz, and a fourth matrix to stretch out and

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

18 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

−2

0

2 −2

0

2
−2

−1

0

1

2

−2

0

2 −2

0

2
−2

−1

0

1

2

=⇒
X

Figure 1.8: Geometric illustration of the SVD as a mapping from a sphere in Rn

to an ellipsoid in Rm.

scale the principal axes:

X =

cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1

︸ ︷︷ ︸
Rz

cos(θ2) 0 sin(θ2)
0 1 0

− sin(θ2) 0 cos(θ2)

︸ ︷︷ ︸
Ry

×

1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)

︸ ︷︷ ︸
Rx

σ1 0 0
0 σ2 0
0 0 σ3

 .

In this case, θ1 = π/15, θ2 = −π/9, and θ3 = −π/20, and σ1 = 3, σ2 = 1, and
σ3 = 0.5. These rotation matrices do not commute, and so the order of rota-
tion matters. If one of the singular values is zero, then a dimension is removed
and the ellipsoid collapses onto a lower-dimensional subspace. The product
RxRyRz is the unitary matrix U in the SVD of X. The matrix V is the identity.
Codes to reproduce this example in MATLAB and in Python are provided on
the book’s GitHub.

Invariance of the SVD to Unitary Transformations

A useful property of the SVD is that if we left- or right-multiply our data matrix
X by a unitary transformation, it preserves the terms in the SVD, except for the
corresponding left or right unitary matrix U or V, respectively. This has impor-
tant implications, since the discrete Fourier transform (DFT; see Chapter 2) F
is a unitary transform, meaning that the SVD of data X̂ = FX will be exactly
the same as the SVD of X, except that the modes Û will be the DFT of modes
U: Û = FU. In addition, the invariance of the SVD to unitary transformations
enables the use of compressed measurements to reconstruct SVD modes that
are sparse in some transform basis (see Chapter 3).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.4. PSEUDO-INVERSE, LEAST-SQUARES, AND REGRESSION 19

The invariance of SVD to unitary transformations is geometrically intuitive,
as unitary transformations rotate vectors in space, but do not change their inner
products or correlation structures. We denote a left unitary transformation by
C, so that Y = CX, and a right unitary transformation by P∗, so that Y = XP∗.
The SVD of X will be denoted UXΣXV∗X and the SVD of Y will be UYΣYV∗Y.

Left Unitary Transformations

First, consider a left unitary transformation of X: Y = CX. Computing the
correlation matrix Y∗Y, we find

Y∗Y = X∗C∗CX = X∗X. (1.18)

The projected data has the same eigendecomposition, resulting in the same VX

and ΣX. Using the method of snapshots to reconstruct UY, we find

UY = YVXΣ−1
X = CXVXΣ−1

X = CUX. (1.19)

Thus, UY = CUX, ΣY = ΣX, and VY = VX. The SVD of Y is then

Y = CX = CUXΣXV∗X. (1.20)

Right Unitary Transformations

For a right unitary transformation Y = XP∗, the correlation matrix Y∗Y is

Y∗Y = PX∗XP∗ = PVXΣ2
XV∗XP∗, (1.21)

with the following eigendecomposition:

Y∗YPVX = PVXΣ2
X. (1.22)

Thus, VY = PVX and ΣY = ΣX. We may use the method of snapshots to
reconstruct UY:

UY = YPVXΣ−1
X = XVXΣ−1

X = UX. (1.23)

Thus, UY = UX, and we may write the SVD of Y as

Y = XP∗ = UXΣXV∗XP∗. (1.24)

1.4 Pseudo-Inverse, Least-Squares, and Regression

Many physical systems may be represented as a linear system of equations,

Ax = b, (1.25)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

20 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

where the constraint matrix A and vector b are known, and the vector x is
unknown. If A is a square, invertible matrix (i.e., A has non-zero determinant),
then there exists a unique solution x for every b. However, when A is either
singular or rectangular, there may be one, none, or infinitely many solutions,
depending on the specific b and the column and row spaces of A.

First, consider the under-determined system, where A ∈ Cn×m and n � m
(i.e., A is a short-fat matrix), so that there are fewer equations than unknowns.
This type of system is likely to have columns that span all of Rn, since it has
many more columns than are required for a linearly independent basis.5 Gener-
ically, if a short-fat A has n linearly independent columns (i.e., its column space
spans Rn), then there are infinitely many solutions x for every b. The system
is called under-determined because there are not enough values in b to uniquely
determine the higher-dimensional x.

Similarly, consider the over-determined system, where n � m (i.e., a tall-
skinny matrix), so that there are more equations than unknowns. This matrix
cannot have n linearly independent columns, and so it is guaranteed that there
are vectors b that have no solution x. In fact, there will only be a solution x if b
is in the column space of A, i.e., b ∈ col(A).

Technically, there may be some choices of b that admit infinitely many so-
lutions x for a tall-skinny matrix A and other choices of b that admit zero so-
lutions even for a short-fat matrix. The solution space to the system in (1.25)
is determined by the following four fundamental subspaces of A = ŨΣ̃Ṽ

∗
,

where the rank r is chosen to include all non-zero singular values:

• The column space, col(A), is the span of the columns of A, also known as
the range. The column space of A is the same as the column space of Ũ.

• The orthogonal complement to col(A) is ker(A∗), given by the column
space of Û⊥ from Fig. 1.1.

• The row space, row(A), is the span of the rows of A, which is spanned by
the columns of Ṽ. The row space of A is equal to row(A) = col(A∗).

• The kernel space, ker(A), is the orthogonal complement to row(A), and
is also known as the null space. The null space is the subspace of vectors
that map through A to zero, i.e., Ax = 0, given by col(V̂⊥).

More precisely, if b ∈ col(A) and if dim(ker(A)) 6= 0, then there are infinitely
many solutions x. Note that the condition dim(ker(A)) 6= 0 is guaranteed for

5It is easy to construct degenerate examples where the columns of a short-fat matrix do not
form a full basis for Rn, such as

A =

[
1 1 1 1
1 1 1 1

]
.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.4. PSEUDO-INVERSE, LEAST-SQUARES, AND REGRESSION 21

a short-fat matrix. Similarly, if b /∈ col(A), then there are no solutions, and the
system of equations in (1.25) is called inconsistent.

The fundamental subspaces above satisfy the following properties:

col(A)⊕ ker(A∗) = Rn, (1.26a)
col(A∗)⊕ ker(A) = Rn. (1.26b)

Remark 1.1 There is an extensive literature on random matrix theory, where the above
stereotypes are almost certainly true, meaning that they are true with high probability.
For example, a system Ax = b is extremely unlikely to have a solution for a random
matrix A ∈ Rn×m and random vector b ∈ Rn with n� m, since there is little chance
that b is in the column space of A. These properties of random matrices will play a
prominent role in compressed sensing (see Chapter 3).

In the over-determined case when no solution exists, we would often like
to find the solution x that minimizes the sum-squared error ‖Ax− b‖2

2, the so-
called least-squares solution. Note that the least-squares solution also minimizes
‖Ax− b‖2. In the under-determined case when infinitely many solutions exist,
we may like to find the solution x with minimum norm ‖x‖2 so that Ax = b,
the so-called minimum-norm solution.

The SVD is the technique of choice for these important optimization prob-
lems. First, if we substitute an exact truncated SVD A = ŨΣ̃Ṽ

∗
in for A, we

can “invert” each of the matrices Ũ, Σ̃, and Ṽ
∗

in turn, resulting in the Moore–
Penrose left pseudo-inverse [560, 561, 604, 776] A† of A:

A† , ṼΣ̃
−1

Ũ
∗

=⇒ A†A = ṼṼ
∗
. (1.27)

Note that A†A will only equal the identity Im×m if the truncated SVD captures
all non-zero singular values; otherwise ṼṼ

∗ 6= Im×m, and it will only approxi-
mate the identity. This may be used to find both the minimum-norm and least-
squares solutions to (1.25):

A†Ax̃ = A†b =⇒ x̃ = ṼΣ̃
−1

Ũ
∗
b. (1.28)

Plugging the solution x̃ back in to (1.25) results in

Ax̃ = ŨΣ̃Ṽ
∗
ṼΣ̃

−1
Ũ
∗
b (1.29a)

= ŨŨ
∗
b. (1.29b)

Although U∗U = UU∗ = In×n for the exact SVD, ŨŨ
∗

is not necessarily the
identity matrix for a truncated basis of left singular vectors Ũ, but is rather a
projection onto the column space of Ũ. Therefore, x̃ will only be an exact solu-
tion to (1.25) when b is in the column space of Ũ, and therefore in the column

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

22 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

space of A. Assuming that ŨŨ
∗

is equal to the identity is one of the most com-
mon accidental misuses of the SVD.6 However, it is still true that Ũ

∗
Ũ = Ir×r,

where r is the rank of A.
Computing the pseudo-inverse A† is computationally efficient, after the ex-

pensive up-front cost of computing the SVD. Inverting the unitary matrices Ũ

and Ṽ involves matrix multiplications by the transpose matrices, which are
O(n2) operations. Inverting Σ̃ is even more efficient, since it is a diagonal ma-
trix, requiring O(n) operations. In contrast, inverting a dense square matrix
would require an O(n3) operation.

Condition Number

The condition number of a matrix A is a measure of how sensitive matrix mul-
tiplication and inversion are to errors in the input. Larger condition number in-
dicates higher sensitivity and worse performance. The condition number κ(A)
is directly related to the singular values of the matrix:

κ(A) =
σmax(A)

σmin(A)
. (1.30)

The condition number is a central concept in all of numerical linear alge-
bra and applied computation. It is easiest to understand the effect of a large
condition number when considering the linear system of equations Ax = b. If
the vector x is not specified perfectly, but instead has some error εx, then the
system becomes

A(x + εx) = b + εb, (1.31)

where εb is the corresponding error in b. If we assume a worst-case scenario,
where εx is aligned with the singular vector corresponding to the maximum
singular value σmax, and the vector x is aligned with the singular vector corre-
sponding to the minimum singular value σmin, then the output is

A(x + εx) = σminx︸ ︷︷ ︸
b

+σmaxεx︸ ︷︷ ︸
εb

. (1.32)

The output signal-to-noise ‖b‖/‖εb‖ is equal to the input signal-to-noise ‖x‖/‖εx‖
multiplied by a factor of σmin/σmax. In other words, the signal-to-noise of the
output has been reduced by a factor equal to the condition number κ(A). Even
if the vectors x and εx are not perfectly aligned with the worst-case directions,
they are likely to have some component of all of the singular vector directions.

6The authors are not immune to this, having mistakenly used this fictional identity in an
early version of [134].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.4. PSEUDO-INVERSE, LEAST-SQUARES, AND REGRESSION 23

In this case, components of the error will still experience large amplification
relative to other components of the desired output.

A similar issue arises when solving for x given an imperfectly specified b
with some error εb. Now the worst-case scenario is where εb is aligned with
the singular vector corresponding to the minimum singular value σmin, and the
vector b is aligned with the singular vector corresponding to the maximum
singular value σmax. Then the estimated solution for x + εx is

x + εx ≈ A†(b + εb) =
1

σmax
b +

1

σmin
εb. (1.33)

The signal-to-noise of the estimated x has also been reduced, or degraded, by
a factor equal to the condition number κ(A).

One approach to mitigate a large condition number is to truncate the SVD
more aggressively, essentially increasing the effective minimum singular value
σmin. However, this comes at the cost of decreasing the size of the subspace Ũ
used to approximate the output.

>> kappanew = 1.e-5; % Desired condition number
>> [U,S,V] = svd(A,’econ’)
>> r = max(find(diag(S)>max(S(:))*kappanew));
>> invA = V(:,1:r)*inv(S(1:r,1:r))*U(:,1:r)’; % Approximate

One-Dimensional Linear Regression

Regression is an important statistical tool to relate variables to one another
based on data [477]. Consider the collection of data in Fig. 1.9. The red crosses
are obtained by adding Gaussian white noise to the black line, as shown in
Code 1.2. We assume that the data is linearly related, as in (1.25), and we use
the pseudo-inverse to find the least-squares solution for the slope x below (blue
dashed line), shown in Code 1.2:

b

 =

a

x = ŨΣ̃Ṽ

∗
x. (1.34a)

=⇒ x = ṼΣ̃
−1

Ũ
∗
b. (1.34b)

In (1.34b), Σ̃ = ‖a‖2, Ṽ = 1, and Ũ = a/‖a‖2. Taking the left pseudo-inverse:

x =
a∗b

‖a‖2
2

. (1.35)

This makes physical sense, if we think of x as the value that best maps our
vector a to the vector b. Then, the best single value x is obtained by taking

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

24 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

−2 −1 0 1 2
−6

−4

−2

0

2

4

6

8

b

a

True line
Noisy data
Regression line

Figure 1.9: Illustration of linear regression using noisy data.

the dot product of b with the normalized a direction. We then add a second
normalization factor ‖a‖2 because the a in (1.34a) is not normalized.

Note that strange things happen if you use row vectors instead of column
vectors in (1.34) above. Also, if the noise magnitude becomes large relative to
the slope x, the pseudo-inverse will undergo a phase change in accuracy, re-
lated to the hard-thresholding results in subsequent sections.

Code 1.2: [MATLAB] Least-squares fit of noisy data in Fig. 1.9.
% Generate noisy data
x = 3; % True slope
a = [-2:.25:2]’;
b = a*x + 1*randn(size(a)); % Add noise
plot(a,x*a,’k’) % True relationship
hold on, plot(a,b,’rx’) % Noisy measurements

% Compute least-squares approximation with the SVD
[U,S,V] = svd(a,’econ’);
xtilde = V*inv(S)*U’*b; % Least-square fit
plot(a,xtilde*a,’b--’) % Plot fit

%% Alternative formulations of least-squares
xtilde1 = V*inv(S)*U’*b
xtilde2 = pinv(a)*b
xtilde3 = regress(b,a)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.4. PSEUDO-INVERSE, LEAST-SQUARES, AND REGRESSION 25

Code 1.2: [Python] Least-squares fit of noisy data in Fig. 1.9.
x = 3 # True slope
a = np.arange(-2,2,0.25)
a = a.reshape(-1, 1)
b = x*a + np.random.randn(*a.shape) # Add noise
plt.plot(a, x*a, Color=’k’, LineWidth=2, label=’True line’)

True relationship
plt.plot(a, b, ’x’, Color=’r’, MarkerSize = 10, label=’Noisy

data’) # Noisy measurements

Compute least-squares approximation with the SVD
U, S, VT = np.linalg.svd(a,full_matrices=False)
xtilde = VT.T @ np.linalg.inv(np.diag(S)) @ U.T @ b # Least-

square fit
plt.plot(a,xtilde * a,’--’,Color=’b’,LineWidth=4, label=’

Regression line’)

Alternative formulations of least squares
xtilde1 = VT.T @ np.linalg.inv(np.diag(S)) @ U.T @ b
xtilde2 = np.linalg.pinv(a) @ b

Multi-linear Regression

Example 1: Cement Heat Generation Data

First, we begin with a simple built-in MATLAB data set that describes the heat
generation for various cement mixtures that comprise four basic ingredients
(see Fig. 1.10). In this problem, we are solving (1.25), where A ∈ R13×4, since
there are four ingredients and heat measurements for 13 unique mixtures. The
goal is to determine the weighting x that relates the proportions of the four
ingredients to the heat generation. It is possible to find the minimum error so-
lution using the SVD, as shown in Code 1.3. Alternatives, using regress and
pinv, are also explored.

Code 1.3: [MATLAB] Multi-linear regression for cement heat data.
load hald; % Load Portlant Cement dataset
A = ingredients;
b = heat;

[U,S,V] = svd(A,’econ’);
x = V*inv(S)*U’*b; % Solve Ax=b using the SVD

plot(b,’k’); hold on % Plot data
plot(A*x,’r-o’); % Plot fit

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

26 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

0 5 10 15
70

80

90

100

110

120

Heat data

Regression

Mixture

H
ea

t[
ca

l/
g]

Ingredient Regression
1 Tricalcium aluminate 2.1930
2 Tricalcium silicate 1.1533
3 Tetracalcium alumiferrite 0.7585
4 Beta-dicalcium silicate 0.4863

Figure 1.10: Heat data for cement mixtures containing four basic ingredients.

x = regress(b,A); % Alternative 1 (regress)
x = pinv(A)*b; % Alternative 2 (pinv)

Code 1.3: [Python] Multi-linear regression for cement heat data.
Load dataset
A = np.loadtxt(os.path.join(’..’,’DATA’,’hald_ingredients.

csv’),delimiter=’,’)
b = np.loadtxt(os.path.join(’..’,’DATA’,’hald_heat.csv’),

delimiter=’,’)

Solve Ax=b using SVD
U, S, VT = np.linalg.svd(A,full_matrices=0)
x = VT.T @ np.linalg.inv(np.diag(S)) @ U.T @ b

plt.plot(b, Color=’k’, LineWidth=2, label=’Heat Data’)
plt.plot(A@x, ’-o’, Color=’r’, label=’Regression’)

x = np.linalg.pinv(A)*b # Alternative

Example 2: Boston Housing Data

In this example, we explore a larger data set to determine which factors best
predict prices in the Boston housing market [313]. This data is available from
the UCI Machine Learning Repository [33].

There are 13 attributes that are correlated with house price, such as per-
capita crime rate and property-tax rate. These features are regressed onto the
price data, the best-fit price prediction is plotted against the true house value
in Fig. 1.11, and the regression coefficients are shown in Fig. 1.12. Although the
house value is not perfectly predicted, the trend agrees quite well. It is often the
case that the highest value outliers are not well captured by simple linear fits,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.5. PRINCIPAL COMPONENT ANALYSIS (PCA) 27

0 200 400
−10

0

10

20

30

40

50

0 200 400
−10

0

10

20

30

40

50

Housing value

Regression

(a) (b)

Neighborhood Neighborhood

M
ed

ia
n

ho
m

e
va

lu
e

[$
1k

]

Figure 1.11: Multi-linear regression of home prices using various factors: (a) un-
sorted data and (b) data sorted by home value.

1 2 3 4 5 6 7 8 9 10 11 12 13

−2

0

2

4

6

Attribute

Si
gn

ifi
ca

nc
e

Figure 1.12: Significance of various attributes in the regression.

as in this example.
This data contains prices and attributes for 506 homes, so the attribute ma-

trix is of size 506 × 13. It is important to pad this matrix with an additional
column of ones, to take into account the possibility of a non-zero constant off-
set in the regression formula. This corresponds to the “y intercept” in a simple
one-dimensional linear regression. The code for this example is nearly identical
to the example above, and is available on the book’s GitHub.

1.5 Principal Component Analysis (PCA)

Principal component analysis (PCA) is one of the central applications of the
SVD, providing a statistical interpretation of the data-driven, hierarchical coor-
dinate system used to represent high-dimensional correlated data. This coordi-
nate system involves the correlation matrices described in Section 1.3. Impor-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

28 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

tantly, PCA pre-processes the data by mean subtraction and setting the variance
to unity before performing the SVD. The geometry of the resulting coordinate
system is determined by principal components (PCs) that are uncorrelated (or-
thogonal) to each other, but have maximal correlation with the measurements.
This theory was developed in 1901 by Pearson [552], and independently by
Hotelling in the 1930s [339, 340]. Jolliffe [352] provides a good reference text.

Often in statistics, a number of measurements are collected in a single ex-
periment, and these measurements are typically arranged into a row vector.
The measurements may be features of an observable, such as demographic fea-
tures of a specific human individual. A number of experiments are conducted,
and each measurement vector is arranged as a row in a large matrix X, resem-
bling the structure of how data is recorded in a spreadsheet. In the example of
demography, the collection of experiments may be gathered via polling. Note
that this convention for X, consisting of rows of features, is different than the
convention throughout the remainder of this chapter, where individual feature
“snapshots” are arranged as columns. However, we choose to be consistent
with PCA literature in this section. The matrix will still be size n×m, although
it may have more rows than columns, or vice versa.

Computation

We now compute the average row x̄ (i.e., the mean of all rows), and subtract it
from X. The mean x̄ is given by

x̄j =
1

n

n∑

i=1

Xij, (1.36)

and the mean matrix is

X̄ =

1
...
1

 x̄. (1.37)

Subtracting X̄ from X results in the mean-subtracted data B:

B = X− X̄. (1.38)

The covariance matrix of B is given by

C =
1

n− 1
B∗B. (1.39)

Note that the covariance is normalized by n− 1 instead of n, even though there
are n sample points. This is known as Bessel’s correction, which compensates

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.5. PRINCIPAL COMPONENT ANALYSIS (PCA) 29

for the fact that the sample variance is biased because it does not capture the
variance of the sample mean X̄ about the true mean. The covariance matrix
C is symmetric and positive semi-definite, having non-negative real eigenval-
ues. Each entry Cij quantifies the correlation of the i and j features across all
experiments.

The principal components are the eigenvectors of C, and they define a change
of coordinates in which the covariance matrix is diagonal:

CV = VD =⇒ C = VDV∗ =⇒ D = V∗CV. (1.40)

The columns of the eigenvector matrix V are the principal components, and
the elements of the diagonal matrix D are the variances of the data along these
directions. This transformation is guaranteed to exist, since C is Hermitian and
the columns of V are orthonormal. In these principal component coordinates,
all features are linearly uncorrelated with each other.

The matrix of principal components V is also the matrix of right singular
vectors of B. Substituting B = UΣV∗ into (1.39) and comparing with (1.40)
yields

C =
1

n− 1
B∗B =

1

n− 1
VΣ2V∗ =⇒ D =

1

n− 1
Σ2. (1.41)

The variance of the data in these coordinates, given by the diagonal elements
λk of D, is related to the singular values as

λk =
σ2
k

n− 1
. (1.42)

Thus, the SVD provides a numerically robust approach for computing the prin-
cipal components. An approximation B̃ obtained by keeping only the first r
principal components will have a missing variance related to the squared Frobe-
nius norm error in (1.7).

The pca Command

In MATLAB, there the additional commands pca and princomp (based on pca)
for the principal component analysis:

>> [V,score,s2] = pca(X);

The matrix V is equivalent to the V matrix from the SVD of B = X− X̄, up to
sign changes of the columns. The vector s2 contains eigenvalues of the covari-
ance of B, also known as principal component variances; these values are the
squares of the singular values. The variable score simply contains the coordi-
nates of each row of B (the mean-subtracted data) in the principal component
directions. In general, we often prefer to use the svd command with the various
pre-processing steps described above.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

30 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Table 1.1: Standard deviation of data and normalized singular values.

σ1 σ2

Data 2 0.5
SVD 1.974 0.503

Example: Noisy Gaussian Data

Consider the noisy cloud of data in Fig. 1.13(a), generated using Code 1.4. The
data is generated by selecting 10 000 vectors from a two-dimensional normal
distribution with zero mean and unit variance. These vectors are then scaled in
the x and y directions by the values in Table 1.1 and rotated by π/3. Finally, the
entire cloud of data is translated so that it has a non-zero center xC =

[
2 1

]T .
Using Code 1.4, the PCA is performed and used to plot confidence intervals

using multiple standard deviations, shown in Fig. 1.13(b). The singular values,
shown in Table 1.1, match the data scaling. The matrix U from the SVD also
closely matches the rotation matrix, up to a sign on the rows:

Rπ/3 =

[
0.5 0.8660

−0.8660 0.5

]
, U =

[
−0.4998 −0.8662
−0.8662 0.4998

]
.

Note that Rπ/3 is a rotation matrix designed to rotate row vectors by multiplica-
tion on the right by Rπ/3. For rotation of column vectors by left multiplication,
this matrix would be transposed.

Code 1.4: [MATLAB] PCA example on noisy cloud of data.
% Generate noisy cloud of data
xC = [2, 1]; % Center of data (mean)
sig = [2, .5]; % Principal axes

theta = pi/3; % Rotate cloud by pi/3
R = [cos(theta) sin(theta); % Rotation matrix

-sin(theta) cos(theta)];

nPoints = 10000; % Create 10,000 points
X = randn(nPoints,2)*diag(sig)*R + ones(nPoints,2)*diag(xC);
scatter(X(:,1),X(:,2),’k.’,’LineWidth’,2) % Plot data

% Compute PCA and plot confidence intervals
Xavg = mean(X,1); % Compute mean
B = X - ones(nPoints,1)*Xavg; % Mean-subtracted Data
[U,S,V] = svd(B/sqrt(nPoints),’econ’); % PCA via SVD

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.5. PRINCIPAL COMPONENT ANALYSIS (PCA) 31

−5 0 5
−6

−4

−2

0

2

4

6

8(a)

y

x
−5 0 5

−6

−4

−2

0

2

4

6

8(b)

y

x

Figure 1.13: (a) Principal components capture the variance of mean-subtracted
Gaussian data. (b) The first three standard deviation ellipsoids (red), and the
two left singular vectors, scaled by singular values (σ1v1 + xC and σ2v2 + xC ,
cyan), are shown.

theta = (0:.01:1)*2*pi;
Xstd = [cos(theta’) sin(theta’)]*S*V’; % 1std conf. interval
hold on, plot(Xavg(1)+Xstd(:,1),Xavg(2) + Xstd(:,2),’r-’)
plot(Xavg(1)+2*Xstd(:,1),Xavg(2) + 2*Xstd(:,2),’r-’)
plot(Xavg(1)+3*Xstd(:,1),Xavg(2) + 3*Xstd(:,2),’r-’)

Code 1.4: [Python] PCA example on noisy cloud of data.
Generate noisy cloud of data
xC = np.array([2, 1]) # Center of data (mean)
sig = np.array([2, 0.5]) # Principal axes

theta = np.pi/3 # Rotate cloud by pi/3
R = np.array([[np.cos(theta),-np.sin(theta)], # Rotation mat

[np.sin(theta),np.cos(theta)]])

nPoints = 10000 # Create 10,000 points
X = R @ np.diag(sig) @ np.random.randn(2,nPoints) + np.diag(

xC) @ np.ones((2,nPoints))
ax1.plot(X[0,:],X[1,:], ’.’, Color=’k’) # Plot data
Xavg = np.mean(X,axis=1) # Compute mean
B = X - np.tile(Xavg,(nPoints,1)).T # Mean-subtracted data

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

32 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Find principal components (SVD)
U, S, VT = np.linalg.svd(B/np.sqrt(nPoints),full_matrices=0)
theta = 2 * np.pi * np.arange(0,1,0.01)
Xstd = U @ np.diag(S) @ np.array([np.cos(theta),np.sin(theta

)])
ax2.plot(Xavg[0] + Xstd[0,:], Xavg[1] + Xstd[1,:],’-’,color=

’r’,LineWidth=3)
ax2.plot(Xavg[0] + 2*Xstd[0,:], Xavg[1] + 2*Xstd[1,:],’-’,

color=’r’,LineWidth=3)
ax2.plot(Xavg[0] + 3*Xstd[0,:], Xavg[1] + 3*Xstd[1,:],’-’,

color=’r’,LineWidth=3)

Finally, it is also possible to compute using the pca command in MATLAB:
>> [V,score,s2] = pca(X);
>> norm(score*V - B)

ans =
1.4900e-13

Example: Ovarian Cancer Data

The ovarian cancer data set, which is built into MATLAB, provides a more re-
alistic example to illustrate the benefits of PCA. This example consists of gene
data for 216 patients, 121 of whom have ovarian cancer, and 95 of whom do
not. For each patient, there is a vector of data containing the expression of 4000
genes. There are multiple challenges with this type of data, namely the high
dimension of the data features. However, we see from Fig. 1.14 that there is sig-
nificant variance captured in the first few PCA modes. Said another way, the
gene data is highly correlated, so that many patients have significant overlap
in their gene expression. The ability to visualize patterns and correlations in
high-dimensional data is an important reason to use PCA, and PCA has been
widely used to find patterns in high-dimensional biological and genetic data
[588].

More importantly, patients with ovarian cancer appear to cluster separately
from patients without cancer when plotted in the space spanned by the first
three PCA modes. This is shown in Fig. 1.15, which is generated by Code 1.5.
This inherent clustering in PCA space of data by category is a foundational
element of machine learning and pattern recognition. For example, we will see
in Section 1.6 that images of different human faces will form clusters in PCA
space. The use of these clusters will be explored in greater detail in Chapter 5.

Code 1.5: [MATLAB] Compute PCA for ovarian cancer data.
load ovariancancer; % Load ovarian cancer data

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.5. PRINCIPAL COMPONENT ANALYSIS (PCA) 33

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

r r

Si
ng

ul
ar

va
lu

es
,σ

r

C
um

ul
at

iv
e

su
m

Figure 1.14: Singular values for the ovarian cancer data.

−100

−50

0
−20 −10 0 10

−10

−5

0

5

10

15

Cancer

Normal

PC 1

PC 2

PC 3

Figure 1.15: Clustering of samples that are normal and those that have cancer
in the first three principal component coordinates.

[U,S,V] = svd(obs,’econ’);
for i=1:size(obs,1)

x = V(:,1)’*obs(i,:)’;
y = V(:,2)’*obs(i,:)’;
z = V(:,3)’*obs(i,:)’;
if(grp{i}==’Cancer’)

plot3(x,y,z,’rx’,’LineWidth’,2);
else

plot3(x,y,z,’bo’,’LineWidth’,2);
end

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

34 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

end

Code 1.5: [Python] Compute PCA for ovarian cancer data.
obs = np.loadtxt(os.path.join(’..’,’DATA’,’ovariancancer_obs

.csv’),delimiter=’,’)
f = open(os.path.join(’..’,’DATA’,’ovariancancer_grp.csv’),

"r")
grp = f.read().split("\n")

U, S, VT = np.linalg.svd(obs,full_matrices=0)
for j in range(obs.shape[0]):

x = VT[0,:] @ obs[j,:].T
y = VT[1,:] @ obs[j,:].T
z = VT[2,:] @ obs[j,:].T

if grp[j] == ’Cancer’:
ax.scatter(x,y,z,marker=’x’,color=’r’,s=50)

else:
ax.scatter(x,y,z,marker=’o’,color=’b’,s=50)

1.6 Eigenfaces Example

One of the most striking demonstrations of SVD/PCA is the so-called eigen-
faces example. In this problem, PCA (i.e., SVD on mean-subtracted data) is
applied to a large library of facial images to extract the most dominant cor-
relations between images. The result of this decomposition is a set of eigenfaces
that define a new coordinate system. Images may be represented in these co-
ordinates by taking the dot product with each of the principal components. It
will be shown in Chapter 5 that images of the same person tend to cluster in
the eigenface space, making this a useful transformation for facial recognition
and classification [67, 687]. The eigenface problem was first studied by Sirovich
and Kirby in 1987 [664] and expanded on in [388]. Its application to automated
facial recognition was presented by Turk and Pentland in 1991 [728].

Here, we demonstrate this algorithm using the Extended Yale Face Database
B [274], consisting of cropped and aligned images [435] of 38 individuals (28
from the extended database, and 10 from the original database) under nine
poses and 64 lighting conditions.7 Each image is 192 pixels tall and 168 pix-
els wide. Unlike the previous image example in Section 1.2, each of the fa-
cial images in our library has been reshaped into a large column vector with
192 × 168 = 32 256 elements. We use the first 36 people in the database (left

7The Yale database can be downloaded at http://vision.ucsd.edu/˜iskwak/
ExtYaleDatabase/ExtYaleB.html.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html

1.6. EIGENFACES EXAMPLE 35

Figure 1.16: (left) A single image for each person in the Yale database, and
(right) all images for a specific person. Left panel generated by Code 1.6.

panel of Fig. 1.16) as our training data for the eigenfaces example, and we hold
back two people as a test set. An example of all 64 images of one specific per-
son are shown in the right panel. These images are loaded and plotted using
Code 1.6.

Code 1.6: [MATLAB] Plot image for each person in the Yale database (Fig. 1.16).
load ../DATA/allFaces.mat

allPersons = zeros(n*6,m*6); % Make array to fit all faces
count = 1;
for i=1:6 % 6 x 6 grid of faces

for j=1:6
allPersons(1+(i-1)*n:i*n,1+(j-1)*m:j*m) ...

=reshape(faces(:,1+sum(nfaces(1:count-1))),n,m);
count = count + 1;

end
end
imagesc(allPersons), colormap gray

Code 1.6: [Python] Plot image for each person in the Yale database (Fig. 1.16).
mat_contents = scipy.io.loadmat(os.path.join(’..’,’DATA’,’

allFaces.mat’))
faces = mat_contents[’faces’]
m = int(mat_contents[’m’])

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

36 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

n = int(mat_contents[’n’])
nfaces = np.ndarray.flatten(mat_contents[’nfaces’])

allPersons = np.zeros((n*6,m*6))
count = 0

for j in range(6):
for k in range(6):

allPersons[j*n : (j+1)*n, k*m : (k+1)*m] = np.
reshape(faces[:,np.sum(nfaces[:count])],(m,n)).T

count += 1

img = plt.imshow(allPersons)

As mentioned before, each image is reshaped into a large column vector,
and the average face is computed and subtracted from each column vector.
The mean-subtracted image vectors are then stacked horizontally as columns
in the data matrix X, as shown in Fig. 1.17. Thus, taking the SVD of the mean-
subtracted matrix X results in the PCA. The columns of U are the eigenfaces,
and they may be reshaped back into 192 × 168 images. This is illustrated in
Code 1.7.

Code 1.7: [MATLAB] Compute eigenfaces on mean-subtracted data.
% We use the first 36 people for training data
trainingFaces = faces(:,1:sum(nfaces(1:36)));
avgFace = mean(trainingFaces,2); % size n*m by 1;

% Compute eigenfaces on mean-subtracted training data
X = trainingFaces-avgFace*ones(1,size(trainingFaces,2));
[U,S,V] = svd(X,’econ’);

imagesc(reshape(avgFace,n,m)) % Plot avg face
imagesc(reshape(U(:,1),n,m)) % Plot first eigenface

Code 1.7: [Python] Compute eigenfaces on mean-subtracted data.
We use the first 36 people for training data
trainingFaces = faces[:,:np.sum(nfaces[:36])]
avgFace = np.mean(trainingFaces,axis=1) # size n*m by 1

Compute eigenfaces on mean-subtracted training data
X = trainingFaces - np.tile(avgFace,(trainingFaces.shape

[1],1)).T
U, S, VT = np.linalg.svd(X,full_matrices=0)
img_avg = ax1.imshow(np.reshape(avgFace,(m,n)).T)
img_u1 = ax2.imshow(np.reshape(U[:,0],(m,n)).T)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.6. EIGENFACES EXAMPLE 37

X =

2
4 x1 x2 x3 . . . xm

3
5 = U⌃V⇤

X =

2
4 x1 . . . xk2 . . . xk3 xm

3
5 = U⌃V⇤ ⇡ Ũ⌃̃Ṽ⇤

Ũ =

2
4 u1 u2 u3 . . . ur

3
5

X =

2
4 x1 . . . xk2 . . . xk3 xm

3
5

X = U⌃V⇤ ⇡ Ũ⌃̃Ṽ⇤

Ũ =

2
4 u1 u2 u3 . . . ur

3
5

3

X =

2
4 x1 x2 x3 . . . xm

3
5 = U⌃V⇤

X =

2
4 x1 . . . xk2 . . . xk3 xm

3
5 = U⌃V⇤ ⇡ Ũ⌃̃Ṽ⇤

Ũ =

2
4 u1 u2 u3 . . . ur

3
5

X =

2
4 x1 . . . xk2 . . . xk3 xm

3
5

X = U⌃V⇤ ⇡ Ũ⌃̃Ṽ⇤

Ũ =

2
4 u1 u2 u3 . . . ur

3
5

3

X =

2
4 x1 x2 x3 . . . xm

3
5 = U⌃V⇤

X =

2
4 x1 . . . xk2 . . . xk3 xm

3
5 = U⌃V⇤ ⇡ Ũ⌃̃Ṽ⇤

Ũ =

2
4 u1 u2 u3 . . . ur

3
5

X =

2
4 x1 . . . xk2 . . . xk3 xm

3
5

X = U⌃V⇤ ⇡ Ũ⌃̃Ṽ⇤

Ũ =

2
4 u1 u2 u3 . . . ur

3
5

3

0 1000 2000
100

102

104

106

Mean-subtracted faces
Person 1 Person 2 Person 3 Person k

Average
face

(� [U,S,V] = svd(X,’econ’);)

Eigenfaces

Si
ng

ul
ar

va
lu

e,
σ
r

r

Σ

Figure 1.17: Schematic procedure to obtain eigenfaces from library of faces X
after subtracting off average face X̄.

Using the eigenfaces library, Ũ, obtained above, we now attempt to approx-
imately represent an image that was not in the training data. At the beginning,
we held back two individuals (the 37th and 38th people), and we now use one
of their images as a test image, xtest. We will see how well a rank-r SVD basis
will approximate this image using the following projection:

x̃test = ŨŨ∗xtest.

The eigenface approximation for various values of r is shown in Fig. 1.18, as
computed using Code 1.8. The approximation is relatively poor for r ≤ 200,
although for r > 400 it converges to a passable representation of the test image.

It is interesting to note that the eigenface space is not only useful for rep-
resenting human faces, but may also be used to approximate a dog (Fig. 1.19)
or a cappuccino (Fig. 1.20). This is possible because the 1600 eigenfaces span a
large subspace of the 32 256-dimensional image space corresponding to broad,
smooth, non-localized spatial features, such as cheeks, forehead, mouths, etc.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

38 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Test image r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.18: Approximate representation of test image using eigenfaces basis of
various order r. Test image is not in training set.

Code 1.8: [MATLAB] Approximate test image omitted from training data.
testFace = faces(:,1+sum(nfaces(1:36))); % Person 37
testFaceMS = testFace - avgFace;
for r=[25 50 100 200 400 800 1600]

reconFace = avgFace + (U(:,1:r)*(U(:,1:r)’*testFaceMS));
imagesc(reshape(reconFace,n,m))

end

Code 1.8: [Python] Approximate test image omitted from training data.
testFace = faces[:,np.sum(nfaces[:36])] # Person 37
testFaceMS = testFace - avgFace
r_list = [25, 50, 100, 200, 400, 800, 1600]
for r in r_list:

reconFace = avgFace + U[:,:r] @ U[:,:r].T @ testFaceMS
img = plt.imshow(np.reshape(reconFace,(m,n)).T)

We further investigate the use of the eigenfaces as a coordinate system,
defining an eigenface space. By projecting an image x onto the first r PCA
modes, we obtain a set of coordinates in this space: x̃ = Ũ

∗
x. Some principal

components may capture the most common features shared among all human
faces, while other principal components will be more useful for distinguish-
ing between individuals. Additional principal components may capture differ-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.6. EIGENFACES EXAMPLE 39

Test image r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.19: Approximate representation of an image of a dog using eigenfaces.

Test image r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.20: Approximate representation of a cappuccino using eigenfaces.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

40 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

0

0

PC 5

PC
6

1

2 3

4
5

6

3

2

1

6

5

4

Figure 1.21: Projection of all images from two individuals onto the 5th and 6th
PCA modes. Projected images of the first individual are indicated with black
diamonds, and projected images of the second individual are indicated with
red triangles. Three examples from each individual are circled in blue, and the
corresponding image is shown.

ences in lighting angles. Figure 1.21 shows the coordinates of all 64 images of
two individuals projected onto the 5th and 6th principal components, gener-
ated by Code 1.9. Images of the two individuals appear to be well separated in
these coordinates. This is the basis for image recognition and classification in
Chapter 5.

Code 1.9: [MATLAB] Project images for two specific people onto the 5th and
6th eigenfaces to illustrate the potential for automated classification.

P1num = 2; % Person number 2
P2num = 7; % Person number 7

P1 = faces(:,1+sum(nfaces(1:P1num-1)):sum(nfaces(1:P1num)));
P2 = faces(:,1+sum(nfaces(1:P2num-1)):sum(nfaces(1:P2num)));

P1 = P1 - avgFace*ones(1,size(P1,2));
P2 = P2 - avgFace*ones(1,size(P2,2));

PCAmodes = [5 6]; % Project onto PCA modes 5 and 6
PCACoordsP1 = U(:,PCAmodes)’*P1;
PCACoordsP2 = U(:,PCAmodes)’*P2;

plot(PCACoordsP1(1,:),PCACoordsP1(2,:),’kd’), hold on
plot(PCACoordsP2(1,:),PCACoordsP2(2,:),’rˆ’)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.7. TRUNCATION AND ALIGNMENT 41

Code 1.9: [Python] Project images for two specific people onto the 5th and 6th
eigenfaces to illustrate the potential for automated classification.

P1num = 2 # Person number 2
P2num = 7 # Person number 7

P1 = faces[:,np.sum(nfaces[:(P1num-1)]):np.sum(nfaces[:P1num
])]

P2 = faces[:,np.sum(nfaces[:(P2num-1)]):np.sum(nfaces[:P2num
])]

P1 = P1 - np.tile(avgFace,(P1.shape[1],1)).T
P2 = P2 - np.tile(avgFace,(P2.shape[1],1)).T

PCAmodes = [5, 6] # Project onto PCA modes 5 and 6
PCACoordsP1 = U[:,PCAmodes-np.ones_like(PCAmodes)].T @ P1
PCACoordsP2 = U[:,PCAmodes-np.ones_like(PCAmodes)].T @ P2

plt.plot(PCACoordsP1[0,:],PCACoordsP1[1,:],’d’,Color=’k’)
plt.plot(PCACoordsP2[0,:],PCACoordsP2[1,:],’ˆ’,Color=’r’)

1.7 Truncation and Alignment

Deciding how many singular values to keep, i.e., where to truncate, is one
of the most important and contentious decisions when using the SVD. There
are many factors, including specifications on the desired rank of the system,
the magnitude of noise, and the distribution of the singular values. Often, one
truncates the SVD at a rank r that captures a predetermined amount of the vari-
ance or energy in the original data, such as 90% or 99% truncation. Although
crude, this technique is commonly used. Other techniques involve identifying
“elbows” or “knees” in the singular value distribution, which may denote the
transition from singular values that represent important patterns from those
that represent noise. Truncation may be viewed as a hard threshold on singular
values, where values larger than a threshold τ are kept, while remaining singu-
lar values are truncated. Recent work by Gavish and Donoho [267] provides an
optimal truncation value, or hard threshold, under certain conditions, provid-
ing a principled approach to obtaining low-rank matrix approximations using
the SVD.

In addition, the alignment of data significantly impacts the rank of the SVD
approximation. The SVD essentially relies on a separation of variables between
the columns and rows of a data matrix. In many situations, such as when an-
alyzing traveling waves or misaligned data, this assumption breaks down, re-
sulting in an artificial rank inflation.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

42 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Optimal Hard Threshold

A recent theoretical breakthrough determines the optimal hard threshold τ for
singular value truncation under the assumption that a matrix has a low-rank
structure contaminated with Gaussian white noise [267]. This work builds on a
significant literature surrounding various techniques for hard and soft thresh-
olding of singular values. In this section, we summarize the main results and
demonstrate the thresholding on various examples. For more details, see [267].

First, we assume that the data matrix X is the sum of an underlying low-
rank, or approximately low-rank, matrix Xtrue and a noise matrix Xnoise:

X = Xtrue + γXnoise. (1.43)

The entries of Xnoise are assumed to be independent, identically distributed
(i.i.d.) Gaussian random variables with zero mean and unit variance. The mag-
nitude of the noise is characterized by γ, which deviates from the notation in
[267].8

When the noise magnitude γ is known, there are closed-form solutions for
the optimal hard threshold τ :

1. If X ∈ Rn×n is square, then

τ = (4/
√

3)
√
n γ. (1.44)

2. If X ∈ Rn×m is rectangular and m� n, then the constant 4/
√

3 is replaced
by a function of the aspect ratio β = m/n:

τ = λ(β)
√
n γ, (1.45)

λ(β) =

(
2(β + 1) +

8β

(β + 1) + (β2 + 14β + 1)1/2

)1/2

. (1.46)

Note that this expression reduces to (1.44) when β = 1. If n � m, then
β = n/m.

When the noise magnitude γ is unknown, which is more typical in real-
world applications, then it is possible to estimate the noise magnitude and scale
the distribution of singular values by using σmed, the median singular value. In
this case, there is no closed-form solution for τ , and it must be approximated
numerically:

3. For unknown noise γ, and a rectangular matrix X ∈ Rn×m, the optimal
hard threshold is given by

τ = ω(β)σmed. (1.47)
8In [267], σ is used to denote standard deviation and yk denotes the kth singular value.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.7. TRUNCATION AND ALIGNMENT 43

Here, ω(β) = λ(β)/µβ , where µβ is the solution to the following problem:
∫ µβ

(1−β)2

{[(1 +
√
β)2 − t][t− (1−√β)2]}1/2

2πt
dt =

1

2
.

Solutions to the expression above must be approximated numerically.
Fortunately [267] has a MATLAB code supplement9 [206] to approximate
µβ .

The new method of optimal hard thresholding works remarkably well, as
demonstrated on the examples below.

Example 1: Toy Problem

In the first example, shown in Fig. 1.22 and Code 1.10, we artificially construct
a rank-two matrix and contaminate the data with Gaussian white noise. A de-
noised and dimensionally reduced matrix is then obtained using the threshold
from (1.44), as well as a truncation keeping 90% of the cumulative sum of sin-
gular values. It is clear that the hard threshold is able to filter the noise more
effectively. Plotting the singular values in Fig. 1.23, it is clear that there are two
values that are above threshold.

Code 1.10: [MATLAB] Compare various thresholding approaches on noisy
low-rank data (Fig. 1.22).

% Generate underlying low-rank data
t = (-3:.01:3)’;

Utrue = [cos(17*t).*exp(-t.ˆ2) sin(11*t)];
Strue = [2 0; 0 .5];
Vtrue = [sin(5*t).*exp(-t.ˆ2) cos(13*t)];

X = Utrue*Strue*Vtrue’;
figure, imshow(X);

% Contaminate signal with noise
sigma = 1;
Xnoisy = X+sigma*randn(size(X));
figure, imshow(Xnoisy);

% Truncate using optimal hard threshold
[U,S,V] = svd(Xnoisy);

N = size(Xnoisy,1);

9http://purl.stanford.edu/vg705qn9070

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

44 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

cutoff = (4/sqrt(3))*sqrt(N)*sigma; % Hard threshold
r = max(find(diag(S)>cutoff)); % Keep modes w/ sig > cutoff
Xclean = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’;
figure, imshow(Xclean)

% Truncate to keep 90% of cumulative sum
cdS = cumsum(diag(S))./sum(diag(S)); % Cumulative sum
r90 = min(find(cdS>0.90)); % Find r to capture 90% of sum

X90 = U(:,1:r90)*S(1:r90,1:r90)*V(:,1:r90)’;
figure, imshow(X90)

Code 1.10: [Python] Compare various thresholding approaches on noisy low-
rank data (Fig. 1.22).

Generate underlying low-rank data
t = np.arange(-3,3,0.01)

Utrue = np.array([np.cos(17*t) * np.exp(-t**2), np.sin(11*t)
]).T

Strue = np.array([[2, 0],[0, 0.5]])
Vtrue = np.array([np.sin(5*t) * np.exp(-t**2), np.cos(13*t)

]).T

X = Utrue @ Strue @ Vtrue.T
plt.imshow(X)

Contaminate signal with noise
sigma = 1
Xnoisy = X + sigma*np.random.randn(*X.shape)
plt.imshow(Xnoisy)

Truncate using optimal hard threshold
U, S, VT = np.linalg.svd(Xnoisy,full_matrices=0)

N = Xnoisy.shape[0]
cutoff = (4/np.sqrt(3)) * np.sqrt(N) * sigma #Hard threshold
r = np.max(np.where(S > cutoff)) # Keep modes w/ S > cutoff
Xclean = U[:,:(r+1)] @ np.diag(S[:(r+1)]) @ VT[:(r+1),:]
plt.imshow(Xclean)

Truncate to keep 90% of cumulative sum
cdS = np.cumsum(S) / np.sum(S) # Cumulative energy
r90 = np.min(np.where(cdS > 0.90)) # Find r to keep 90% sum

X90 = U[:,:(r90+1)] @ np.diag(S[:(r90+1)]) @ VT[:(r90+1),:]

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.7. TRUNCATION AND ALIGNMENT 45

(a) Original (b) Noisy

(c) Hard threshold (d) 90% cutoff

Figure 1.22: (a) Underlying rank-two matrix, (b) matrix with noise, (c) clean
matrix after optimal hard threshold (4/

√
3)
√
nσ, and (d) truncation keeping

90% of the cumulative sum of singular values.

plt.imshow(X90)

Example 2: Eigenfaces

In the second example, we revisit the eigenfaces problem from Section 1.6. This
provides a more typical example, since the data matrix X is rectangular, with
aspect ratio β = 3/4, and the noise magnitude is unknown. It is also not clear
that the data is contaminated with white noise. Nonetheless, the method de-
termines a threshold τ , above which columns of U appear to have strong fa-
cial features, and below which columns of U consist mostly of noise, shown in
Fig. 1.24.

Importance of Data Alignment

Here, we discuss common pitfalls of the SVD associated with misaligned data.
The following example is designed to illustrate one of the central weaknesses of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

46 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

0 200 400 600

10−2

10−1

100

101

102

0 50 100

102

(a)
Si

ng
ul

ar
va

lu
e,
σ
r

r
0 300 403 600

0

0.5

0.9

1(b)

C
um

ul
at

iv
e

su
m

r

Figure 1.23: (a) Singular values σr and (b) cumulative sum in first r modes. The
optimal hard threshold τ = (4/

√
3)
√
nσ is shown as a red dashed line, and the

90% cutoff is shown as a blue dashed line. For this case, n = 600 and σ = 1, so
that the optimal cutoff is approximately τ = 56.6.

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

1
2

3

Si
ng

ul
ar

va
lu

e,
σ
r

r

1

2

3

Figure 1.24: Hard thresholding for eigenfaces example.

the SVD for dimensionality reduction and coherent feature extraction in data.
Consider a matrix of zeros with a rectangular sub-block consisting of ones. As
an image, this would look like a white rectangle placed on a black background
(see Fig. 1.25(a)). If the rectangle is perfectly aligned with the x- and y-axes of
the figure, then the SVD is simple, having only one non-zero singular value σ1

(see Fig. 1.25(c)) and corresponding singular vectors u1 and v1 that define the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.7. TRUNCATION AND ALIGNMENT 47

0 250 500 750 1000
10

−16

10
−12

10
−8

10
−4

10
0

10
4

0 250 500 750 1000
10

−16

10
−12

10
−8

10
−4

10
0

10
4

(a) (b)0◦ rotation 10◦ rotation

(c) (d)

Si
ng

ul
ar

va
lu

e,
σ
r

r r

diag(Σ)

Figure 1.25: A data matrix consisting of ones with a square sub-block of zeros
(a), and its SVD spectrum (c). If we rotate the image by 10◦, as in (b), the SVD
spectrum becomes significantly more complex (d).

width and height of the white rectangle.
When we begin to rotate the inner rectangle so that it is no longer aligned

with the image axes, additional non-zero singular values begin to appear in
the spectrum (see Figs. 1.25(b,d) and 1.26). Code to reproduce this example is
provided on the book’s GitHub.

The reason that this example breaks down is that the SVD is fundamentally
geometric, meaning that it depends on the coordinate system in which the data
is represented. As we have seen earlier, the SVD is only generically invariant
to unitary transformations, meaning that the transformation preserves the in-
ner product. This fact may be viewed as both a strength and a weakness of the
method. First, the dependence of SVD on the inner product is essential for the
various useful geometric interpretations. Moreover, the SVD has meaningful
units and dimensions. However, this makes the SVD sensitive to the alignment
of the data. In fact, the SVD rank explodes when objects in the columns trans-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

48 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

0 250 500 750 1000
10

−16

10
−12

10
−8

10
−4

10
0

10
4(a) (b)

Si
ng

ul
ar

va
lu

e,
σ
r

r

Figure 1.26: A data matrix consisting of zeros with a square sub-block of ones
at various rotations (a), and the corresponding SVD spectrum, diag(S), (b).

late, rotate, or scale, which severely limits its use for data that has not been
heavily pre-processed.

For instance, the eigenfaces example was built on a library of images that
had been meticulously cropped, centered, and aligned according to a stencil.
Without taking these important pre-processing steps, the features and cluster-
ing performance would be underwhelming.

The inability of the SVD to capture translations and rotations of the data is a
major limitation. For example, the SVD is still the method of choice for the low-
rank decomposition of data from partial differential equations (PDEs), as will
be explored in Chapters 12 and 13. However, the SVD is fundamentally a data-
driven separation of variables, which we know will not work for many types
of PDE, for example, those that exhibit traveling waves. Generalized decom-
positions that retain the favorable properties and are applicable to data with
symmetries is a significant open challenge in the field.

1.8 Randomized Singular Value Decomposition

The accurate and efficient decomposition of large data matrices is one of the
cornerstones of modern computational mathematics and data science. In many
cases, matrix decompositions are explicitly focused on extracting dominant
low-rank structure in the matrix, as illustrated throughout the examples in this
chapter. Recently, it has been shown that if a matrix X has low-rank structure,
then there are extremely efficient matrix decomposition algorithms based on
the theory of random sampling; this is closely related to the idea of sparsity
and the high-dimensional geometry of sparse vectors, which will be explored in
Chapter 3. These so-called randomized numerical methods have the potential to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.8. RANDOMIZED SINGULAR VALUE DECOMPOSITION 49

transform computational linear algebra, providing accurate matrix decomposi-
tions at a fraction of the cost of deterministic methods. Moreover, with increas-
ingly vast measurements (e.g., from 4K and 8K video, Internet of Things, etc.), it
is often the case that the intrinsic rank of the data does not increase appreciably,
even though the dimension of the ambient measurement space grows. Thus,
the computational savings of randomized methods will only become more im-
portant in the coming years and decades with the growing deluge of data.

Randomized Linear Algebra

Randomized linear algebra is a much more general concept than the treatment
presented here for the SVD. In addition to the randomized SVD [488, 621], ran-
domized algorithms have been developed for principal component analysis
[308, 605], the pivoted LU decomposition [651], the pivoted QR decomposition
[219], and the dynamic mode decomposition [234]. Most randomized matrix
decompositions can be broken into a few common steps, as described here.
There are also several excellent surveys on the topic [236, 309, 445, 471]. We as-
sume that we are working with tall-skinny matrices, so that n > m, although
the theory readily generalizes to short-fat matrices.

Step 0: Identify a target rank, r < m.

Step 1: Using random projections P to sample the column space, find a
matrix Q whose columns approximate the column space of X, i.e., so that
X ≈ QQ∗X.

Step 2: Project X onto the Q subspace, Y = Q∗X, and compute the matrix
decomposition on Y.

Step 3: Reconstruct high-dimensional modes U = QUY using Q and the
modes computed from Y.

Randomized SVD Algorithm

Over the past two decades, there have been several randomized algorithms
proposed to compute a low-rank SVD, including the Monte Carlo SVD [253]
and more robust approaches based on random projections [446, 488, 621]. These
methods were improved by incorporating structured sampling matrices for
faster matrix multiplications [761]. Here, we use the randomized SVD algo-
rithm of Halko, Martinsson, and Tropp [309], which combined and expanded
on these previous algorithms, providing favorable error bounds. Additional
analysis and numerical implementation details are found in Voronin and Mar-
tinsson [739]. A schematic of the rSVD algorithm is shown in Fig. 1.27.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

50 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Step 1

X P = Z = Q R

Step 2

QT X = Y = UY Σ VT

U = Q UY

Figure 1.27: Schematic of randomized SVD algorithm. The high-dimensional
data X is depicted in red, intermediate steps in gray, and the outputs in blue.
This algorithm requires two passes over X.

Step 1. We construct a random projection matrix P ∈ Rm×r to sample the
column space of X ∈ Rn×m:

Z = XP. (1.48)

The matrix Z may be much smaller than X, especially for low-rank matrices
with r � m. It is highly unlikely that a random projection matrix P will project
out important components of X, and so Z approximates the column space of X
with high probability. Thus, it is possible to compute the low-rank QR decom-
position of Z to obtain an orthonormal basis for X:

Z = QR. (1.49)

Step 2. With the low-rank basis Q, we may project X into a smaller space:

Y = Q∗X. (1.50)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.8. RANDOMIZED SINGULAR VALUE DECOMPOSITION 51

It also follows that X ≈ QY, with better agreement when the singular values
σk decay rapidly for k > r.

It is now possible to compute the singular value decomposition on Y:

Y = UYΣV∗. (1.51)

Because Q is orthonormal and approximates the column space of X, the matri-
ces Σ and V are the same for Y and X, as discussed in Section 1.3.

Step 3. Finally, it is possible to reconstruct the high-dimensional left singular
vectors U using UY and Q:

U = QUY. (1.52)

Oversampling

Most matrices X do not have an exact low-rank structure, given by r modes.
Instead, there are non-zero singular values σk for k > r, and the sketch Z will
not exactly span the column space of X. In general, increasing the number of
columns in P from r to r+ p significantly improves results, even with p adding
around 5–10 columns [487]. This is known as oversampling, and increasing p
decreases the variance of the singular value spectrum of the sketched matrix.

Power Iterations

A second challenge in using randomized algorithms is when the singular value
spectrum decays slowly, so that the remaining truncated singular values con-
tain significant variance in the data X. In this case, it is possible to pre-process
X through q power iterations [299, 309, 605] to create a new matrix X(q) with a
more rapid singular value decay:

X(q) = (XX∗)qX. (1.53)

Power iterations dramatically improve the quality of the randomized decom-
position, as the singular value spectrum of X(q) decays more rapidly:

X(q) = UΣ2q+1V∗. (1.54)

However, power iterations are expensive, requiring q additional passes through
the data X. In some extreme examples, the data in X may be stored in a dis-
tributed architecture, so that every additional pass adds considerable expense.

Guaranteed Error Bounds

One of the most important properties of the randomized SVD is the existence of
tunable error bounds, which are explicit functions of the singular value spec-
trum, the desired rank r, the oversampling parameter p, and the number of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

52 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

power iterations q. The best attainable error bound for a deterministic algo-
rithm is

‖X−QY‖2 ≥ σr+1(X). (1.55)

In other words, the approximation with the best possible rank-r subspace Q
will have error greater than or equal to the next truncated singular value of X.
For randomized methods, it is possible to bound the expectation of the error:

E(‖X−QY‖2) ≤
(

1 +

√
r

p− 1
+
e
√
r + p

p

√
m− r

)1/(2q+1)

σk+1(X), (1.56)

where e is Euler’s number.

Choice of Random Matrix P

There are several suitable choices of the random matrix P. Gaussian random
projections (e.g., the elements of P are i.i.d. Gaussian random variables) are
frequently used because of favorable mathematical properties and the richness
of information extracted in the sketch Z. In particular, it is very unlikely that a
Gaussian random matrix P will be chosen badly so as to project out important
information in X. However, Gaussian projections are expensive to generate,
store, and compute. Uniform random matrices are also frequently used, and
have similar limitations. There are several alternatives, such as Rademacher
matrices, where the entries can be +1 or −1 with equal probability [720]. Struc-
tured random projection matrices may provide efficient sketches, reducing com-
putational costs to O(nm log(r)) [761]. Yet another choice is a sparse projection
matrix P, which improves storage and computation, but at the cost of including
less information in the sketch. In the extreme case, when even a single pass over
the matrix X is prohibitively expensive, the matrix P may be chosen as random
columns of the m×m identity matrix, so that it randomly selects columns of X
for the sketch Z. This is the fastest option, but should be used with caution, as
information may be lost if the structure of X is highly localized in a subset of
columns, which may be lost by column sampling.

Example of Randomized SVD

To demonstrate the randomized SVD algorithm, we will decompose a high-
resolution image. This particular implementation is only for illustrative pur-
poses, as it has not been optimized for speed, data transfer, or accuracy. In
practical applications, care should be taken [236, 309].

Code 1.11 computes the randomized SVD of a matrix X, and Code 1.12 uses
this function to obtain a rank-400 approximation to a high-resolution image,
shown in Fig. 1.28.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.8. RANDOMIZED SINGULAR VALUE DECOMPOSITION 53

Figure 1.28: Original high-resolution (left) and rank-400 approximations from
the SVD (middle) and rSVD (right).

Code 1.11: [MATLAB] Randomized SVD algorithm.
function [U,S,V] = rsvd(X,r,q,p);

% Step 1: Sample column space of X with P matrix
ny = size(X,2);
P = randn(ny,r+p);
Z = X*P;
for k=1:q

Z = X*(X’*Z);
end
[Q,R] = qr(Z,0);

% Step 2: Compute SVD on projected Y=Q’*X;
Y = Q’*X;
[UY,S,V] = svd(Y,’econ’);
U = Q*UY;

Code 1.11: [Python] Randomized SVD algorithm.
def rSVD(X,r,q,p):

Step 1: Sample column space of X with P matrix
ny = X.shape[1]
P = np.random.randn(ny,r+p)
Z = X @ P
for k in range(q):

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

54 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Z = X @ (X.T @ Z)

Q, R = np.linalg.qr(Z,mode=’reduced’)

Step 2: Compute SVD on projected Y = Q.T @ X
Y = Q.T @ X
UY, S, VT = np.linalg.svd(Y,full_matrices=0)
U = Q @ UY

return U, S, VT

Code 1.12: [MATLAB] Compute the randomized SVD of high-resolution image.
A=imread(’jupiter.jpg’);
X=double(rgb2gray(A));
[U,S,V] = svd(X,’econ’); % Deterministic SVD

r = 400; % Target rank
q = 1; % Power iterations
p = 5; % Oversampling parameter
[rU,rS,rV] = rsvd(X,r,q,p); % Randomized SVD

%% Reconstruction
XSVD = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % SVD approx.
errSVD = norm(X-XSVD,2)/norm(X,2);
XrSVD = rU(:,1:r)*rS(1:r,1:r)*rV(:,1:r)’; % rSVD approx.
errrSVD = norm(X-XrSVD,2)/norm(X,2);

Code 1.12: [Python] Compute the randomized SVD of high-resolution image.
A = imread(os.path.join(’..’,’DATA’,’jupiter.jpg’))
X = np.mean(A,axis=2) # Convert RGB -> grayscale
U, S, VT = np.linalg.svd(X,full_matrices=0) # Full SVD

r = 400 # Target rank
q = 1 # Power iterations
p = 5 # Oversampling parameter
rU, rS, rVT = rSVD(X,r,q,p)

Reconstruction
XSVD = U[:,:(r+1)] @ np.diag(S[:(r+1)]) @ VT[:(r+1),:]
errSVD = np.linalg.norm(X-XSVD,ord=2)/np.linalg.norm(X,ord

=2)
XrSVD = rU[:,:(r+1)] @ np.diag(rS[:(r+1)]) @ rVT[:(r+1),:]
errSVD = np.linalg.norm(X-XrSVD,ord=2)/np.linalg.norm(X,ord

=2)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.9. TENSOR DECOMPOSITIONS AND N -WAY DATA ARRAYS 55

1.9 Tensor Decompositions andN -Way Data Arrays

Low-rank decompositions can be generalized beyond matrices. This is impor-
tant, as the SVD requires that disparate types of data be flattened into a single
vector in order to evaluate correlated structures. For instance, different time
snapshots (columns) of a matrix may include measurements as diverse as tem-
perature, pressure, concentration of a substance, etc. Additionally, there may
be categorical data. Vectorizing this data generally does not make sense. Ul-
timately, what is desired is to preserve the various data structures and types
in their own, independent directions. Matrices can be generalized to N -way ar-
rays, or tensors, where the data is more appropriately arranged without forcing
a data-flattening process.

The construction of data tensors requires that we revisit the notation associ-
ated with tensor addition, multiplication, and inner products [401]. We denote
the rth column of a matrix A by ar. Given matrices A ∈ RI×K and B ∈ RJ×K ,
their Khatri–Rao product is denoted by A�B and is defined to be the IJ ×K
matrix of column-wise Kronecker products, namely

A�B =
(
a1 ⊗ b1 · · · aK ⊗ bK

)
.

For an N -way tensor A of size I1× I2×· · ·× IN , we denote its i = (i1, i2, . . . , iN)
entry by ai.

The inner product between two N -way tensors A and B of compatible di-
mensions is given by

〈A,B〉 =
∑

i

aibi.

The Frobenius norm of a tensor A, denoted by ‖A‖F, is the square root of the
inner product of A with itself, namely ‖A‖F =

√
〈A,A〉. Finally, the mode-n

matricization or unfolding of a tensor A is denoted by mA(n).
Let M represent an N -way data tensor of size I1 × I2 × · · · × IN . We are

interested in an R-component CANDECOMP/PARAFAC (CP) [166, 314, 401]
factor model

M =
R∑

r=1

λr ma(1)
r ◦ · · · ◦ma(N)

r , (1.57)

where ◦ represents outer product and ma
(n)
r represents the rth column of the

factor matrix mA(n) of size In × R. The CP decomposition refers to canonical
decomposition (CANDECOMP) and parallel factors analysis (PARAFAC), respec-
tively. We refer to each summand as a component. Assuming each factor matrix
has been column-normalized to have unit Euclidean length, we refer to the λr

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

56 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

(a)

(b)

X =

M =

+ · · ·

+ · · ·

= σ1

= λ1

+σ2

+λ2

+σ3

+λ3

v1 v2 v3

u1 u2 u3

b1 b2 b3
c1 c2 c3

a1 a2 a3

SVD

Tensor

Figure 1.29: Comparison of the SVD and tensor decomposition frameworks.
Both methods produce an approximation to the original data matrix by sums of
outer products. Specifically, the tensor decomposition generalizes the concept
of the SVD to N -way arrays of data without having to flatten (vectorize) the
data.

as weights. We will use the shorthand notation where λ = (λ1, . . . , λR)T [35].
A tensor that has a CP decomposition is sometimes referred to as a Kruskal
tensor.

For the rest of this chapter, we consider a three-way CP tensor decomposi-
tion (see Fig. 1.29), where two modes index state variation and the third mode
indexes time variation:

M =
R∑

r=1

λr Ar ◦Br ◦Cr.

Let A ∈ RI1×R and B ∈ RI2×R denote the factor matrices corresponding to the
two state modes and C ∈ RI3×R denote the factor matrix corresponding to the
time mode. This three-way decomposition is compared to the SVD in Fig. 1.29.

To illustrate the tensor decomposition, we use the MATLAB N -way toolbox
developed by Bro and co-workers [21, 116], which is available on the Math-
works file exchange. This simple-to-use package provides a variety of tools
to extract tensor decompositions and evaluate the factor models generated. In
the specific example considered here, we generate data from a spatio-temporal

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.9. TENSOR DECOMPOSITIONS AND N -WAY DATA ARRAYS 57

Figure 1.30: Example N -way array data set created from the function (1.58).
The data matrix is A ∈ R121×101×315. A CP tensor decomposition can be used to
extract the two underlying structures that produced the data.

function (see Fig. 1.30):

F (x, y, t) = exp(−x2− 0.5y2) cos(2t) + sech(x) tanh(x) exp(−0.2y2) sin(t). (1.58)

This model has two spatial modes with two distinct temporal frequencies, thus
a two-factor model should be sufficient to extract the underlying spatial and
temporal modes. To construct this function, Code 1.13 is used.

Code 1.13: [MATLAB] Creating tensor data.
x=-5:0.1:5; y=-6:0.1:6; t=0:0.1:10*pi;
[X,Y,T]=meshgrid(x,y,t);
A=exp(-(X.ˆ2+0.5*Y.ˆ2)).*(cos(2*T))+ ...

(sech(X).*tanh(X).*exp(-0.2*Y.ˆ2)).*sin(T);

Code 1.13: [Python] Creating tensor data.
x = np.arange(-5,5.01,0.1)
y = np.arange(-6,6.01,0.1)
t = np.arange(0,10*np.pi+0.1,0.1)
X,Y,T = np.meshgrid(x,y,t)
A = np.exp(-(X**2 + 0.5*Y**2)) * np.cos(2*T) + (np.

divide(np.ones_like(X),np.cosh(X)) * np.tanh(X) * np.exp
(-0.2*Y**2)) * np.sin(T)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

58 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

-6 0 6

-50

0

50

-5 0 5

-0.5

0

0.5

0 5 10

-0.1

0

0.1

(a)

(b)

(c)

y

x

t

Figure 1.31: Three-way tensor decomposition of the function (1.58) discretized
so that the data matrix is A ∈ R121×101×315. A CP tensor decomposition can be
used to extract the two underlying structures that produced the data. The first
factor is in blue, and the second factor is in red. The three distinct directions of
the data (parallel factors) are illustrated in (a) the y direction, (b) the x direction,
and (c) the time t.

Note that the meshgrid command is capable of generating N -way arrays.
Indeed, MATLAB and Python have no difficulties specifying higher-dimensional
arrays and tensors. Specifically, one can easily generate N -way data matrices
with arbitrary dimensions. The MATLAB command A = randn(10,10,10,10,10)
generates a five-way hypercube with random values in each of the five direc-
tions of the array.

Figure 1.30 shows eight snapshots of the function (1.58) discretized with the
code above. TheN -way array data generated from the MATLAB code produces
A ∈ R121×101×315, which is of total dimension 106.The CP tensor decomposition
can be used to extract a two-factor model for this three-way array, thus produc-
ing two vectors in each direction of space x, space y, and time t.

The N -way toolbox provides a simple architecture for performing tensor
decompositions. The PARAFAC command structure can easily take the input
function (1.58), which is discretized in the code above, and provide a two-factor
model. Code 1.14 produces the tensor model.

Code 1.14: [MATLAB] Two-factor tensor model.
model=parafac(A,2);
[A1,A2,A3]=fac2let(model);

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.9. TENSOR DECOMPOSITIONS AND N -WAY DATA ARRAYS 59

Code 1.14: [Python] Two-factor tensor model.
from tensorly.decomposition import parafac
A1, A2, A3 = parafac(A,2)

Note that in the above MATLAB code, the fac2let command turns the factors
in the model into their component matrices. Further note that the meshgrid
arrangement of the data is different from parafac since the x and y directions
are switched.

Figure 1.31 shows the results of the N -way tensor decomposition for the
prescribed two-factor model. Specifically, the two vectors along each of the
three directions of the array are illustrated. For this example, the exact answer is
known since the data was constructed from the rank-two model (1.58). The first
set of two modes (along the original y direction) are Gaussian as prescribed. The
second set of two modes (along the original x direction) include a Gaussian for
the first function, and the antisymmetric sech(x) tanh(x) for the second func-
tion. The third set of two modes correspond to the time dynamics of the two
functions: cos(2t) and sin(t), respectively. Thus, the two-factor model produced
by the CP tensor decomposition returns the expected, low-rank functions that
produced the high-dimensional data matrix A.

Recent theoretical and computational advances in N -way decompositions
are opening up the potential for tensor decompositions in many fields. For N
large, such decompositions can be computationally intractable due to the size
of the data. Indeed, even in the simple example illustrated in Figs. 1.30 and 1.31,
there are 106 data points. Ultimately, the CP tensor decomposition does not
scale well with additional data dimensions. However, randomized techniques
are helping yield tractable computations even for large data sets [214, 234]. As
with the SVD, randomized methods exploit the underlying low-rank structure
of the data in order to produce an accurate approximation through the sum
of rank-one outer products. Additionally, tensor decompositions can be com-
bined with constraints on the form of the parallel factors in order to produce
more easily interpretable results [464]. This gives a framework for producing
interpretable and scalable computations of N -way data arrays.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

60 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

Suggested Reading

Texts

(1) Matrix computations, by G. H. Golub and C. F. Van Loan, 2012 [287].

Papers and reviews

(1) Calculating the singular values and pseudo-inverse of a matrix, by G. H.
Golub and W. Kahan, Journal of the Society for Industrial & Applied Mathe-
matics, Series B: Numerical Analysis, 1965 [285].

(2) A low-dimensional procedure for the characterization of human faces, by
L. Sirovich and M. Kirby, Journal of the Optical Society of America A, 1987
[664].

(3) Finding structure with randomness: Probabilistic algorithms for construct-
ing approximate matrix decompositions, by N. Halko, P.-G. Martinsson,
and J. A. Tropp, SIAM Review, 2011 [309].

(4) A randomized algorithm for the decomposition of matrices, by P.-G. Mar-
tinsson, V. Rokhlin, and M. Tygert, Applied and Computational Harmonic
Analysis, 2011 [488].

(5) The optimal hard threshold for singular values is 4/
√

3, by M. Gavish
and D. L. Donoho, IEEE Transactions on Information Theory, 2014 [267].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

1.9. TENSOR DECOMPOSITIONS AND N -WAY DATA ARRAYS 61

Homework

Exercise 1-1. Load the image dog.jpg and compute the full SVD. Choose a rank
r < m and confirm that the matrix U∗U is the r × r identity matrix. Now con-
firm that UU∗ is not the identity matrix. Compute the norm of the error between
UU∗ and the n× n identity matrix as the rank r varies from 1 to n and plot the
error.

Exercise 1-2. Load the image dog.jpg and compute the economy SVD. Com-
pute the relative reconstruction error of the truncated SVD in the Frobenius
norm as a function of the rank r. Square this error to compute the fraction of
missing variance as a function of r. You may also decide to plot 1 minus the
error or missing variance to visualize the amount of norm or variance captured
at a given rank r. Plot these quantities along with the cumulative sum of singu-
lar values as a function of r. Find the rank r where the reconstruction captures
99% of the total variance. Compare this with the rank r where the reconstruc-
tion captures 99% in the Frobenius norm and with the rank r that captures 99%
of the cumulative sum of singular values.

Exercise 1-3. Load the Yale B image database and compute the economy SVD
using a standard svd command. Now compute the SVD with the method of
snapshots. Compare the singular value spectra on a log plot. Compare the first
10 left singular vectors using each method (remember to reshape them into the
shape of a face). Now compare a few singular vectors farther down the spec-
trum. Explain your findings.

Exercise 1-4. Generate a random 100×100 matrix, i.e., a matrix whose entries are
sampled from a normal distribution. Compute the SVD of this matrix and plot
the singular values. Repeat this 100 times and plot the distribution of singular
values in a box-and-whisker plot. Plot the mean and median singular values as
a function of r. Now repeat this for different matrix sizes (e.g., 50×50, 200×200,
500× 500, 1000× 1000, etc.).

Exercise 1-5. Compare the singular value distributions for a 1000 × 1000 uni-
formly distributed random matrix and a Gaussian random matrix of the same
size. Adapt the Gavish–Donoho algorithm to filter uniform noise based on this
singular value distribution. Add uniform noise to a data set (either an image
or the test low-rank signal) and apply this thresholding algorithm to filter the
noise. Vary the magnitude of the noise and compare the results. Is the filtering
good or bad?

Exercise 1-6. This exercise will test the concept of condition number. We will

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

62 CHAPTER 1. SINGULAR VALUE DECOMPOSITION (SVD)

test the accuracy of solving Ax = b when noise is added to b for matrices A
with different condition numbers.

(a) To build the two matrices, generate a random U ∈ R100×100 and V ∈
R100×100 and then create two Σ matrices: the first Σ will have singular
values spaced logarithmically from 100 to 1, and the second Σ will have
singular values spaced logarithmically from 100 to 10−6. Use these ma-
trices to create two A matrices, one with a condition number of 100 and
the other with a condition number of 100 million. Now create a random b
vector, solve for x using the two methods, and compare the results. Add
a small ε to b, with norm 10−6 smaller than the norm of b. Now solve for
x using this new b + ε and compare the results.

(b) Now repeat the experiment above with many different noise vectors ε
and compute the distribution of the error; plot this error as a histogram
and explain the shape.

(c) Repeat the above experiment comparing two A matrices with different
singular value distributions: the first Σ will have values spaced linearly
from 100 to 1 and the second Σ will have value spaced logarithmically
from 100 to 1. Does anything change? Please explain why yes or no.

(d) Repeat the above experiment, but now with an A matrix that has size
100× 10. Explain any changes.

Exercise 1-7. Load the data set for fluid flow past a cylinder (you can either
download this from our book http://DMDbook.com or generate it using the
IBPM code on GitHub). Each column is a flow field that has been reshaped into
a vector.

(a) Compute the SVD of this data set and plot the singular value spectrum
and the leading singular vectors. The U matrix contains eigenflow fields
and the ΣV∗ represents the amplitudes of these eigenflows as the flow
evolves in time.

(b) Write a code to plot the reconstructed movie for various truncation values
r. Compute the r value needed to capture 90%, 99%, and 99.9% of the flow
energy based on the singular value spectrum (recall that energy is given
by the Frobenius norm squared). Plot the movies for each of these trunca-
tion values and compare the fidelity. Also compute the squared Frobenius
norm of the error between the true matrix X and the reconstructed matrix
X̃, where X is the flow field movie.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://DMDbook.com

1.9. TENSOR DECOMPOSITIONS AND N -WAY DATA ARRAYS 63

(c) Fix a value r = 10 and compute the truncated SVD. Each column wk ∈ R10

of the matrix W = Σ̃Ṽ
∗

represents the mixture of the first 10 eigenflows
in the kth column of X. Verify this by comparing the kth snapshot of X

with Ũwk.

(d) Now, build a linear regression model for how the amplitudes wk evolve
in time. This will be a dynamical system:

wk+1 = Awk.

Create a matrix W with the first 1 through m − 1 columns of ΣV∗ and
another matrix W′ with the 2 through m columns of ΣV∗. We will now
try to solve for a best-fit A matrix so that

W′ ≈ AW.

Compute the SVD of W and use this to compute the pseudo-inverse of
W to solve for A. Compute the eigenvalues of A and plot them in the
complex plane.

(e) Use this A matrix to advance the state wk = Ak−1w1 starting from w1.
Plot the reconstructed flow field using these predicted amplitude vectors
and compare with the true values.

This exercise derived the dynamic mode decomposition from Section 7.2.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 2

Fourier and Wavelet Transforms

A central concern of mathematical physics and engineering mathematics in-
volves the transformation of equations into a coordinate system where expres-
sions simplify, decouple, and are amenable to computation and analysis. This
is a common theme throughout this book, in a wide variety of domains, in-
cluding data analysis (e.g., the singular value decomposition, SVD), dynamical
systems (e.g., spectral decomposition into eigenvalues and eigenvectors), and
control (e.g., defining coordinate systems by controllability and observability).
Perhaps the most foundational and ubiquitous coordinate transformation was
introduced by J.-B. Joseph Fourier in the early 1800s to investigate the theory
of heat [249]. Fourier introduced the concept that sine and cosine functions of
increasing frequency provide an orthogonal basis for the space of solution func-
tions. Indeed, the Fourier transform basis of sines and cosines are eigenfunc-
tions of the heat equation, with the specific frequencies serving as the eigenval-
ues, determined by the geometry, and amplitudes determined by the boundary
conditions.

Fourier’s seminal work provided the mathematical foundation for Hilbert
spaces, operator theory, approximation theory, and the subsequent revolution
in analytical and computational mathematics. Fast forward 200 years, and the
fast Fourier transform has become the cornerstone of computational mathemat-
ics, enabling real-time image and audio compression, global communication
networks, modern devices and hardware, numerical physics and engineering
at scale, and advanced data analysis. Simply put, the fast Fourier transform
has had a more significant and profound role in shaping the modern world
than any other algorithm to date.

With increasingly complex problems, data sets, and computational geome-
tries, simple Fourier sine and cosine bases have given way to tailored bases,
such as the data-driven SVD. In fact, the SVD basis can be used as a direct ana-
logue of the Fourier basis for solving partial differential equations (PDEs) with
complex geometries, as will be discussed later. In addition, related functions,
called wavelets, have been developed for advanced signal processing and com-

64

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 65

a
x1 x2 x3 xn

b

f1

f2

f3

fn

g1
g2

g3

gn

Figure 2.1: Discretized functions used to illustrate the inner product.

pression efforts. In this chapter, we will demonstrate a few of the many uses of
Fourier and wavelet transforms.

2.1 Fourier Series and Fourier Transforms

Before describing the computational implementation of Fourier transforms on
vectors of data, here we introduce the analytic Fourier series and Fourier trans-
form, defined for continuous functions. Naturally, the discrete and continu-
ous formulations should match in the limit of data with infinitely fine reso-
lution. The Fourier series and transform are intimately related to the geometry
of infinite-dimensional function spaces, or Hilbert spaces, which generalize the
notion of vector spaces to include functions with infinitely many degrees of
freedom. Thus, we begin with an introduction to function spaces.

Inner Products of Functions and Vectors

In this section, we will make use of inner products and norms of functions. In
particular, we will use the common Hermitian inner product for functions f(x)
and g(x) defined for x on a domain x ∈ [a, b]:

〈f(x), g(x)〉 =

∫ b

a

f(x)ḡ(x) dx, (2.1)

where ḡ denotes the complex conjugate.
The inner product of functions may seem strange or unmotivated at first,

but this definition becomes clear when we consider the inner product of vectors
of data. In particular, if we discretize the functions f(x) and g(x) into vectors
of data, as in Fig. 2.1, we would like the vector inner product to converge to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

66 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

the function inner product as the sampling resolution is increased. The inner
product of the data vectors f =

[
f1 f2 · · · fn

]T and g =
[
g1 g2 · · · gn

]T is
defined by

〈f ,g〉 = g∗f =
n∑

k=1

fkḡk =
n∑

k=1

f(xk)ḡ(xk). (2.2)

The magnitude of this inner product will grow as more data points are added;
i.e., as n increases. Thus, we may normalize by ∆x = (b − a)/(n − 1), where
b = xn and a = x1:

b− a
n− 1

〈f ,g〉 =
n∑

k=1

f(xk)ḡ(xk)∆x, (2.3)

which is the Riemann approximation to the continuous function inner product
in (2.1). It is now clear that as we take the limit of n→∞ (i.e., infinite data res-
olution, with ∆x→ 0), the vector inner product converges to the inner product
of functions in (2.1).

This inner product also induces a norm on functions, given by

‖f‖2 = (〈f, f〉)1/2 =
√
〈f, f〉 =

(∫ b

a

f(x)f̄(x) dx

)1/2

. (2.4)

The set of all functions with bounded norm defines the set of square integrable
functions, denoted by L2([a, b]); this is also known as the set of Lebesgue in-
tegrable functions. The interval [a, b] may also be chosen to be infinite (e.g.,
(−∞,∞)), semi-infinite (e.g., [a,∞)), or periodic (e.g., [−π, π)). A fun example
of a function in L2([1,∞)) is f(x) = 1/x. The square of f has finite integral from
1 to∞, although the integral of the function itself diverges. The shape obtained
by rotating this function about the x-axis is known as Gabriel’s horn, as the
volume is finite (related to the integral of f 2), while the surface area is infinite
(related to the integral of f).

As in finite-dimensional vector spaces, the inner product may be used to
project a function into an new coordinate system defined by a basis of orthog-
onal functions. A Fourier series representation of a function f is precisely a
projection of this function onto the orthogonal set of sine and cosine functions
with integer period on the domain [a, b]. This is the subject of the following
sections.

Fourier Series

A fundamental result in Fourier analysis is that if f(x) is periodic and piecewise
smooth, then it can be written in terms of a Fourier series, which is an infinite

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 67

sum of cosines and sines of increasing frequency. In particular, if f(x) is 2π-
periodic, it may be written as

f(x) =
a0

2
+
∞∑

k=1

(ak cos(kx) + bk sin(kx)). (2.5)

The coefficients ak and bk are given by

ak =
1

π

∫ π

−π
f(x) cos(kx) dx, (2.6a)

bk =
1

π

∫ π

−π
f(x) sin(kx) dx, (2.6b)

which may be viewed as the coordinates obtained by projecting the function
onto the orthogonal cosine and sine basis {cos(kx), sin(kx)}∞k=0. In other words,
the integrals in (2.6) may be rewritten in terms of the inner product as

ak =
1

‖cos(kx)‖2
〈f(x), cos(kx)〉, (2.7a)

bk =
1

‖sin(kx)‖2
〈f(x), sin(kx)〉, (2.7b)

where ‖cos(kx)‖2 = ‖sin(kx)‖2 = π. This factor of 1/π is easy to verify by nu-
merically integrating cos(x)2 and sin(x)2 from −π to π.

The Fourier series for an L-periodic function on [0, L) is similarly given by

f(x) =
a0

2
+
∞∑

k=1

(
ak cos

(
2πkx

L

)
+ bk sin

(
2πkx

L

))
, (2.8)

with coefficients ak and bk given by

ak =
2

L

∫ L

0

f(x) cos

(
2πkx

L

)
dx, (2.9a)

bk =
2

L

∫ L

0

f(x) sin

(
2πkx

L

)
dx. (2.9b)

Because we are expanding functions in terms of sine and cosine functions, it
is also natural to use Euler’s formula eikx = cos(kx)+i sin(kx) to write a Fourier

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

68 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

series in complex form with complex coefficients ck = αk + iβk:

f(x) =
∞∑

k=−∞
cke

ikx

=
∞∑

k=−∞
(αk + iβk)(cos(kx) + i sin(kx))

= (α0 + iβ0) +
∞∑

k=1

[(α−k + αk) cos(kx) + (β−k − βk) sin(kx)]

+ i
∞∑

k=1

[(β−k + βk) cos(kx)− (α−k − αk) sin(kx)]. (2.10)

If f(x) is real-valued, then α−k = αk and β−k = −βk, so that c−k = c̄k.
Thus, the functions ψk = eikx for k ∈ Z (i.e., for integer k) provide a basis

for periodic, complex-valued functions on an interval [0, 2π). It is simple to see
that these functions are orthogonal:

〈ψj, ψk〉 =

∫ π

−π
eijxe−ikx dx =

∫ π

−π
ei(j−k)x dx =

[
ei(j−k)x

i(j − k)

]π

−π
=

{
0 if j 6= k,
2π if j = k.

So 〈ψj, ψk〉 = 2πδjk, where δ is the Kronecker delta function. Similarly, the func-
tions ei2πkx/L provide a basis for L2([0, L)), the space of square integrable func-
tions defined on x ∈ [0, L).

In principle, a Fourier series is just a change of coordinates of a function
f(x) into an infinite-dimensional orthogonal function space spanned by sines
and cosines (i.e., ψk = eikx = cos(kx) + i sin(kx)):

f(x) =
∞∑

k=−∞
ckψk(x) =

1

2π

∞∑

k=−∞
〈f(x), ψk(x)〉ψk(x). (2.11)

The coefficients are given by ck = (1/(2π))〈f(x), ψk(x)〉. The factor of 1/(2π)
normalizes the projection by the square of the norm of ψk, i.e., ‖ψk‖2 = 2π. This
is consistent with our standard finite-dimensional notion of change of basis, as
in Fig. 2.2. A vector

⇀

f may be written in the (
⇀
x,

⇀
y) or (

⇀
u,

⇀
v) coordinate systems,

via projection onto these orthogonal bases:

⇀

f = 〈
⇀

f,
⇀
x 〉

⇀
x

‖⇀x‖2
+ 〈

⇀

f,
⇀
y 〉

⇀
y

‖⇀y‖2
(2.12a)

= 〈
⇀

f,
⇀
u 〉

⇀
u

‖⇀u‖2
+ 〈

⇀

f,
⇀
v 〉

⇀
v

‖⇀v‖2
. (2.12b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 69

⇀
x

⇀
u

⇀

f

⇀
v

⇀
y

Figure 2.2: Change of coordinates of a vector in two dimensions.

Example: Fourier Series for a Continuous Hat Function

As a simple example, we demonstrate the use of Fourier series to approximate
a continuous hat function, defined from −π to π:

f(x) =

0 for x ∈ [−π, π/2),
1 + 2x/π for x ∈ [−π/2, 0),
1− 2x/π for x ∈ [0, π/2),
0 for x ∈ [π/2, π).

(2.13)

Because this function is even, it may be approximated with cosines alone. The
Fourier series for f(x) is shown in Fig. 2.3 for an increasing number of cosines.

Figure 2.4 shows the coefficients ak of the even cosine functions, along with
the approximation error, for an increasing number of modes. The error de-
creases monotonically, as expected. The coefficients bk corresponding to the odd
sine functions are not shown, as they are identically zero since the hat function
is even.

Code 2.1: [MATLAB] Fourier series approximation to a hat function.
% Define domain
dx = 0.001;
L = pi;
x = (-1+dx:dx:1)*L;
n = length(x); nquart = floor(n/4);

% Define hat function
f = 0*x;

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

70 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

f

f̂
1

0

0.5

0

−0.5

0.05

0

−0.05
−π 0 π

Time

Figure 2.3: (top) Hat function and Fourier cosine series approximation for
n = 7. (middle) Fourier cosines used to approximate the hat function. (bottom)
Zoom in of modes with small amplitude and high frequency.

f(nquart:2*nquart) = 4*(1:nquart+1)/n;
f(2*nquart+1:3*nquart) = 1-4*(0:nquart-1)/n;
plot(x,f,’-k’,’LineWidth’,1.5), hold on

% Compute Fourier series
CC = jet(20);
A0 = sum(f.*ones(size(x)))*dx;
fFS = A0/2;
for k=1:20

A(k) = sum(f.*cos(pi*k*x/L))*dx; % Inner product
B(k) = sum(f.*sin(pi*k*x/L))*dx;
fFS = fFS + A(k)*cos(k*pi*x/L) + B(k)*sin(k*pi*x/L);
plot(x,fFS,’-’,’Color’,CC(k,:),’LineWidth’,1.2)

end

Code 2.1: [Python] Fourier series approximation to a hat function.
Define domain
dx = 0.001

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 71

0 10 20 30 40 50 60 70 80 90 100

10
-5

10
0

0 10 20 30 40 50 60 70 80 90 100

10
-2

10
0

Mode number, k

‖f
−
f̂ k
‖/
‖f
‖

ak

Figure 2.4: Fourier coefficients (top) and relative error of Fourier cosine approx-
imation with true function (bottom) for the hat function in Fig. 2.3. The n = 7
approximation is highlighted with a blue circle.

L = np.pi
x = L * np.arange(-1+dx,1+dx,dx)
n = len(x)
nquart = int(np.floor(n/4))

Define hat function
f = np.zeros_like(x)
f[nquart:2*nquart] = (4/n)*np.arange(1,nquart+1)
f[2*nquart:3*nquart] = np.ones(nquart) - (4/n)*np.arange(0,

nquart)

Compute Fourier series
A0 = np.sum(f * np.ones_like(x)) * dx
fFS = A0/2

A = np.zeros(20)
B = np.zeros(20)
for k in range(20):

A[k] = np.sum(f * np.cos(np.pi*(k+1)*x/L)) * dx # Inner
product

B[k] = np.sum(f * np.sin(np.pi*(k+1)*x/L)) * dx
fFS = fFS + A[k]*np.cos((k+1)*np.pi*x/L) + B[k]*np.sin((

k+1)*np.pi*x/L)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

72 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

Figure 2.5: Gibbs phenomenon is characterized by high-frequency oscillations
near discontinuities. The black curve is discontinuous, and the red curve is the
Fourier approximation.

ax.plot(x,fFS,’-’)

Example: Fourier Series for a Discontinuous Hat Function

We now consider the discontinuous square hat function, defined on [0, L), shown
in Fig. 2.5. The function is given by:

f(x) =

0 for x ∈ [0, L/4),
1 for x ∈ [L/4, 3L/4),
0 for x ∈ [3L/4, L).

(2.14)

The truncated Fourier series is plagued by ringing oscillations, known as the
Gibbs phenomenon, around the sharp corners of the step function. This ex-
ample highlights the challenge of applying the Fourier series to discontinu-
ous functions. The code to reproduce this example is available on the book’s
GitHub.

Fourier Transform

The Fourier series is defined for periodic functions, so that, outside the domain
of definition, the function repeats itself forever. The Fourier transform integral
is essentially the limit of a Fourier series as the length of the domain goes to
infinity, which allows us to define a function defined on (−∞,∞) without re-
peating, as shown in Fig. 2.6. We will consider the Fourier series on a domain
x ∈ [−L,L), and then let L→∞. On this domain, the Fourier series is

f(x) =
a0

2
+
∞∑

k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
=

∞∑

k=−∞
cke

ikπx/L (2.15)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 73

−L L

Figure 2.6: (top) Fourier series is only valid for a function that is periodic on
the domain [−L,L). (bottom) The Fourier transform is valid for generic non-
periodic functions.

with the coefficients given by

ck =
1

2L
〈f(x), ψk〉 =

1

2L

∫ L

−L
f(x)e−ikπx/L dx. (2.16)

Restating the previous results, f(x) is now represented by a sum of sines and
cosines with a discrete set of frequencies given by ωk = kπ/L. Taking the limit
asL→∞, these discrete frequencies become a continuous range of frequencies.
Define ω = kπ/L, ∆ω = π/L, and take the limit L→∞, so that ∆ω → 0:

f(x) = lim
∆ω→0

∞∑

k=−∞

∆ω

2π

∫ π/∆ω

−π/∆ω
f(ξ)e−ik∆ωξ dξ

︸ ︷︷ ︸
〈f(x),ψk(x)〉

eik∆ωx. (2.17)

When we take the limit, the expression 〈f(x), ψk(x)〉 will become the Fourier
transform of f(x), denoted by f̂(ω) , F(f(x)). In addition, the summation

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

74 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

with weight ∆ω becomes a Riemann integral, resulting in the following:

f̂(ω) = F(f(x)) =

∫ ∞

−∞
f(x)e−iωx dx (2.18a)

f(x) = F−1(f̂(ω)) =
1

2π

∫ ∞

−∞
f̂(ω)eiωx dω. (2.18b)

These two integrals are known as the Fourier transform pair. Both integrals con-
verge as long as

∫∞
−∞ |f(x)| dx < ∞ and

∫∞
−∞ |f̂(ω)| dω < ∞; i.e., as long as

both functions belong to the space of Lebesgue integrable functions, f, f̂ ∈
L1[(−∞,∞)].

The Fourier transform is particularly useful because of a number of proper-
ties, including linearity, and how derivatives of functions behave in the Fourier
transform domain. These properties have been used extensively for data anal-
ysis and scientific computing (e.g., to solve PDEs accurately and efficiently), as
will be explored throughout this chapter.

Derivatives of Functions

The Fourier transform of the derivative of a function is given by

F
(

d

dx
f(x)

)
=

∫ ∞

−∞

dv︷ ︸︸ ︷
f ′(x)

u︷ ︸︸ ︷
e−iωx dx (2.19a)

=
[
f(x)e−iωx︸ ︷︷ ︸

uv

]∞
−∞
−
∫ ∞

−∞
f(x)︸︷︷︸
v

[
−iωe−iωx︸ ︷︷ ︸

du

]
dx (2.19b)

= iω

∫ ∞

−∞
f(x)e−iωx dx (2.19c)

= iωF(f(x)). (2.19d)

The formula for the Fourier transform of a higher derivative is given by

F
(

dn

dxn
f(x)

)
= inωnF(f(x)). (2.20)

This is an extremely important property of the Fourier transform, as it will al-
low us to turn PDEs into ordinary differential equations (ODEs), closely related
to the separation of variables:

utt = cuxx
F

===⇒ ûtt = −cω2û. (2.21)

(PDE) (ODE)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.1. FOURIER SERIES AND FOURIER TRANSFORMS 75

Linearity of Fourier Transforms

The Fourier transform is a linear operator, so that

F(αf(x) + βg(x)) = αF(f) + βF(g) (2.22)

and

F−1(αf̂(ω) + βĝ(ω)) = αF−1(f̂) + βF−1(ĝ). (2.23)

Parseval’s Theorem

∫ ∞

−∞
|f̂(ω)|2 dω = 2π

∫ ∞

−∞
|f(x)|2 dx. (2.24)

In other words, the Fourier transform preserves the L2-norm, up to a constant.
This is closely related to unitarity, so that two functions will retain the same
inner product before and after the Fourier transform. This property is useful
for approximation and truncation, providing the ability to bound error at a
given truncation.

Convolution

The convolution of two functions is particularly well behaved in the Fourier
domain, being the product of the two Fourier-transformed functions. We define
the convolution of two functions f(x) and g(x) as f ∗ g:

(f ∗ g)(x) =

∫ ∞

−∞
f(x− ξ)g(ξ) dξ. (2.25)

If we let f̂ = F(f) and ĝ = F(g), then

F−1(f̂ ĝ)(x) =
1

2π

∫ ∞

−∞
f̂(ω)ĝ(ω)eiωx dω (2.26a)

=

∫ ∞

−∞
f̂(ω)eiωx

(
1

2π

∫ ∞

−∞
g(y)e−iωy dy

)
dω (2.26b)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
g(y)f̂(ω)eiω(x−y) dω dy (2.26c)

=

∫ ∞

−∞
g(y)

(
1

2π

∫ ∞

−∞
f̂(ω)eiω(x−y) dω

︸ ︷︷ ︸
f(x−y)

)
dy (2.26d)

=

∫ ∞

−∞
g(y)f(x− y) dy = g ∗ f = f ∗ g. (2.26e)

Thus, multiplying functions in the frequency domain is the same as convolv-
ing functions in the spatial domain. This will be particularly useful for control
systems and transfer functions with the related Laplace transform.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

76 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

x1x2x3 xn

f1

f2

f3

fn

Figure 2.7: Discrete data sampled for the discrete Fourier transform.

2.2 Discrete Fourier Transform (DFT) and Fast Fourier
Transform (FFT)

Until now, we have considered the Fourier series and Fourier transform for con-
tinuous functions f(x). However, when computing or working with real data,
it is necessary to approximate the Fourier transform on discrete vectors of data.
The resulting discrete Fourier transform (DFT) is essentially a discretized ver-
sion of the Fourier series for vectors of data f =

[
f1 f2 f3 · · · fn

]T obtained
by discretizing the function f(x) at a regular spacing, ∆x, as in Fig. 2.7.

The DFT is tremendously useful for numerical approximation and compu-
tation, but it does not scale well to very large n� 1, as the simple formulation
involves multiplication by a dense n × n matrix, requiring O(n2) operations.
In 1965, James W. Cooley (IBM) and John W. Tukey (Princeton) developed the
revolutionary fast Fourier transform (FFT) algorithm [182, 183] that scales as
O(n log(n)). As n becomes very large, the log(n) component grows slowly, and
the algorithm approaches a linear scaling. Their algorithm was based on a frac-
tal symmetry in the Fourier transform that allows an n-dimensional DFT to
be solved with a number of lower-dimensional DFT computations. Although
the different computational scaling between the DFT and FFT implementations
may seem like a small difference, the fast O(n log(n)) scaling is what enables
the ubiquitous use of the FFT in real-time communication, based on audio and
image compression [731].

It is important to note that Cooley and Tukey did not invent the idea of the
FFT, as there were decades of prior work developing special cases, although
they provided the general formulation that is currently used. Amazingly, the
FFT algorithm was formulated by Gauss over 150 years earlier in 1805 to ap-
proximate the orbits of the asteroids Pallas and Juno from measurement data,
as he required a highly accurate interpolation scheme [319]. As the computa-
tions were performed by Gauss in his head and on paper, he required a fast

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.2. DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER
TRANSFORM (FFT) 77

algorithm, and developed the FFT. However, Gauss did not view this as a ma-
jor breakthrough and his formulation only appeared later in 1866 in his com-
piled notes [265]. It is interesting to note that Gauss’s discovery even pre-dates
Fourier’s announcement of the Fourier series expansion in 1807, which was
later published in 1822 [248].

Discrete Fourier Transform

Although we will always use the FFT for computations, it is illustrative to begin
with the simplest formulation of the DFT. The discrete Fourier transform is
given by

f̂k =
n−1∑

j=0

fje
−i2πjk/n, (2.27)

and the inverse discrete Fourier transform (iDFT) is given by

fk =
1

n

n−1∑

j=0

f̂je
i2πjk/n. (2.28)

Thus, the DFT is a linear operator (i.e., a matrix) that maps the data points in f

to the frequency domain f̂ :

{f1, f2, . . . , fn} DFT
===⇒ {f̂1, f̂2, . . . f̂n}. (2.29)

For a given number of points n, the DFT represents the data using sine and
cosine functions with integer multiples of a fundamental frequency, ωn = e−2πi/n.
The DFT may be computed by matrix multiplication:

f̂1

f̂2

f̂3
...
f̂n

=

1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
1 ωn−1

n ω
2(n−1)
n · · · ω

(n−1)2

n

f1

f2

f3
...
fn

. (2.30)

The output vector f̂ contains the Fourier coefficients for the input vector f , and
the DFT matrix F is a unitary Vandermonde matrix. The matrix F is complex-
valued, so the output f̂ has both a magnitude and a phase, which will both have
useful physical interpretations.

The real part of the DFT matrix F is shown in Fig. 2.8 for n = 256. Code 2.2
generates and plots this matrix. It can be seen from this image that there is
a hierarchical and highly symmetric multi-scale structure to F. Each row and
column is a cosine function with increasing frequency.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

78 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

−1

0

1

Figure 2.8: Real part of the DFT matrix for n = 256.

Code 2.2: [MATLAB] Generate discrete Fourier transform matrix.
n = 256;
w = exp(-i*2*pi/n);

% Slow
for i=1:n

for j=1:n
DFT(i,j) = wˆ((i-1)*(j-1));

end
end

% Fast
[I,J] = meshgrid(1:n,1:n);
DFT = w.ˆ((I-1).*(J-1));
imagesc(real(DFT))

Code 2.2: [Python] Generate discrete Fourier transform matrix.
n = 256
w = np.exp(-1j * 2 * np.pi / n)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.2. DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER
TRANSFORM (FFT) 79

Slow
for i in range(n):

for k in range(n):
DFT[i,k] = w**(i*k)

DFT = np.real(DFT)

Fast
J,K = np.meshgrid(np.arange(n),np.arange(n))
DFT = np.power(w,J*K)
DFT = np.real(DFT)

Fast Fourier Transform

As mentioned earlier, multiplying by the DFT matrix F involves O(n2) opera-
tions. The fast Fourier transform scales as O(n log(n)), enabling a tremendous
range of applications, including audio and image compression in MP3 and JPG
formats, streaming video, satellite communications, and the cellular network,
to name only a few of the myriad applications. For example, audio is gener-
ally sampled at 44.1 kHz, or 44 100 samples per second. For 10 s of audio, the
vector f will have dimension n = 4.41× 105. Computing the DFT using matrix
multiplication involves approximately 2 × 1011, or 200 billion, multiplications.
In contrast, the FFT requires approximately 6× 106, which amounts to a speed-
up factor of over 30 000. Thus, the FFT has become synonymous with the DFT,
and FFT libraries are built in to nearly every device and operating system that
performs digital signal processing.

To see the tremendous benefit of the FFT, consider the transmission, stor-
age, and decoding of an audio signal. We will see later that many signals are
highly compressible in the Fourier transform domain, meaning that most of
the coefficients of f̂ are small and can be discarded. This enables much more
efficient storage and transmission of the compressed signal, as only the non-
zero Fourier coefficients must be transmitted. However, it is then necessary to
rapidly encode and decode the compressed Fourier signal by computing the
FFT and inverse FFT (iFFT). This is accomplished with the one-line MATLAB
commands

>> fhat = fft(f); % Fast Fourier transform
>> f = ifft(fhat); % Inverse fast Fourier transform

and Python commands

>>> fhat = np.fft.fft(f); # Fast Fourier transform
>>> f = np.fft.ifft(fhat); # Inverse fast Fourier transform

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

80 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

The basic idea behind the FFT is that the DFT may be implemented much
more efficiently if the number of data points n is a power of 2. For example,
consider n = 1024 = 210. In this case, the DFT matrix F1024 may be written as

f̂ = F1024f =

[
I512 D512

I512 −D512

] [
F512 0
0 F512

] [
feven

fodd

]
, (2.31)

where feven are the even index elements of f , fodd are the odd index elements of
f , I512 is the 512× 512 identity matrix, and D512 is given by

D512 =

1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

0 0 0 · · · ω511

. (2.32)

This expression can be derived from a careful accounting and reorganization of
the terms in (2.27) and (2.30). If n = 2p, this process can be repeated, and F512

can be represented by F256, which can then be represented by F128 → F64 →
F32 → · · · . If n 6= 2p, the vector can be padded with zeros until it is a power of 2.
The FFT then involves an efficient interleaving of even and odd indices of sub-
vectors of f , and the computation of several smaller 2× 2 DFT computations.

FFT Example: Noise Filtering

To gain familiarity with how to use and interpret the FFT, we will begin with
a simple example that uses the FFT to de-noise a signal. We will consider a
function of time f(t):

f(t) = sin(2πf1t) + sin(2πf2t), (2.33)

with frequencies f1 = 50 and f2 = 120. We then add a large amount of Gaussian
white noise to this signal, as shown in the top panel of Fig. 2.9.

It is possible to compute the fast Fourier transform of this noisy signal
using the fft command. The power spectral density (PSD) is the normalized
squared magnitude of f̂ , and indicates how much power the signal contains in
each frequency. In Fig. 2.9 (middle), it is clear that the noisy signal contains
two large peaks at 50 Hz and 120 Hz. It is possible to zero-out components that
have power below a threshold to remove noise from the signal. After inverse
transforming the filtered signal, we find the clean and filtered time series match
quite well (Fig. 2.9, bottom). Code 2.3 performs each step and plots the results.

Code 2.3: [MATLAB] Fast Fourier transform to de-noise signal.
%% Create a simple signal with two frequencies

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.2. DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER
TRANSFORM (FFT) 81

0 0.05 0.1 0.15 0.2 0.25
-5

0

5

Clean

Noisy

0 0.05 0.1 0.15 0.2 0.25
-5

0

5

Clean

Filtered

0 50 100 150 200 250 300 350 400 450 500
0

200

400

Noisy

Filtered

Frequency [Hz]

Time [s]

Time [s]

PS
D

f

f

Figure 2.9: De-noising with FFT. (top) Noise is added to a simple signal given by
a sum of two sine waves. (middle) In the Fourier domain, dominant peaks may
be selected and the noise filtered. (bottom) The de-noised signal is obtained by
inverse Fourier transforming the two dominant peaks.

dt = .001;
t = 0:dt:1;
f = sin(2*pi*50*t) + sin(2*pi*120*t); % Sum of 2 frequencies
f = f + 2.5*randn(size(t)); % Add some noise

%% Compute the Fast Fourier Transform FFT
n = length(t);
fhat = fft(f,n); % Compute the fast Fourier transform
PSD = fhat.*conj(fhat)/n; % Power spectrum (power per freq)
freq = 1/(dt*n)*(0:n); % Create x-axis of frequencies in Hz
L = 1:floor(n/2); % Only plot the first half of freqs

%% Use the PSD to filter out noise
indices = PSD>100; % Find all freqs with large power

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

82 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

PSDclean = PSD.*indices; % Zero out all others
fhat = indices.*fhat; % Zero out small Fourier coeffs. in Y
ffilt = ifft(fhat); % Inverse FFT for filtered time signal

Code 2.3: [Python] Fast Fourier transform to de-noise signal.
Create a simple signal with two frequencies
dt = 0.001
t = np.arange(0,1,dt)
f = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*120*t)
f_clean = f
f = f + 2.5*np.random.randn(len(t)) # Add some noise

Compute the Fast Fourier Transform (FFT)
n = len(t)
fhat = np.fft.fft(f,n) # Compute the FFT
PSD = fhat * np.conj(fhat) / n # Power spectrum

(power per freq)
freq = (1/(dt*n)) * np.arange(n) # Create x-axis

of frequencies in Hz
L = np.arange(1,np.floor(n/2),dtype=’int’) # Only plot the

first half of freqs

Use the PSD to filter out noise
indices = PSD > 100 # Find all freqs with large power
PSDclean = PSD * indices # Zero out all others
fhat = indices * fhat # Zero out small Fourier coeffs.

in Y
ffilt = np.fft.ifft(fhat) # Inverse FFT for filtered time

signal

FFT Example: Spectral Derivatives

For the next example, we will demonstrate the use of the FFT for the fast and ac-
curate computation of derivatives. As we saw in (2.19), the continuous Fourier
transform has the property that F(df/dx) = iωF(f). Similarly, the numerical
derivative of a vector of discretized data can be well approximated by multi-
plying each component of the discrete Fourier transform of the vector f̂ by iκ,
where κ = 2πk/n is the discrete wavenumber associated with that component.
The accuracy and efficiency of the spectral derivative make it particularly use-
ful for solving partial differential equations, as explored in the next section.

To demonstrate this so-called spectral derivative, we will start with a func-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.2. DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER
TRANSFORM (FFT) 83

-15 -10 -5 0 5 10 15

-1

-0.5

0

0.5

1

True Derivative

Finite Difference

FFT Derivative

x

df
dx

Figure 2.10: Comparison of the spectral derivative, computed using the FFT,
with the finite-difference derivative.

tion f(x) where we can compute the analytic derivative for comparison:

f(x) = cos(x)e−x
2/25 =⇒ df

dx
(x) = −sin(x)e−x

2/25 − 2

25
xf(x). (2.34)

Figure 2.10 compares the spectral derivative with the analytic derivative and
the forward Euler finite-difference derivative using n = 128 discretization points:

df

dx
(xk) ≈

f(xk+1)− f(xk)

∆x
. (2.35)

The error of both differentiation schemes may be reduced by increasing n,
which is the same as decreasing ∆x. However, the error of the spectral deriva-
tive improves more rapidly with increasing n than finite-difference schemes,
as shown in Fig. 2.11. The forward Euler differentiation is notoriously inaccu-
rate, with error proportional to O(∆x); however, even increasing the order of
a finite-difference scheme will not yield the same accuracy trend as the spec-
tral derivative, which is effectively using information on the whole domain.
Code 2.4 computes and compares the two differentiation schemes.

Code 2.4: [MATLAB] Fast Fourier transform to compute derivatives.
n = 128; L = 30; dx = L/(n);
x = -L/2:dx:L/2-dx;
f = cos(x).*exp(-x.ˆ2/25); % Function
df = -(sin(x).*exp(-x.ˆ2/25) + (2/25)*x.*f); % Derivative
%% Derivative using FFT (spectral derivative)
fhat = fft(f);
kappa = (2*pi/L)*[-n/2:n/2-1];
kappa = fftshift(kappa); % Re-order fft frequencies
dfhat = i*kappa.*fhat;
dfFFT = real(ifft(dfhat));

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

84 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

10
1

10
2

10
3

10
4

10
5

10
-10

10
-5

10
0

Finite Difference

Spectral Derivative

n

Er
ro

r

Figure 2.11: Benchmark of spectral derivative for varying data resolution.

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

-1

0

1

x

f

df
dx

Figure 2.12: Gibbs phenomenon for the spectral derivative of a function with
discontinuous derivative.

Code 2.4: [Python] Fast Fourier transform to compute derivatives.
Derivative using FFT (spectral derivative)
fhat = np.fft.fft(f)
kappa = (2*np.pi/L)*np.arange(-n/2,n/2)
kappa = np.fft.fftshift(kappa) # Re-order fft frequencies
dfhat = kappa * fhat * (1j)
dfFFT = np.real(np.fft.ifft(dfhat))

If the derivative of a function is discontinuous, then the spectral derivative
will exhibit the Gibbs phenomenon, as shown in Fig. 2.12.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.3. TRANSFORMING PARTIAL DIFFERENTIAL EQUATIONS 85

2.3 Transforming Partial Differential Equations

The Fourier transform was originally formulated in the 1800s as a change of co-
ordinates for the heat equation into an eigenfunction coordinate system where
the dynamics decouple. More generally, the Fourier transform is useful for
transforming partial differential equations (PDEs) into ordinary differential equa-
tions (ODEs), as in (2.21). Here, we will demonstrate the utility of the FFT to
numerically solve a number of PDEs. For an excellent treatment of spectral
methods for PDEs, see Trefethen [710]; extensions also exist for stiff PDEs [377].

Heat Equation

The Fourier transform basis is ideally suited to solve the heat equation. In one
spatial dimension, the heat equation is given by

ut = α2uxx, (2.36)

where u(t, x) is the temperature distribution in time and space. If we Fourier-
transform in space, then F(u(t, x)) = û(t, ω). The PDE in (2.36) becomes

ût = −α2ω2û, (2.37)

since the two spatial derivatives contribute (iω)2 = −ω2 in the Fourier trans-
form domain. Thus, by taking the Fourier transform, the PDE in (2.36) becomes
an ODE for each fixed frequency ω. The solution is given by

û(t, ω) = e−α
2ω2tû(0, ω). (2.38)

The function û(0, ω) is the Fourier transform of the initial temperature distri-
bution u(0, x). It is now clear that higher frequencies, corresponding to larger
values of ω, decay more rapidly as time evolves, so that sharp corners in the
temperature distribution rapidly smooth out. We may take the inverse Fourier
transform using the convolution property in (2.25), yielding

u(t, x) = F−1(û(t, ω)) = F−1(e−α
2ω2t) ∗ u(0, x) =

1

2α
√
πt
e−x

2/(4α2t) ∗ u(0, x).

(2.39)

To simulate this PDE numerically, it is simpler and more accurate to first
transform to the frequency domain using the FFT. In this case (2.37) becomes

ût = −α2κ2û, (2.40)

where κ is the discretized frequency. It is important to use the fftshift command
to reorder the wavenumbers according to the MATLAB convention.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

86 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

-50 -40 -30 -20 -10 0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

x

u(t, x)

Figure 2.13: Solution of the 1D heat equation in time for an initial condition
given by a square hat function. As time evolves, the sharp corners rapidly
smooth and the solution approaches a Gaussian function.

x

t

u(t, x)

x

t

Figure 2.14: Evolution of the 1D heat equation in time, illustrated by a waterfall
plot (left) and an x–t diagram (right).

Code 2.5 simulates the one-dimensional (1D) heat equation using the FFT,
as shown in Figs. 2.13 and 2.14. In this example, because the PDE is linear, it is
possible to advance the system using ode45 directly in the frequency domain,
using the vector field given in Code 2.6.

Figures 2.13 and 2.14 show several different views of the temperature distri-
bution u(t, x) as it evolves in time. Figure 2.13 shows the distribution at several
times overlayed, and this same data is visualized in Fig. 2.14 in a waterfall plot
(left) and in an x–t diagram (right). In all of the figures, it becomes clear that
the sharp corners diffuse rapidly, as these correspond to the highest wavenum-
bers. Eventually, the lowest wavenumber variations will also decay, until the
temperature reaches a constant steady-state distribution, which is a solution of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.3. TRANSFORMING PARTIAL DIFFERENTIAL EQUATIONS 87

Laplace’s equation uxx = 0. When solving this PDE using the FFT, we are im-
plicitly assuming that the solution domain is periodic, so that the right and left
boundaries are identified and the domain forms a ring. However, if the domain
is large enough, then the effect of the boundaries is small.

Code 2.5: [MATLAB] Code to simulate the 1D heat equation using the Fourier
transform.

a = 1; % Thermal diffusivity constant
L = 100; % Length of domain
N = 1000; % Number of discretization points
dx = L/N;
x = -L/2:dx:L/2-dx; % Define x domain

% Define discrete wavenumbers
kappa = (2*pi/L)*[-N/2:N/2-1];
kappa = fftshift(kappa); % Re-order fft wavenumbers

% Initial condition
u0 = 0*x;
u0((L/2 - L/10)/dx:(L/2 + L/10)/dx) = 1;

% Simulate in Fourier frequency domain
t = 0:0.1:10;
[t,uhat]=ode45(@(t,uhat)rhsHeat(t,uhat,kappa,a),t,fft(u0));

for k = 1:length(t) % iFFT to return to spatial domain
u(k,:) = ifft(uhat(k,:));

end

% Plot solution in time
figure, waterfall((u(1:10:end,:)));
figure, imagesc(flipud(u));

Code 2.5: [Python] Code to simulate the 1D heat equation using the Fourier
transform.

a = 1 # Thermal diffusivity constant
L = 100 # Length of domain
N = 1000 # Number of discretization points
dx = L/N
x = np.arange(-L/2,L/2,dx) # Define x domain

Define discrete wavenumbers
kappa = 2*np.pi*np.fft.fftfreq(N, d=dx)

Initial condition

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

88 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

u0 = np.zeros_like(x)
u0[int((L/2 - L/10)/dx):int((L/2 + L/10)/dx)] = 1
u0hat = np.fft.fft(u0)

Simulate in Fourier frequency domain
dt = 0.1
t = np.arange(0,10,dt)
uhat_ri = odeint(rhsHeat, u0hat_ri, t, args=(kappa,a))
uhat = uhat_ri[:,:N] + (1j) * uhat_ri[:,N:]
u = np.zeros_like(uhat)
for k in range(len(t)):

u[k,:] = np.fft.ifft(uhat[k,:])
u = u.real

Code 2.6: [MATLAB] Right-hand side for 1D heat equation in Fourier domain,
dû/dt.

function duhatdt = rhsHeat(t,uhat,kappa,a)
duhatdt = -aˆ2*(kappa.ˆ2)’.*uhat; % Linear and diagonal

Code 2.6: [Python] Right-hand side for 1D heat equation in Fourier domain,
dû/dt.

def rhsHeat(uhat_ri,t,kappa,a):
uhat = uhat_ri[:N] + (1j) * uhat_ri[N:]
d_uhat = -a**2 * (np.power(kappa,2)) * uhat
d_uhat_ri = np.concatenate((d_uhat.real,d_uhat.imag)).

astype(’float64’)
return d_uhat_ri

One-Way Wave Equation

As second example is the simple linear PDE for the one-way equation:

ut + cux = 0. (2.41)

Any initial condition u(0, x) will simply propagate to the right in time with
speed c, as u(t, x) = u(0, x − ct) is a solution. The code to simulate this PDE is
nearly identical to the above code for the heat equation, and it is available on
the book’s GitHub. In this example, we simulate this PDE for an initial condi-
tion given by a Gaussian pulse. It is possible to integrate this equation in the
Fourier transform domain, as before, using the vector field given by Code 2.7.
However, it is also possible to integrate this equation in the spatial domain,
simply using the FFT to compute derivatives and then transform back. The so-
lution u(t, x) is plotted in Figs. 2.15 and 2.16, as before.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.3. TRANSFORMING PARTIAL DIFFERENTIAL EQUATIONS 89

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

x

u(t, x)

Figure 2.15: Solution of the 1D wave equation in time. As time evolves, the
Gaussian initial condition moves from left to right at a constant wave speed.

x

t

u(t, x)

x

t

Figure 2.16: Evolution of the 1D wave equation in time, illustrated by a water-
fall plot (left) and an x–t diagram (right).

Code 2.7: [MATLAB] Right-hand side for 1D wave equation in Fourier domain.
function duhatdt = rhsWave(t,uhat,kappa,c)
duhatdt = -c*i*kappa.*uhat;

Code 2.7: [Python]Right-hand side for 1D wave equation in Fourier domain.
def rhsWave(uhat_ri,t,kappa,c):

uhat = uhat_ri[:N] + (1j) * uhat_ri[N:]
d_uhat = -c*(1j)*kappa*uhat
d_uhat_ri = np.concatenate((d_uhat.real,d_uhat.imag)).

astype(’float64’)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

90 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

x

u(t, x)

Figure 2.17: Solution of Burgers’ equation in time. As time evolves, the leading
edge of the Gaussian initial condition steepens, forming a shock front.

return d_uhat_ri

Burgers’ Equation

For the final example, we consider the nonlinear Burgers’ equation,

ut + uux = νuxx, (2.42)

which is a simple 1D example for the nonlinear convection and diffusion that
gives rise to shock waves in fluids [336]. The nonlinear convection uux essen-
tially gives rise to the behavior of wave steepening, where portions of u with
larger amplitude will convect more rapidly, causing a shock front to form.

The code to simulate Burgers’ equation is on the book’s GitHub, giving rise
to Figs. 2.17 and 2.18. Burgers’ equation is an interesting example to solve with
the FFT, because the nonlinearity requires us to map into and out of the Fourier
domain at each time-step, as shown in the vector field in Code 2.8. In this ex-
ample, we map into the Fourier transform domain to compute ux and uxx, and
then map back to the spatial domain to compute the product uux. Figures 2.17
and 2.18 clearly show the wave steepening effect that gives rise to a shock.
Without the damping term uxx, this shock would become infinitely steep, but
with damping, it maintains a finite width.

Code 2.8: [MATLAB] Right-hand side for Burgers’ equation in Fourier trans-
form domain.

function dudt = rhsBurgers(t,u,kappa,nu)
uhat = fft(u);

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.4. GABOR TRANSFORM AND THE SPECTROGRAM 91

x

t

u(t, x)

x

t

Figure 2.18: Evolution of Burgers’ equation in time, illustrated by a waterfall
plot (left) and an x–t diagram (right).

duhat = i*kappa.*uhat;
dduhat = -(kappa.ˆ2).*uhat;
du = ifft(duhat);
ddu = ifft(dduhat);
dudt = -u.*du + nu*ddu;

Code 2.8: [Python] Right-hand side for Burgers’ equation in Fourier transform
domain.

def rhsBurgers(u,t,kappa,nu):
uhat = np.fft.fft(u)
d_uhat = (1j)*kappa*uhat
dd_uhat = -np.power(kappa,2)*uhat
d_u = np.fft.ifft(d_uhat)
dd_u = np.fft.ifft(dd_uhat)
du_dt = -u * d_u + nu*dd_u
return du_dt.real

2.4 Gabor Transform and the Spectrogram

Although the Fourier transform provides detailed information about the fre-
quency content of a given signal, it does not give any information about when
in time those frequencies occur. The Fourier transform is only able to charac-
terize truly periodic and stationary signals, as time is stripped out via the in-
tegration in (2.18). For a signal with non-stationary frequency content, such as

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

92 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

−→

τ τ + aτ − a t

Figure 2.19: Illustration of the Gabor transform with a translating Gaussian
window for the short-time Fourier transform.

a musical composition, it is important to simultaneously characterize the fre-
quency content and its evolution in time.

The Gabor transform, also known as the short-time Fourier transform (STFT),
computes a windowed FFT in a moving window [346, 572, 648], as shown in
Fig. 2.19. This STFT enables the localization of frequency content in time, result-
ing in the spectrogram, which is a plot of frequency versus time, as demonstrated
later in Figs. 2.21 and 2.22. The STFT is given by

G(f)(t, ω) = f̂g(t, ω) =

∫ ∞

−∞
f(τ)e−iωτ ḡ(τ − t) dτ = 〈f, gt,ω〉, (2.43)

where gt,ω(τ) is defined as

gt,ω(τ) = eiωτg(τ − t). (2.44)

The function g(t) is the kernel, and is often chosen to be a Gaussian:

g(t) = e−(t−τ)2/a2

. (2.45)

The parameter a determines the spread of the short-time window for the Fourier
transform, and τ determines the center of the moving window.

The inverse STFT is given by

f(t) = G−1(f̂g(t, ω)) =
1

2π‖g‖2

∫ ∞

−∞

∫ ∞

−∞
f̂g(τ, ω)g(t− τ)eiωt dω dt. (2.46)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.4. GABOR TRANSFORM AND THE SPECTROGRAM 93

0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

10

Frequency [Hz]

PS
D

Figure 2.20: Power spectral density of quadratic chirp signal.

Discrete Gabor Transform

Generally, the Gabor transform will be performed on discrete signals, as with
the FFT. In this case, it is necessary to discretize both time and frequency:

ν = j∆ω, (2.47)
τ = k∆t. (2.48)

The discretized kernel function becomes

gj,k = ei2πj∆ωtg(t− k∆t) (2.49)

and the discrete Gabor transform is

f̂j,k = 〈f, gj,k〉 =

∫ ∞

−∞
f(τ)ḡj,k(τ) dτ. (2.50)

This integral can then be approximated using a finite Riemann sum on dis-
cretized functions f and ḡj,k.

Example: Quadratic Chirp

As a simple example, we construct an oscillating cosine function where the
frequency of oscillation increases as a quadratic function of time:

f(t) = cos(2πtω(t)) where ω(t) = ω0 + (ω1 − ω0)t2/3t21. (2.51)

The frequency shifts from ω0 at t = 0 to ω1 at t = t1.
Figure 2.20 shows the power spectral density (PSD) obtained from the FFT

of the quadratic chirp signal. Although there is a clear peak at 50 Hz, there is
no information about the progression of the frequency in time. The code to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

94 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

0.5 1 1.5
0

100

200

300

400

500

-120

-100

-80

-60

-40

-20

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Time [s]

Fr
eq

ue
nc

y
[H

z]

PSD

Figure 2.21: Spectrogram of quadratic chirp signal. The PSD is shown on the
left, corresponding to the integrated power across rows of the spectrogram.

generate the spectrogram is given in Code 2.9, and the resulting spectrogram
is plotted in Fig. 2.21, where it can be seen that the frequency content shifts in
time.

Code 2.9: [MATLAB] Spectrogram of quadratic chirp, shown in Fig. 2.21.
t = 0:0.001:2;
f0 = 50;
f1 = 250;
t1 = 2;
x = chirp(t,f0,t1,f1,’quadratic’);
x = cos(2*pi*t.*(f0 + (f1-f0)*t.ˆ2/(3*t1ˆ2)));
% There is a typo in Matlab documentation...
% ... divide by 3 so derivative amplitude matches frequency
spectrogram(x,128,120,128,1e3,’yaxis’)

Code 2.9: [Python] Spectrogram of quadratic chirp, shown in Fig. 2.21.
dt = 0.001
t = np.arange(0,2,dt)
f0 = 50
f1 = 250
t1 = 2
x = np.cos(2*np.pi*t*(f0 + (f1-f0)*np.power(t,2)/(3*t1**2)))
plt.specgram(x, NFFT=128, Fs=1/dt, noverlap=120,cmap=’jet’)

Example: Beethoven’s Sonata Pathétique

It is possible to analyze richer signals with the spectrogram, such as Beethoven’s
Sonata Pathétique, shown in Fig. 2.22. The spectrogram is widely used to an-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.4. GABOR TRANSFORM AND THE SPECTROGRAM 95

alyze music, and has recently been leveraged in the Shazam algorithm, which
searches for key point markers in the spectrogram of songs to enable rapid clas-
sification from short clips of recorded music [740].

Figure 2.22 shows the first two bars of Beethoven’s Sonata Pathétique, along
with the spectrogram. In the spectrogram, the various chords and harmonics
can be seen clearly. A zoom-in of the frequency shows two octaves, and how
cleanly the various notes are excited. Code 2.10 loads the data, computes the
spectrogram, and plots the result.

Code 2.10: [MATLAB] Compute spectrogram of Beethoven’s Sonata Pathétique
(Fig. 2.22).

% Download mp3read from http://www.mathworks.com/
matlabcentral/fileexchange/13852-mp3read-and-mp3write

[Y,FS,NBITS,OPTS] = mp3read(’beethoven.mp3’);

%% Spectrogram using ‘spectrogram’ comand
T = 40; % 40 seconds
y=Y(1:T*FS); % First 40 seconds
spectrogram(y,5000,400,24000,24000,’yaxis’);

%% Spectrogram using short-time Fourier transform ‘stft’
wlen = 5000; % Window length
h=400; % Overlap is wlen - h
[S,f,t_stft] = stft(y, wlen, h, FS/4, FS); % y axis 0-4000HZ

imagesc(log10(abs(S))); % Plot spectrogram (log-scaled)

To invert the spectrogram and generate the original sound:

[x_istft, t_istft] = istft(S, h, FS/4, FS);
sound(x_istft,FS);

Artists, such as Aphex Twin, have used the inverse spectrogram of images to
generate music. The frequency of a given piano key is also easily computed.
For example, the 40th key frequency is given by

freq = @(n)(((2ˆ(1/12))ˆ(n-49))*440);
freq(40) % frequency of 40th key = C

Uncertainty Principles

In time–frequency analysis, there is a fundamental uncertainty principle that
limits the ability to simultaneously attain high resolution in both the time and
frequency domains. In the extreme limit, a time series is perfectly resolved in
time, but provides no information about frequency content, and the Fourier
transform perfectly resolves frequency content, but provides no information

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

96 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

0 5 10 15 20 25 30
0

500

1000

1500

2000

0 5 10 15 20 25 30
C
D
E
F
G

A

B
C
Cb
D
Eb
E
F

Gb
G

Ab

A

Bb

B

C

0 5 10 15 20 25 30
0

500

1000

1500

2000

Time [s]

N
ot

es
Fr

eq
ue

nc
y

[H
z]

Figure 2.22: First two bars of Beethoven’s Sonata Pathétique (No. 8 in C Minor,
Op. 13), along with annotated spectrogram.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.4. GABOR TRANSFORM AND THE SPECTROGRAM 97

(a) Time series (b) Fourier transform

(c) Spectogram (d) Multi-resolution

∆t

∆ω

Time

Fr
eq

ue
nc

y

Figure 2.23: Illustration of resolution limitations and uncertainty in time–
frequency analysis.

about when in time these frequencies occur. The spectrogram resolves both
time and frequency information, but with lower resolution in each domain,
as illustrated in Fig. 2.23. An alternative approach, based on a multi-resolution
analysis, will be the subject of the next section.

Stated mathematically, the time–frequency uncertainty principle [564] may
be written as

(∫ ∞

−∞
x2|f(x)|2 dx

)(∫ ∞

−∞
ω2|f̂(ω)|2 dω

)
≥ 1

16π2
. (2.52)

This is true if f(x) is absolutely continuous and both xf(x) and f ′(x) are square
integrable. The function x2|f(x)|2 is the dispersion about x = 0. For real-valued
functions, this is the second moment, which measures the variance if f(x) is a
Gaussian function. In other words, a function f(x) and its Fourier transform
cannot both be arbitrarily localized. If the function f approaches a delta func-
tion, then the Fourier transform must become broadband, and vice versa. This
has implications for the Heisenberg uncertainty principle [320], as the position

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

98 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

and momentum wave functions are Fourier transform pairs.
In time–frequency analysis, the uncertainty principle has implications for

the ability to localize the Fourier transform in time. These uncertainty prin-
ciples are known as the Gabor limit. As the frequency content of a signal is
resolved more finely, we lose information about when in time these events oc-
cur, and vice versa. Thus, there is a fundamental tradeoff between the simul-
taneously attainable resolutions in the time and frequency domains. Another
implication is that a function f and its Fourier transform cannot both have fi-
nite support, meaning that they are localized, as stated in Benedick’s theorem
[14, 72].

2.5 Laplace Transform

The Laplace1 transform is closely related to the Fourier transform, and it is used
extensively in differential equations and control theory. Like the Fourier trans-
form, the Laplace transform is used to transform PDEs into simpler ODEs, and
it is also useful for transforming ODEs into algebraic equations. Here we will
derive the Laplace transform as a generalized Fourier transform and demon-
strate some of its useful properties.

The Fourier transform is defined for well-behaved functions that decay suf-
ficiently rapidly to zero as the domain goes to infinity, i.e., for Lebesgue inte-
grable functions f ∈ L1[(−∞,∞)]. However, many functions we are interested
in, such as exponential functions eλt, the well-named Heaviside function

H(t) =

{
0 for t ≤ 0,
1 for t > 0,

(2.53)

and the trigonometric functions sin(t) and cos(t), do not satisfy this property;
see Fig. 2.24 for examples. It is technically possible to Fourier-transform some
of these functions, such as trigonometric functions, by multiplying by a win-
dow function and then taking the limit as the window becomes infinitely large.
However, this approach does not translate to exponential functions, which are
unbounded at either t → −∞ or t → ∞. This limitation rules out using the
Fourier transform to analyze a large class of ODEs and PDEs. The Laplace
transform is a Fourier-like transform that is valid for the larger class of func-
tions that are not Lebesgue integrable, including exponential functions.

We will consider the Laplace transform as a weighted, one-sided Fourier
transform for badly behaved functions. The solution to transforming a function
f(t) that is unbounded as t → ∞, such as f(t) = eλt, is to first multiply it by a

1Pierre-Simon Laplace was born the son of peasant farmers and is now immortalized on the
Eiffel tower. He was also an early data scientist, realizing that real-world measurement data is
noisy and imperfect, and must be viewed through the lens of probability theory.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.5. LAPLACE TRANSFORM 99

-10 0 10

0

1

(a)

-10 0 10

0

10

20
(b)

-10 0 10

0

1

(c)

Time, t
-10 0 10

-1

0

1

(d)

−→←−

Figure 2.24: The Fourier transform requires that functions are well behaved
at ±∞, as in the Gaussian function (a). Many functions are not well behaved
and are difficult or impossible to Fourier-transform, such as the exponential
function eλt (b), the Heaviside functionH(t) (c), and the cosine function (d). It is
possible to Fourier-transform the cosine function by multiplying by a window
function and then extending the window size to infinity, but this does not work
for unstable functions, like the exponential.

decaying exponential function e−γt, where γ is more damped than the growth
of f(t); this is the weighting. Although this solves the unboundedness of f(t)
as t → ∞, now the function e−γt is unbounded for t → −∞. Thus, we also
multiply by the Heaviside function H(t), which forces the function to be zero
for t < 0; thus the transformation is one-sided. Our new weighted, one-sided
function F (t) is given by

F (t) = f(t)e−γtH(t) =

{
0 for t ≤ 0,
f(t)e−γt for t > 0.

(2.54)

Figure 2.25 shows this one-sided weighting procedure for a function that is
unbounded as t → ∞. We now take the Fourier transform F̂ (ω) of F (t), which

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

100 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

-10 0 10
-1

0

1

-10 0 10
-20

0

20

× H(t)

eγt×

f(t) F(t)

Time, t

Figure 2.25: The Laplace transform is a weighted, one-sided Fourier transform
for badly behaved functions. Given an unstable function f(t), it is possible to
multiply by the Heaviside functionH(t) and a sufficiently damped exponential
function eγt, resulting in a function that may be Fourier-transformed.

will be the Laplace transform f̄(s) of f(t):

F̂ (ω) = F(F (t)) =

∫ ∞

−∞
F (t)e−iωt dt =

∫ ∞

0

f(t)e−γte−iωt dt (2.55a)

=

∫ ∞

0

f(t)e−(γ+iω)t dt =

∫ ∞

0

f(t)e−st dt = f̄(s), (2.55b)

where we have introduced the Laplace variable s = γ + iω.
To derive the inverse Laplace transform, we will begin with the inverse

Fourier transform of F̂ (ω):

F (t) = F−1(F̂ (ω)) =
1

2π

∫ ∞

−∞
F̂ (ω)eiωt dω. (2.56)

Multiplying both sides by eγt, we recover f(t)H(t):

f(t)H(t) = eγtF (t) =
1

2π

∫ ∞

−∞
eγtF̂ (ω)eiωt dω (2.57a)

=
1

2π

∫ ∞

−∞
F̂ (ω)e(γ+iω)t dω. (2.57b)

We may express the right-hand side in terms of the Laplace variable s = γ +
iω by noting that ds = idω =⇒ dω = (1/i)ds and changing the bounds of
integration from −∞ to∞ in dω to γ − i∞ to γ + i∞ in ds:

f(t)H(t) =
1

2πi

∫ γ+i∞

γ−i∞
f̄(s)est ds. (2.58)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.5. LAPLACE TRANSFORM 101

This is the expression for the inverse Laplace transform of f̄(s). The coefficient
1/i has been incorporated into the 1/(2πi) term in front of the integral, and F̂ (ω)
has been replaced by f̄(s) from (2.55).

Therefore, the Laplace transform pair is given by

f̄(s) = L(f(t)) =

∫ ∞

0

f(t)e−st dt, (2.59a)

f(t) = L−1(f̄(s)) =
1

2πi

∫ γ+i∞

γ−i∞
f̄(s)est ds. (2.59b)

Note that in (2.59b) we have dropped the Heaviside function. This is equivalent
to defining the Laplace transform as only being valid for functions f(t) defined
on the semi-infinite domain t > 0.

To summarize, the Laplace transform is a generalized Fourier transform de-
signed to handle poorly behaved functions, such as exponentials. Even func-
tions that have a Fourier transform often have a simpler Laplace transform.
For example, the Dirac delta function, which requires an infinite number of
Fourier frequencies to represent, is simply the constant 1 in the Laplace do-
main; this property makes the Laplace transform particularly useful for study-
ing impulse responses and systems with forcing. A number of properties of the
Fourier transform carry over to the Laplace transform (see Exercise 2-10), mak-
ing them useful for solving ODEs and PDEs, especially in the context of control
theory.

Derivatives of Functions

The Laplace transform of the derivative of a function is given by

L
(

d

dt
f(t)

)
=

∫ ∞

0

dv︷︸︸︷
f ′(t)

u︷︸︸︷
e−st dt (2.60a)

=
[
e−stf(t)︸ ︷︷ ︸

uv

]∞
0
−
∫ ∞

0

f(t)︸︷︷︸
v

[
−se−st︸ ︷︷ ︸

du

]
dt (2.60b)

= −f(0) + sf̄(s). (2.60c)

The −f(0) term comes from [e−stf(t)]∞0 since e−st is 0 at t = ∞ and 1 at t = 0.
The formula for the Laplace transform of a higher derivative is given by

L
(

dn

dtn
f(t)

)
= −f (n−1)(0)− sf (n−2)(0)− · · · − sn−1f(0) + snf̄(s), (2.61)

where f (k) denotes the kth derivative. This property is extremely useful, allow-
ing us to convert PDEs into ODEs and ODEs into algebraic expressions. For

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

102 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

example, consider the linear second-order damped harmonic oscillator,

ẍ+ aẋ+ bx = 0, (2.62)

with initial condition x(0) = x0 and ẋ(0) = v0. It is possible to Laplace-transform
this equation, noting that L(ẋ) = −x0 + sx̄(s) and that L(ẍ) =
−v0 + sL(ẋ) = −v0 − sx0 + s2x̄(s):

s2x̄(s)− sx0 − v0 + asx̄(s)− ax0 + bx̄(s) = 0. (2.63)

Rearranging the terms with x̄(s) on one side and the constants on the other, it
is possible to obtain a rational function for x̄(s):

(s2 + as+ b)︸ ︷︷ ︸
characteristic
polynomial

x̄(s) = sx0 + v0 + ax0︸ ︷︷ ︸
initial

conditions

=⇒ x̄(s) =
sx0 + v0 + ax0

s2 + as+ b
. (2.64)

It is possible to solve for x(t) by computing the inverse Laplace transform of
x̄(s). For simplicity, let a = 5, b = 4, x0 = 2, and v0 = −5. Then

x̄(s) =
2s+ 5

s2 + 5s+ 4
=

2s+ 5

(s+ 1)(s+ 4)
=

1

s+ 1
+

1

s+ 4
=⇒ x(t) = e−t + e−4t.

This uses the identity L(eλt) = 1/(s − λ), which is left as an exercise. The de-
nominator of (2.64) is the characteristic polynomial for the ODE in (2.62), so the
roots determine the eigenvalues λ1 and λ2. The initial conditions appear exclu-
sively in the numerator, which determines the amplitude of the eλ1t and eλ2t

solutions. Exercise 2-11 will determine the solution for general a, b, x0, and v0.

2.6 Wavelets and Multi-Resolution Analysis

Wavelets [192, 474] extend the concepts in Fourier analysis to more general
orthogonal bases, and partially overcome the uncertainty principle discussed
above by exploiting a multi-resolution decomposition, as shown in Fig. 2.23(d).
This multi-resolution approach enables different time and frequency fidelities
in different frequency bands, which is particularly useful for decomposing com-
plex signals that arise from multi-scale processes such as are found in climatol-
ogy, neuroscience, epidemiology, finance, and turbulence. Images and audio
signals are also amenable to wavelet analysis, which is currently the leading
method for image compression [23], as will be discussed in subsequent sections
and chapters. Moreover, wavelet transforms may be computed using similar
fast methods [83], making them scalable to high-dimensional data. There are a
number of excellent books on wavelets [475, 523, 707], in addition to the pri-
mary references [192, 474].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.6. WAVELETS AND MULTI-RESOLUTION ANALYSIS 103

The basic idea in wavelet analysis is to start with a function ψ(t), known as
the mother wavelet, and generate a family of scaled and translated versions of
the function:

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
. (2.65)

The parameters a and b are responsible for scaling and translating the function
ψ, respectively. For example, one can imagine choosing a and b to scale and
translate a function to fit in each of the segments in Fig. 2.23(d). If these func-
tions are orthogonal, then the basis may be used for projection, as in the Fourier
transform.

The simplest and earliest example of a wavelet is the Haar wavelet, devel-
oped in 1910 [307]:

ψ(t) =

1 for 0 ≤ t < 1/2,
−1 for 1/2 ≤ t < 1,

0 otherwise.
(2.66)

The three Haar wavelets, ψ1,0, ψ1/2,0, and ψ1/2,1/2, are shown in Fig. 2.26, repre-
senting the first two layers of the multi-resolution in Fig. 2.23(d). Notice that
by choosing each higher frequency layer as a bisection of the next layer down,
the resulting Haar wavelets are orthogonal, providing a hierarchical basis for a
signal.

The orthogonality property of wavelets described above is critical for the
development of the discrete wavelet transform (DWT) below. However, we be-
gin with the continuous wavelet transform (CWT), which is given by

Wψ(f)(a, b) = 〈f, ψa,b〉 =

∫ ∞

−∞
f(t)ψ̄a,b(t) dt, (2.67)

where ψ̄a,b denotes the complex conjugate of ψa,b. This is only valid for functions
ψ(t) that satisfy the boundedness property that

Cψ =

∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω <∞. (2.68)

The inverse continuous wavelet transform (iCWT) is given by

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Wψ(f)(a, b)ψa,b(t)

1

a2
da db. (2.69)

New wavelets may also be generated by the convolution ψ∗φ if ψ is a wave-
let and φ is a bounded and integrable function. There are many other popular
mother wavelets ψ beyond the Haar wavelet, designed to have various proper-
ties. For example, the Mexican hat wavelet is given by

ψ(t) = (1− t2)e−t
2/2, (2.70a)

ψ̂(ω) =
√

2π ω2e−ω
2/2. (2.70b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

104 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

0 0.25 0.5 0.75 1

-1

0

1

0 0.25 0.5 0.75 1

-1

0

1

0 0.25 0.5 0.75 1

-1

0

1

t

ψ 1
2
, 1
2

ψ 1
2
,0

ψ1,0

Figure 2.26: Three Haar wavelets for the first two levels of the multi-resolution
in Fig. 2.23(d).

Discrete Wavelet Transform

As with the Fourier transform and Gabor transform, when computing the wave-
let transform on data, it is necessary to introduce a discretized version. The
discrete wavelet transform (DWT) is given by

Wψ(f)(j, k) = 〈f, ψj,k〉 =

∫ ∞

−∞
f(t)ψ̄j,k(t) dt, (2.71)

where ψj,k(t) is a discrete family of wavelets

ψj,k(t) =
1

aj
ψ

(
t− kb
aj

)
. (2.72)

Again, if this family of wavelets is orthogonal, as in the case of the discrete Haar
wavelets described above, it is possible to expand a function f(t) uniquely in
this basis:

f(t) =
∞∑

j,k=−∞
〈f(t), ψj,k(t)〉ψj,k(t). (2.73)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.7. TWO-DIMENSIONAL TRANSFORMS AND IMAGE PROCESSING 105

The explicit computation of a DWT is somewhat involved, and is the sub-
ject of several excellent papers and texts [192, 474, 475, 523, 707]. However, the
goal here is not to provide computational details, but rather to give a high-level
idea of what the wavelet transform accomplishes. By scaling and translating a
given shape across a signal, it is possible to efficiently extract multi-scale struc-
tures in an efficient hierarchy that provides an optimal tradeoff between time
and frequency resolution. This general procedure is widely used in audio and
image processing, compression, scientific computing, and machine learning, to
name a few examples.

2.7 Two-Dimensional Transforms and Image Process-
ing

Although we analyzed both the Fourier transform and the wavelet transform
on one-dimensional signals, both methods readily generalize to higher spatial
dimensions, such as two-dimensional and three-dimensional signals. Both the
Fourier and wavelet transforms have had tremendous impact on image pro-
cessing and compression, which provides a compelling example to investigate
higher-dimensional transforms.

Two-Dimensional Fourier Transform for Images

The two-dimensional (2D) Fourier transform of a matrix of data X ∈ Rn×m is
achieved by first applying the one-dimensional (1D) Fourier transform to every
row of the matrix, and then applying the 1D Fourier transform to every column
of the intermediate matrix. This sequential row-wise and column-wise Fourier
transform is shown in Fig. 2.27. Switching the order of taking the Fourier trans-
form of rows and columns does not change the result.

It is simple to compute the 2D FFT in MATLAB

>> fhat = fft2(f); % 2D FFT
>> f = ifft2(fhat); % 2D Inverse FFT

and in Python

>>> fhat = np.fft.fft2(f); # 2D FFT
>>> f = np.fft.ifft2(fhat); # 2D Inverse FFT

A code to compute the 2D Fourier transform via 1D row-wise and column-wise
FFTs is provided on the book’s GitHub.

The two-dimensional FFT is effective for image compression, as many of the
Fourier coefficients are small and may be neglected without loss in image qual-
ity. Thus, only a few large Fourier coefficients must be stored and transmitted.
Code 2.11 and Fig. 2.28 demonstrate the FFT for image compression.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

106 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

FFT all rows FFT all columns 2D FFT

Figure 2.27: Schematic of 2D FFT. First, the FFT is taken of each row, and then
the FFT is taken of each column of the resulting transformed matrix.

Code 2.11: [MATLAB] Image compression via the FFT.
Bt=fft2(B); % B is grayscale image from above
Btsort = sort(abs(Bt(:))); % Sort by magnitude

% Zero out all small coefficients and inverse transform
for keep=[.1 .05 .01 .002];

thresh = Btsort(floor((1-keep)*length(Btsort)));
ind = abs(Bt)>thresh; % Find small indices
Atlow = Bt.*ind; % Threshold small indices
Alow=uint8(ifft2(Atlow)); % Compressed image
figure, imshow(Alow) % Plot Reconstruction

end

Code 2.11: [Python] Image compression via the FFT.
Bt = np.fft.fft2(B)
Btsort = np.sort(np.abs(Bt.reshape(-1))) # sort by magnitude

Zero out all small coefficients and inverse transform
for keep in (0.1, 0.05, 0.01, 0.002):

thresh = Btsort[int(np.floor((1-keep)*len(Btsort)))]
ind = np.abs(Bt)>thresh # Find small indices
Atlow = Bt * ind # Threshold small indices
Alow = np.fft.ifft2(Atlow).real # Compressed image
plt.imshow(Alow,cmap=’gray’)

Finally, the FFT is extensively used for de-noising and filtering signals, as it
is straightforward to isolate and manipulate particular frequency bands. Code 2.12

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.7. TWO-DIMENSIONAL TRANSFORMS AND IMAGE PROCESSING 107

Full image 5.0% of FFT

1.0% of FFT 0.2% of FFT

Figure 2.28: Compressed image using various thresholds to keep 5%, 1%, and
0.2% of the largest Fourier coefficients.

and Fig. 2.29 demonstrate the use of an FFT threshold filter to de-noise an im-
age with Gaussian noise added. In this example, it is observed that the noise
is especially pronounced in high-frequency modes, and we therefore zero-out
any Fourier coefficient outside of a given radius containing low frequencies.

Code 2.12: [MATLAB] Image de-noising via the FFT.
Bnoise = B + uint8(200*randn(size(B))); % Add some noise
Bt=fft2(Bnoise);
F = log(abs(Btshift)+1); % Put FFT on log-scale

[nx,ny] = size(B);
[X,Y] = meshgrid(-ny/2+1:ny/2,-nx/2+1:nx/2);

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

108 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

Noisy image Noisy FFT

Filtered image Filtered FFT

Figure 2.29: De-noising an image by eliminating high-frequency Fourier coeffi-
cients outside of a given radius (bottom right).

R2 = X.ˆ2+Y.ˆ2;
ind = R2<150ˆ2;
Btshiftfilt = Btshift.*ind;
Ffilt = log(abs(Btshiftfilt)+1); % Put FFT on log-scale

Btfilt = ifftshift(Btshiftfilt);
Bfilt = ifft2(Btfilt);

Code 2.12: [Python] Image de-noising via the FFT.
Bnoise = B + 200*np.random.randn(*B.shape).astype(’uint8’)
Bt = np.fft.fft2(Bnoise)
Btshift = np.fft.fftshift(Bt)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.7. TWO-DIMENSIONAL TRANSFORMS AND IMAGE PROCESSING 109

DWT

Figure 2.30: Illustration of three-level discrete wavelet transform.

F = np.log(np.abs(Btshift)+1) # Put FFT on log scale

nx,ny = B.shape
X,Y = np.meshgrid(np.arange(-ny/2+1,ny/2+1),np.arange(-nx

/2+1,nx/2+1))
R2 = np.power(X,2) + np.power(Y,2)
ind = R2 < 150**2
Btshiftfilt = Btshift * ind
Ffilt = np.log(np.abs(Btshiftfilt)+1) # Put FFT on log scale

Two-Dimensional Wavelet Transform for Images

Similar to the FFT, the discrete wavelet transform is extensively used for image
processing and compression. Code 2.13 computes the wavelet transform of an
image, and the first three levels are illustrated in Fig. 2.30. In this figure, the
hierarchical nature of the wavelet decomposition is seen. The upper left corner
of the DWT image is a low-resolution version of the image, and the subsequent
features add fine details to the image.

Code 2.13: [MATLAB] Example of a two-level wavelet decomposition.
%% Wavelet decomposition (2 level)
n = 2; w = ’db1’; [C,S] = wavedec2(B,n,w);

% LEVEL 1

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

110 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

A1 = appcoef2(C,S,w,1); % Approximation
[H1 V1 D1] = detcoef2(’a’,C,S,k); % Details
A1 = wcodemat(A1,128);
H1 = wcodemat(H1,128);
V1 = wcodemat(V1,128);
D1 = wcodemat(D1,128);

% LEVEL 2
A2 = appcoef2(C,S,w,1); % Approximation
[H2 V2 D2] = detcoef2(’a’,C,S,k); % Details
A2 = wcodemat(A2,128);
H2 = wcodemat(H2,128);
V2 = wcodemat(V2,128);
D2 = wcodemat(D2,128);

dec2 = [A2 H2; V2 D2];
dec1 = [imresize(dec2,size(H1)) H1 ; V1 D1];
image(dec1);

Code 2.13: [Python] Example of a two-level wavelet decomposition.
import pywt

Wavelet decomposition (2 level)
n = 2
w = ’db1’
coeffs = pywt.wavedec2(B,wavelet=w,level=n)

normalize each coefficient array
coeffs[0] /= np.abs(coeffs[0]).max()
for detail_level in range(n):

coeffs[detail_level + 1] = [d/np.abs(d).max() for d in
coeffs[detail_level + 1]]

arr, coeff_slices = pywt.coeffs_to_array(coeffs)
plt.imshow(arr,cmap=’gray’,vmin=-0.25,vmax=0.75)

Figure 2.31 shows several versions of the compressed image for various
compression ratios, as computed by Code 2.14. The hierarchical representation
of data in the wavelet transform is ideal for image compression. Even with an
aggressive truncation, retaining only 0.5% of the DWT coefficients, the coarse
features of the image are retained. Thus, when transmitting data, even if band-
width is limited and much of the DWT information is truncated, the most im-
portant features of the data are transferred.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.7. TWO-DIMENSIONAL TRANSFORMS AND IMAGE PROCESSING 111

Full image 5.0% of wavelets

1.0% of wavelets 0.5% of wavelets

Figure 2.31: Compressed image using various thresholds to keep 5%, 1%, and
0.5% of the largest wavelet coefficients.

Code 2.14: [MATLAB] Wavelet decomposition for image compression.
[C,S] = wavedec2(B,4,’db1’);
Csort = sort(abs(C(:))); % Sort by magnitude

for keep = [.1 .05 .01 .005]
thresh = Csort(floor((1-keep)*length(Csort)));
ind = abs(C)>thresh;
Cfilt = C.*ind; % Threshold small indices

% Plot Reconstruction
Arecon=uint8(waverec2(Cfilt,S,’db1’));

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

112 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

figure, imagesc(uint8(Arecon))
end

Code 2.14: [Python] Wavelet decomposition for image compression.
n = 4
w = ’db1’
coeffs = pywt.wavedec2(B,wavelet=w,level=n)

coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)

Csort = np.sort(np.abs(coeff_arr.reshape(-1)))

for keep in (0.1, 0.05, 0.01, 0.005):
thresh = Csort[int(np.floor((1-keep)*len(Csort)))]
ind = np.abs(coeff_arr) > thresh
Cfilt = coeff_arr * ind # Threshold small indices

coeffs_filt = pywt.array_to_coeffs(Cfilt,coeff_slices,
output_format=’wavedec2’)

Plot reconstruction
Arecon = pywt.waverec2(coeffs_filt,wavelet=w)
plt.imshow(Arecon.astype(’uint8’),cmap=’gray’)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.7. TWO-DIMENSIONAL TRANSFORMS AND IMAGE PROCESSING 113

Suggested Reading

Texts

(1) The analytical theory of heat, by J.-B. J. Fourier, 1978 [249].

(2) A wavelet tour of signal processing, by S. Mallat, 1999 [475].

(3) Spectral methods in MATLAB, by L. N. Trefethen, 2000 [710].

Papers and reviews

(1) An algorithm for the machine calculation of complex Fourier series, by
J. W. Cooley and J. W. Tukey, Mathematics of Computation, 1965 [182].

(2) The wavelet transform, time–frequency localization and signal analysis,
by I. Daubechies, IEEE Transactions on Information Theory, 1990 [192].

(3) An industrial strength audio search algorithm, by A. Wang et al., Ismir,
2003 [740].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

114 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

Homework

Exercise 2-1. Load the image dog.jpg and convert to grayscale. Use the FFT to
compress the image at different compression ratios. Plot the error between the
compressed and actual image as a function of the compression ratio.

Exercise 2-2. Consider the following triangular wave:

−2 −1 0 1 2

0

0.5

1

f(x) =

0 for x < −1,
1− |x| for |x| ≤ 1,
0 for 1 < x.

Compute the Fourier series by hand for the domain −2 ≤ x < 2. Plot the mode
coefficients an and bn for the first 100 cosine and sine modes (i.e., for the first
n = 1 to n = 100). Also, plot the approximation using n = 10 modes on top of
the true triangle wave.

In a few sentences, explain the difference between the Fourier transform and
the Fourier series.

Exercise 2-3. Use the FFT to solve the Korteweg–de Vries (KdV) equation,

ut + uxxx − uux = 0,

on a large domain with an initial condition u(x, 0) = sech(x). Plot the evolution.

Exercise 2-4. Use the FFT to solve the Kuramoto–Sivashinsky (KS) equation,

ut + uxx + uxxxx + 1
2
u2
x = 0,

on a large domain with an initial condition u(x, 0) = sech(x). Plot the evolution.

Exercise 2-5. Solve for the analytic equilibrium temperature distribution using
the 2D Laplace equation on an L × H sized rectangular domain with the fol-
lowing boundary conditions.

(a) Left: ux(0, y) = 0 (insulating).

(b) Bottom: u(x, 0) = 0 (fixed temperature).

(c) Top: u(x,H) = f(x) (zero temperature).

(d) Right: ux(L, y) = 0 (insulating).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.7. TWO-DIMENSIONAL TRANSFORMS AND IMAGE PROCESSING 115

ux(0, y) = 0

u(x, 0) = 0

u(x,H) = f(x)

ux(L, y) = 0∇2u = 0

Solve for a general boundary temperature f(x). Also solve for a particular tem-
perature distribution f(x); you may choose any non-constant distribution you
like.

How would this change if the left and right boundaries were fixed at zero tem-
perature? (You do not have to solve this new problem, just explain in words
what would change.)

Exercise 2-6. Now, compute the solution to the 2D heat equation on a circular
disk through simulation. Recall that the heat equation is given by

ut = α2∇2u.

For this problem, we will solve the heat equation using a finite-difference scheme
on a Cartesian grid. We will use a grid of 300× 300 with the circular disk in the
center. The radius of the circle is r = 1, α = 1, and the domain is [−1.5, 1.5] in x
and [−1.5, 1.5] in y. You can impose the boundary conditions by enforcing the
temperature at points that are outside of the disk at the beginning of each new
time-step. It should be easy to find points that are outside the disk, because
they satisfy x2 + y2 > 1.

Simulate the unsteady heat equation for the following boundary conditions:

(a) The left half of the boundary of the disk is fixed at a temperature of u = 1
and the right half of the boundary is fixed at u = 2. Try simulating this
with zero initial conditions first. Next, try initial conditions inside the disk
where the top half is u = −1 and the bottom half is u = 1.

(b) The temperature at the boundary of the disk is fixed at u(θ) = cos(θ).

Include your code and show some plots of your solutions to the heat equation.
Plot the temperature distribution for each case (1) early on in the diffusion pro-
cess, (2) near steady state, and (3) somewhere in the middle.

Exercise 2-7. Consider the PDE for a vibrating string of finite length L,

utt = c2uxx, 0 ≤ x ≤ L,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

116 CHAPTER 2. FOURIER AND WAVELET TRANSFORMS

with the initial conditions

u(x, 0) = 0, ut(x, 0) = 0,

and boundary conditions

u(0, t) = 0, ux(L, t) = f(t).

Solve this PDE by using the Laplace transform. You may keep your solution
in the frequency domain, since the inverse transform is complicated. Please
simplify as much as possible using functions like sinh and cosh.

This PDE cannot be solved by separation of variables. Why not? (That is, try to
solve with separation of variables until you hit a contradiction.)

Exercise 2-8 [MATLAB]. Now, we will use the FFT to simultaneously compress
and re-master an audio file. Please download the file r2112.mat and load the
audio data into the matrix rush and the sample rate FS.

(a) Listen to the audio signal (>>sound(rush,FS);). Compute the FFT of
this audio signal.

(b) Compute the power spectral density vector. Plot this to see what the out-
put looks like. Also plot the spectrogram.

(c) Now, download r2112noisy.mat and load this file to initialize the
variable rushnoisy. This signal is corrupted with high-frequency
artifacts. Manually zero the last three-quarters of the Fourier compo-
nents of this noisy signal (if n=length(rushnoisy), then zero-
out all Fourier coefficients from n/4:n). Use this filtered
frequency spectrum to reconstruct the clean audio signal. When recon-
structing, be sure to take the real part of the inverse Fourier
transform: cleansignal=real(ifft(filteredcoefs));.

Because we are only keeping the first quarter of the frequency data, you
must multiply the reconstructed signal by 2 so that it has the correct nor-
malized power. Be sure to use the sound command to listen to the pre-
and post-filtered versions. Plot the power spectral density and spectro-
grams of the pre- and post-filtered signals.

Exercise 2-9. The convolution integral and the impulse response may be used
to simulate how an audio signal would sound under various conditions, such
as in a long hallway, in a concert hall, or in a swimming pool.

The basic idea is that you can record the audio response to an impulsive sound
in a given location, like a concert hall. For example, imagine that you put a

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

2.7. TWO-DIMENSIONAL TRANSFORMS AND IMAGE PROCESSING 117

microphone in the most expensive seats in the hall and then record the sound
from a shotgun blast up on the stage. (Do not try this!!) Then, if you have a
“flat” studio recording of some other audio, you can simulate how it would
have sounded in the concert hall by convolving the two signals.

Download and unzip sounds.zip to find various sounds and impulse-response
filters. Convolve the various audio files (labeled sound1.wav, ...) with the vari-
ous filters (labeled FilterXYZ.wav, ...). In MATLAB, use the wavread command
to load and the conv command to convolve. It is best to add 10% of the fil-
tered audio (also known as “wet” audio) to 90% of the original audio (also
known as “dry” audio). Listen to the filtered audio, as well as the original au-
dio and the impulse-response filters (note that each sound has a sampling rate
of FS=11,025). However, you will need to be careful when adding the 10%
filtered and 90% unfiltered signals, since the filtered audio will not necessarily
have the same length as the filtered audio.

There is a great video explaining how to actually create these impulse responses:
http://www.audioease.com/Pages/Altiverb/sampling.php

Exercise 2-10. Verify the following properties of the Laplace transform.

(a) Exponential: L(eλt) =
1

s− λ .

(b) Linearity: L(af(t) + bf(t)) = af̄(s) + bf̄(s) for all constants a, b ∈ C.

(c) Convolution: L(f(t) ∗ g(t)) = L(f(t))L(g(t)) = f̄(s)ḡ(s).

(d) Constant: L(1) =
1

s
.

(e) Delta function: L(δ(t)) = 1.

Exercise 2-11. Use the Laplace transform to solve for the general solution to
(2.62) for arbitrary a, b, x0, and v0.

Show how this solution changes when the system is forced with u(t):

ẍ+ aẋ+ bx = u(t).

What if u(t) = δ(t)? What if u(t) = 1 for t > 0?

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://www.audioease.com/Pages/Altiverb/sampling.php

Chapter 3

Sparsity and Compressed Sensing

The inherent structure observed in natural data implies that the data admits
a sparse representation in an appropriate coordinate system. In other words,
if natural data is expressed in a well-chosen basis, only a few parameters are
required to characterize the modes that are active, and in what proportion. All
of data compression relies on sparsity, whereby a signal is represented more
efficiently in terms of the sparse vector of coefficients in a generic transform
basis, such as Fourier or wavelet bases. Recent fundamental advances in math-
ematics have turned this paradigm upside down. Instead of collecting a high-
dimensional measurement and then compressing, it is now possible to acquire
compressed measurements and solve for the sparsest high-dimensional signal
that is consistent with the measurements. This so-called compressed sensing is
a valuable new perspective that is also relevant for complex systems in engi-
neering, with potential to revolutionize data acquisition and processing. In this
chapter, we discuss the fundamental principles of sparsity and compression as
well as the mathematical theory that enables compressed sensing, all worked
out on motivating examples.

Our discussion on sparsity and compressed sensing will necessarily involve
the critically important fields of optimization and statistics. Sparsity is a use-
ful perspective to promote parsimonious models that avoid overfitting and re-
main interpretable because they have the minimal number of terms required
to explain the data. This is related to Occam’s razor, which states that the sim-
plest explanation is generally the correct one. Sparse optimization is also useful
for adding robustness with respect to outliers and missing data, which gener-
ally skew the results of least-squares regression, such as the SVD. The topics
in this chapter are closely related to randomized linear algebra discussed in
Section 1.8, and they will also be used in several subsequent chapters. Sparse
regression will be explored further in Chapter 4 and will be used in Section 7.3
to identify interpretable and parsimonious nonlinear dynamical systems mod-
els from data.

118

3.1. SPARSITY AND COMPRESSION 119

3.1 Sparsity and Compression

Most natural signals, such as images and audio, are highly compressible. This
compressibility means that, when the signal is written in an appropriate basis,
only a few modes are active, thus reducing the number of values that must be
stored for an accurate representation. Said another way, a compressible signal
x ∈ Rn may be written as a sparse vector s ∈ Rn (containing mostly zeros) in a
transform basis Ψ ∈ Rn×n:

x = Ψs. (3.1)

Specifically, the vector s is called K-sparse in Ψ if there are exactly K non-zero
elements. If the basis Ψ is generic, such as the Fourier or wavelet basis, then
only the few active terms in s are required to reconstruct the original signal x,
reducing the data required to store or transmit the signal.

Images and audio signals are both compressible in Fourier or wavelet bases,
so that after taking the Fourier or wavelet transform, most coefficients are small
and may be set exactly equal to zero with negligible loss of quality. These few
active coefficients may be stored and transmitted, instead of the original high-
dimensional signal. Then, to reconstruct the original signal in the ambient space
(i.e., in pixel space for an image), one need only take the inverse transform. As
discussed in Chapter 2, the fast Fourier transform is the enabling technology
that makes it possible to efficiently reconstruct an image x from the sparse co-
efficients in s. This is the foundation of JPEG compression for images and MP3
compression for audio.

The Fourier modes and wavelets are generic or universal bases, in the sense
that nearly all natural images or audio signals are sparse in these bases. There-
fore, once a signal is compressed, one needs only to store or transmit the sparse
vector s rather than the entire matrix Ψ, since the Fourier and wavelet trans-
forms are already hard-coded on most machines. In Chapter 1 we found that it
is also possible to compress signals using the SVD, resulting in a tailored basis.
In fact, there are two ways that the SVD can be used to compress an image:
(1) we may take the SVD of the image directly and only keep the dominant
columns of U and V (Section 1.2): or (2) we may represent the image as a lin-
ear combination of eigen-images, as in the eigenfaces example (Section 1.6). The
first option is relatively inefficient, as the basis vectors U and V must be stored.
However, in the second case, a tailored basis U may be computed and stored
once, and then used to compress an entire class of images, such as human faces.
This tailored basis has the added advantage that the modes are interpretable
as correlation features that may be useful for learning. It is important to note
that both the Fourier basis F and the SVD basis U are unitary transformations,
which will become important in the following sections.

Although the majority of compression theory has been driven by audio,
image, and video applications, there are many implications for engineering

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

120 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

systems. The solution to a high-dimensional system of differential equations
typically evolves on a low-dimensional manifold, indicating the existence of
coherent structures that facilitate sparse representation. Even broadband phe-
nomena, such as turbulence, may be instantaneously characterized by a sparse
representation. This has a profound impact on how to sense and compute, as
will be described throughout this chapter and the remainder of the book.

Example: Image Compression

Compression is relatively simple to implement on images, as described in Sec-
tion 2.7 and revisited here (see Fig. 3.1 and Code 3.1).

Code 3.1: [MATLAB] Image compression based on the FFT.
A=imread(’../CODE_DATA/CH03/jelly’, ’jpeg’); % Load image
B=rgb2gray(A); % Convert image to grayscale
imshow(B) % Plot image

%% Compute the FFT of image using fft2
Bhat=fft2(B);

%% Zero out all small coefficients and inverse transform
Bhatsort = sort(abs(Bhat(:)));
keep = 0.05;
thresh = Bhatsort(floor((1-keep)*length(Bhatsort)));
ind = abs(Bhat)>thresh;
Bhatcompressed = Bhat.*ind;
Bcompressed=uint8(ifft2(Bhatcompressed));

Code 3.1: [Python] Image compression based on the FFT.
A = imread(os.path.join(’..’,’DATA’,’jelly.jpg’))
B = np.mean(A, -1); # Convert RGB to grayscale
plt.imshow(B,cmap=’gray’)

Compute FFT of image using fft2
Bhat = np.fft.fft2(B)

Zero out all small coefficients and inverse transform
Bhatsort = np.sort(np.abs(np.reshape(Bhat,-1)))
keep = 0.05
thresh = Bhatsort[int(np.floor((1-keep)*len(Bhatsort)))]
ind = np.abs(Bhat) > thresh
Bhatcompress = Bhat * ind
Bcompress = np.fft.ifft2(Bhatcompress).astype(’uint8’)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.1. SPARSITY AND COMPRESSION 121

Full image Fourier coefficients

Compressed image

F

Truncate
(keep 5 %)

F−1

Figure 3.1: Illustration of compression with the fast Fourier transform (FFT) F .

To understand the role of the sparse Fourier coefficients in a compressed
image, it helps to view the image as a surface, where the height of a point is
given by the brightness of the corresponding pixel. This is shown in Fig. 3.2.
Here we see that the surface is relatively simple, and may be represented as a
sum of a few spatial Fourier modes.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

122 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

Figure 3.2: Compressed image (left), and viewed as a surface (right).

Why Signals Are Compressible: the Vastness of Image Space

It is important to note that the compressibility of images is related to the over-
whelming dimensionality of image space. For even a simple 20×20 pixel black-
and-white image, there are 2400 distinct possible images, which is larger than
the number of nucleons in the known universe. The number of images is con-
siderably more staggering for higher-resolution images with greater color depth.

In the space of one megapixel images (i.e., 1000 × 1000 pixels), there is an
image of us each being born, of me typing this sentence, and of you reading it.
However vast the space of these natural images, they occupy a tiny, minuscule
fraction of the total image space. The majority of the images in image space
represent random noise, resembling television static. For simplicity, consider
grayscale images, and imagine drawing a random number for the gray value
of each of the pixels. With exceedingly high probability, the resulting image
will look like noise, with no apparent significance. You could draw these ran-
dom images for an entire lifetime and never find an image of a mountain, or a
person, or anything physically recognizable.1

1The vastness of signal space was described in Borges’s “The Library of Babel” in 1944,
where he describes a library containing all possible books that could be written, of which actual
coherent books occupy a nearly immeasurably small fraction [97]. In Borges’s library, there are
millions of copies of this very book, with variations on this single sentence. Another famous
variation on this theme considers that, given enough monkeys typing on enough typewriters,
one would eventually recreate the works of Shakespeare. One of the oldest related descriptions
of these combinatorially large spaces dates back to Aristotle.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.2. COMPRESSED SENSING 123

Figure 3.3: Illustration of the vastness of image (pixel) space, with natural im-
ages occupying a vanishingly small fraction of the space.

In other words, natural images are extremely rare in the vastness of image
space, as illustrated in Fig. 3.3. Because so many images are unstructured or
random, most of the dimensions used to encode images are only necessary for
these random images. These dimensions are redundant if all we cared about
was encoding natural images. An important implication is that the images we
care about (i.e., natural images) are highly compressible, if we find a suitable
transformed basis where the redundant dimensions are easily identified.

3.2 Compressed Sensing

Despite the considerable success of compression in real-world applications, it
still relies on having access to full high-dimensional measurements. The recent
advent of compressed sensing [53, 54, 151, 152, 153, 154, 156, 157, 204] turns the
compression paradigm upside down: instead of collecting high-dimensional
data just to compress and discard most of the information, it is instead pos-
sible to collect surprisingly few compressed or random measurements and then
infer what the sparse representation is in the transformed basis. The idea be-
hind compressed sensing is relatively simple to state mathematically, but, un-
til recently, finding the sparsest vector consistent with measurements was a
non-polynomial (NP) hard problem. The rapid adoption of compressed sensing
throughout the engineering and applied sciences rests on the solid mathemat-
ical framework2 that provides conditions for when it is possible to reconstruct
the full signal with high probability using convex algorithms.

2Interestingly, the incredibly important collaboration between Emmanuel Candès and Ter-
rance Tao began with them discussing the odd properties of signal reconstruction at their kids’
daycare.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

124 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

Mathematically, compressed sensing exploits the sparsity of a signal in a
generic basis to achieve full signal reconstruction from surprisingly few mea-
surements. If a signal x is K-sparse in Ψ, then instead of measuring x directly
(n measurements) and then compressing, it is possible to collect dramatically
fewer randomly chosen or compressed measurements and then solve for the
non-zero elements of s in the transformed coordinate system. The measure-
ments y ∈ Rp, with K < p� n are given by

y = Cx. (3.2)

The measurement matrix3 C ∈ Rp×n represents a set of p linear measurements
on the state x. The choice of measurement matrix C is of critical importance in
compressed sensing, and is discussed in Section 3.4. Typically, measurements
may consist of random projections of the state, in which case the entries of C
are Gaussian or Bernoulli distributed random variables. It is also possible to
measure individual entries of x (i.e., single pixels if x is an image), in which
case C consists of random rows of the identity matrix.

With knowledge of the sparse vector s, it is possible to reconstruct the signal
x from (3.1). Thus, the goal of compressed sensing is to find the sparsest vector
s that is consistent with the measurements y:

y = CΨs = Θs. (3.3)

The system of equations in (3.3) is under-determined since there are infinitely
many consistent solutions s. The sparsest solution ŝ satisfies the following opti-
mization problem:

ŝ = argmin
s
‖s‖0 subject to y = CΨs, (3.4)

where ‖ · ‖0 denotes the `0-pseudo-norm, given by the number of non-zero en-
tries; this is also referred to as the cardinality of s.

The optimization in (3.4) is non-convex, and in general the solution can only
be found with a brute-force search that is combinatorial in n and K. In partic-
ular, all possible K-sparse vectors in Rn must be checked; if the exact level of
sparsity K is unknown, the search is even broader. Because this search is com-
binatorial, solving (3.4) is intractable for even moderately large n and K, and
the prospect of solving larger problems does not improve with Moore’s law of
exponentially increasing computational power.

Fortunately, under certain conditions on the measurement matrix C, it is
possible to relax the optimization in (3.4) to a convex `1-minimization [157, 204]:

ŝ = argmin
s
‖s‖1 subject to y = CΨs, (3.5)

3In the compressed sensing literature, the measurement matrix is often denoted Φ; instead,
we use C to be consistent with the output equation in control theory. Also, Φ is already used
to denote DMD modes in Chapter 7.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.2. COMPRESSED SENSING 125

y C Ψ s

=

Figure 3.4: Schematic of measurements in the compressed sensing framework.

where ‖ · ‖1 is the `1-norm, given by

‖s‖1 =
n∑

k=1

|sk|. (3.6)

The `1-norm is also known as the taxicab or Manhattan norm because it repre-
sents the distance a taxi would take between two points on a rectangular grid.
The overview of compressed sensing is shown schematically in Fig. 3.4. The
`1-minimum-norm solution is sparse, while the `2-minimum-norm solution is
not, as shown in Fig. 3.5.

There are very specific conditions that must be met for the `1-minimization
in (3.5) to converge with high probability to the sparsest solution in (3.4) [53,
151, 156]. These will be discussed in detail in Section 3.4, although they may be
summarized as follows.

(a) The measurement matrix C must be incoherent with respect to the spar-
sifying basis Ψ, meaning that the rows of C are not correlated with the
columns of Ψ.

(b) The number of measurements p must be sufficiently large, on the order of

p ≈ O(K log(n/K)) ≈ k1K log(n/K). (3.7)

The constant multiplier k1 depends on how incoherent C and Ψ are.

Roughly speaking, these two conditions guarantee that the matrix CΨ acts as a
unitary transformation on K-sparse vectors s, preserving relative distances be-
tween vectors and enabling almost certain signal reconstruction with `1 convex

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

126 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

y Θ s y Θ s

= =

(a) Sparse s (`1) (b) Least-squares s (`2)

Figure 3.5: The `1- and `2-minimum-norm solutions to the compressed sensing
problem. The difference in solutions for this regression is further considered in
Chapter 4.

minimization. This is formulated precisely in terms of the restricted isometry
property (RIP) in Section 3.4.

The idea of compressed sensing may be counter-intuitive at first, especially
given classical results on sampling requirements for exact signal reconstruction.
For instance, the Shannon–Nyquist sampling theorem [536, 653] states that per-
fect signal recovery requires that it is sampled at twice the rate of the highest
frequency present. However, this result only provides a strict bound on the re-
quired sampling rate for signals with broadband frequency content. Typically,
the only signals that are truly broadband are those that have already been com-
pressed. Since an uncompressed signal will generally be sparse in a transform
basis, the Shannon–Nyquist theorem may be relaxed, and the signal may be re-
constructed with considerably fewer measurements than given by the Nyquist
rate. However, even though the number of measurements may be decreased,
compressed sensing does still rely on precise timing of the measurements, as we
will see. Moreover, the signal recovery via compressed sensing is not strictly
speaking guaranteed, but is instead possible with high probability, making it
foremost a statistical theory. However, the probability of successful recovery
becomes astronomically large for moderate-sized problems.

Disclaimer

A rough schematic of compressed sensing is shown in Fig. 3.6. However, this
schematic is a dramatization, and is not actually based on a compressed sensing

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.2. COMPRESSED SENSING 127

Measurements, y Sparse coefficients, s Reconstructed image, x

`1 F−1

Figure 3.6: Schematic illustration of compressed sensing using `1-minimization.
Note that this is a dramatization, and is not actually based on a compressed
sensing calculation. Typically, compressed sensing of images requires a signifi-
cant number of measurements and is computationally prohibitive.

calculation, since using compressed sensing for image reconstruction is com-
putationally prohibitive. It is important to note that for the majority of applica-
tions in imaging, compressed sensing is not practicable. However, images are
often still used to motivate and explain compressed sensing because of their
ease of manipulation and our intuition for pictures. In fact, we are currently
guilty of this exact misdirection.

Upon closer inspection of this image example, we are analyzing an im-
age with 1024 × 768 pixels, and approximately 5 % of the Fourier coefficients
are required for accurate compression. This puts the sparsity level at K =
0.05 × 1024 × 768 ≈ 40 000. Thus, a back-of-the-envelope estimate using (3.7),
with a constant multiplier of k1 = 3, indicates that we need p ≈ 350 000 mea-
surements, which is about 45 % of the original pixels. Even if we had access to
these 45 % random measurements, inferring the correct sparse vector of Fourier
coefficients is computationally prohibitive, much more so than the efficient
FFT-based image compression in Section 3.1.

Compressed sensing for images is typically only used in special cases where
a reduction of the number of measurements is significant. For example, an early
application of compressed sensing technology was for infant MRI (magnetic
resonance imaging), where reduction of the time a child must be still could
reduce the need for dangerous heavy sedation.

However, it is easy to see that the number of measurements p scales with the
sparsity level K, so that if the signal is more sparse, then fewer measurements
are required. The viewpoint of sparsity is still valuable, and the mathematical
innovation of the convex relaxation of combinatorially hard `0 problems to con-
vex `1 problems may be used much more broadly than for compressed sensing
of images.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

128 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

Alternative Formulations

In addition to the `1-minimization in (3.5), there are alternative approaches
based on greedy algorithms [276, 277, 278, 323, 520, 713, 714, 715, 716, 717, 718,
719] that determine the sparse solution of (3.3) through an iterative match-
ing pursuit problem. For instance, the compressed sensing matching pursuit
(CoSaMP) [520] is computationally efficient, easy to implement, and freely avail-
able.

When the measurements y have additive noise, say white noise of magni-
tude ε, there are variants of (3.5) that are more robust:

ŝ = argmin
s
‖s‖1 subject to ‖CΨs− y‖2 < ε. (3.8)

A related convex optimization is the following:

ŝ = argmin
s
‖CΨs− y‖2 + λ‖s‖1, (3.9)

where λ ≥ 0 is a parameter that weights the importance of sparsity. Equations
(3.8) and (3.9) are closely related [716].

3.3 Compressed Sensing Examples

This section explores concrete examples of compressed sensing for sparse sig-
nal recovery. The first example shows that the `1-norm promotes sparsity when
solving a generic under-determined system of equations, and the second exam-
ple considers the recovery of a sparse two-tone audio signal with compressed
sensing.

The `1-norm and Sparse Solutions to an Under-determined Sys-
tem

To see the sparsity-promoting effects of the `1-norm, we consider a generic
under-determined system of equations. We build a matrix system of equations
y = Θs with p = 200 rows (measurements) and n = 1000 columns (unknowns).
In general, there are infinitely many solutions s that are consistent with these
equations, unless we are very unfortunate and the row equations are linearly
dependent while the measurements are inconsistent in these rows. In fact, this
is an excellent example of the probabilistic thinking used more generally in
compressed sensing: if we generate a linear system of equations at random,
that has sufficiently many more unknowns than knowns, then the resulting
equations will have infinitely many solutions with high probability.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.3. COMPRESSED SENSING EXAMPLES 129

0 200 400 600 800 1000

-0.2

0

0.2

0 200 400 600 800 1000

-0.2

0

0.2

-0.1 -0.05 0 0.05 0.1

0

200

400

600

800

1000

-0.1 -0.05 0 0.05 0.1

0

50

100

150

200

250

300

350

400

sj

`1 `2

hi
st

(s
)

Figure 3.7: Comparison of `1-minimum-norm (blue, left) and `2-minimum-
norm (red, right) solutions to an under-determined linear system.

In MATLAB, it is straightforward to solve this under-determined linear sys-
tem for both the minimum `1-norm and minimum `2-norm solutions. The mini-
mum `2-norm solution is obtained using the pseudo-inverse (related to the SVD
from Chapters 1 and 4). The minimum `1-norm solution is obtained via the cvx
(ConVeX) optimization package [293]. Figure 3.7 shows that the `1-minimum
solution is in fact sparse (with most entries being nearly zero), while the `2-
minimum solution is dense, with a bit of energy in each vector coefficient.

Code 3.2: [MATLAB] Solutions to under-determined linear system y = Θs.
% Solve y = Theta * s for "s"
n = 1000; % dimension of s
p = 200; % number of measurements, dim(y)
Theta = randn(p,n);
y = randn(p,1);

% L1 minimum norm solution s_L1
cvx_begin;

variable s_L1(n);
minimize(norm(s_L1,1));
subject to

Theta*s_L1 == y;
cvx_end;

s_L2 = pinv(Theta)*y; % L2 minimum norm solution s_L2

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

130 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

Code 3.2: [Python] Solutions to under-determined linear system y = Θs.
from scipy.optimize import minimize
Solve y = Theta * s for "s"
n = 1000 # dimension of s
p = 200 # number of measurements, dim(y)
Theta = np.random.randn(p,n)
y = np.random.randn(p)

L1 Minimum norm solution s_L1
def L1_norm(x):

return np.linalg.norm(x,ord=1)

constr = ({’type’: ’eq’, ’fun’: lambda x: Theta @ x - y})
x0 = np.linalg.pinv(Theta) @ y # initialize with L2 solution
res = minimize(L1_norm, x0, method=’SLSQP’,constraints=

constr)
s_L1 = res.x

Recovering an Audio Signal from Sparse Measurements

To illustrate the use of compressed sensing to reconstruct a high-dimensional
signal from a sparse set of random measurements, we consider a signal consist-
ing of a two-tone audio signal:

x(t) = cos(2π × 97t) + cos(2π × 777t). (3.10)

This signal is clearly sparse in the frequency domain, as it is defined by a sum
of exactly two cosine waves. The highest frequency present is 777 Hz, so that
the Nyquist sampling rate is 1554 Hz. However, leveraging the sparsity of the
signal in the frequency domain, we can accurately reconstruct the signal with
random samples that are spaced at an average sampling rate of 128 Hz, which
is well below the Nyquist sampling rate. Figure 3.8 shows the result of com-
pressed sensing, as implemented in Code 3.3. In this example, the full signal is
generated from t = 0 to t = 1 with a resolution of n = 4096 and is then ran-
domly sampled at p = 128 locations in time. The sparse vector of coefficients in
the discrete cosine transform (DCT) basis is solved for using matching pursuit.

Code 3.3: [MATLAB] Compressed sensing of two-tone cosine signal.
%% Generate signal, DCT of signal
n = 4096; % points in high resolution signal
t = linspace(0, 1, n);
x = cos(2* 97 * pi * t) + cos(2* 777 * pi * t);
xt = fft(x); % Fourier transformed signal
PSD = xt.*conj(xt)/n; % Power spectral density

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.3. COMPRESSED SENSING EXAMPLES 131

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

0.26 0.28 0.3

-2

-1

0

1

2

0.26 0.28 0.3

-2

-1

0

1

2

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

Time [s] Frequency [Hz]

x

x

PS
D

PS
D

(a) (b)

(c) (d)

Figure 3.8: Compressed sensing reconstruction of a two-tone audio signal given
by x(t) = cos(2π × 97t) + cos(2π × 777t). The full signal and power spectral
density are shown in panels (a) and (b), respectively. The signal is measured
at random sparse locations in time, demarcated by red points in (a), and these
measurements are used to build the compressed sensing estimate in (c) and
(d). The time series shown in (a) and (c) are a zoom-in of the entire time range,
which is from t = 0 to t = 1.

%% Randomly sample signal
p = 128; % num. random samples, p=n/32
perm = round(rand(p, 1) * n);
y = x(perm); % compressed measurement

%% Solve compressed sensing problem
Psi = dct(eye(n, n)); % build Psi
Theta = Psi(perm, :); % Measure rows of Psi

s = cosamp(Theta,y’,10,1.e-10,10); % CS via matching pursuit
xrecon = idct(s); % reconstruct full signal

Code 3.3: [Python] Compressed sensing of two-tone cosine signal.
from cosamp_fn import cosamp
Generate signal, DCT of signal

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

132 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

n = 4096 # points in high resolution signal
t = np.linspace(0,1,n)
x = np.cos(2 * 97 * np.pi * t) + np.cos(2 * 777 * np.pi * t)
xt = np.fft.fft(x) # Fourier transformed signal
PSD = xt * np.conj(xt) / n # Power spectral density

Randomly sample signal
p = 128 # num. random samples, p = n/32
perm = np.floor(np.random.rand(p) * n).astype(int)
y = x[perm]

Solve compressed sensing problem
Psi = dct(np.identity(n)) # Build Psi
Theta = Psi[perm,:] # Measure rows of Psi
CS via matching pursuit
s = cosamp(Theta,y,10,epsilon=1.e-10,max_iter=10)
xrecon = idct(s) # reconstruct full signal

It is important to note that the p = 128 measurements are randomly cho-
sen from the 4096 resolution signal. Thus, we know the precise timing of the
sparse measurements at a much higher resolution than our sampling rate. If
we chose p = 128 measurements uniformly in time, the compressed sensing
algorithm fails. Specifically, if we compute the PSD directly from these uniform
measurements, the high-frequency signal will be aliased, resulting in erroneous
frequency peaks.

In the compressed sensing matching pursuit (CoSaMP) code, the desired
level of sparsity K must be specified, and this quantity may not be known
ahead of time. The alternative `1-minimization routine does not require knowl-
edge of the desired sparsity level a priori, although convergence to the sparsest
solution relies on having sufficiently many measurements p, which indirectly
depends on K.

3.4 The Geometry of Compression

Compressed sensing can be summarized in a relatively simple statement: A
given signal, if it is sufficiently sparse in a known basis, may be recovered
(with high probability) using significantly fewer measurements than the signal
length, if there are sufficiently many measurements and these measurements
are sufficiently random. Each part of this statement can be made precise and
mathematically rigorous in an overarching framework that describes the geom-
etry of sparse vectors, and how these vectors are transformed through random
measurements. Specifically, enough good measurements will result in a matrix

Θ = CΨ (3.11)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.4. THE GEOMETRY OF COMPRESSION 133

y = Θs

s1

s2

s1

s2

Minimum
“radius” that

intersects y = Θs

Sparse
solution
()s1 = 0

Least-squares
solution

(not sparse)

`1`2

Figure 3.9: Different `p-norms establish different shapes for level sets of con-
stant “radius” or distance from the origin. In the `2-norm, these correspond to
circles, whereas in the `1 case, these are diamonds. The blue line represents the
solution set of an under-determined system of equations y = Θs, and the red
curves represent the minimum-norm level sets that intersect this blue line for
different norms. In the `2-norm, the minimum-norm solution is not sparse, as
it has components of s1 and s2, while in the `1-norm, the solution is sparse, as
s1 = 0.

that preserves the distance and inner product structure of sparse vectors s. In
other words, we seek a measurement matrix C so that Θ acts as a near-isometry
map on sparse vectors. Isometry literally means same distance, and is closely
related to unitarity, which preserves not only distance, but also angles between
vectors. When Θ acts as a near-isometry, it is possible to solve the following
equation for the sparsest vector s using convex `1-minimization:

y = Θs. (3.12)

The remainder of this section describes the conditions on the measurement ma-
trix C that are required for Θ to act as a near-isometry map with high proba-
bility. The geometric properties of various norms are shown in Figs. 3.9 and
3.10.

Determining how many measurements to take is relatively simple. If the
signal isK-sparse in a basis Ψ, meaning that all butK coefficients are zero, then
the number of measurements scales as p ∼ O(K log(n/K)) = k1K log(n/K),
as in (3.7). The constant multiplier k1, which defines exactly how many mea-
surements are needed, depends on the quality of the measurements. Roughly
speaking, measurements are good if they are incoherent with respect to the
columns of the sparsifying basis, meaning that the rows of C have small in-
ner product with the columns of Ψ. If the measurements are coherent with
columns of the sparsifying basis, then a measurement will provide little infor-
mation unless that basis mode happens to be non-zero in s. In contrast, inco-
herent measurements are excited by nearly any active mode, making it possible
to infer the active modes. Delta functions are incoherent with respect to Fourier

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

134 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

`0 `1/3 `1

`2 `4 `∞

Figure 3.10: The minimum-norm point on a line in different `p-norms. The blue
line represents the solution set of an under-determined system of equations,
and the red curves represent the minimum-norm level sets that intersect this
blue line for different norms. In the norms between `0 and `1, the minimum-
norm solution also corresponds to the sparsest solution, with only one coor-
dinate active. In the `2 and higher norms, the minimum-norm solution is not
sparse, but has all coordinates active.

modes, as they excite a broadband frequency response. The more incoherent the
measurements, the smaller the required number of measurements p.

The incoherence of measurements C and the basis Ψ is given by µ(C,Ψ):

µ(C,Ψ) =
√
nmax

j,k
|〈ck,ψj〉|, (3.13)

where ck is the kth row of the matrix C andψj is the jth column of the matrix Ψ.
The incoherence µ will range between 1 and

√
n. The formula for incoherence

above only makes sense when the rows of C and columns of Ψ are normalized
to have unit length.

The Restricted Isometry Property (RIP)

When measurements are incoherent, the matrix CΨ satisfies a restricted isometry
property (RIP) for sparse vectors s,

(1− δK)‖s‖2
2 ≤ ‖CΨs‖2

2 ≤ (1 + δK)‖s‖2
2,

with restricted isometry constant δK [154]. The constant δK is defined as the
smallest number that satisfies the above inequality for all K-sparse vectors s.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.4. THE GEOMETRY OF COMPRESSION 135

(a) Random single pixel (b) Gaussian random

(c) Bernoulli random (d) Sparse random

Figure 3.11: Examples of good random measurement matrices C.

When δK is small, then CΨ acts as a near-isometry on K-sparse vectors s. In
practice, it is difficult to compute δK directly; moreover, the measurement ma-
trix C may be chosen to be random, so that it is more desirable to derive statis-
tical properties about the bounds on δK for a family of measurement matrices
C, rather than to compute δK for a specific C. Generally, increasing the number
of measurements will decrease the constant δK , improving the property of CΨ
to act isometrically on sparse vectors. When there are sufficiently many inco-
herent measurements, as described above, it is possible to accurately determine
the K non-zero elements of the n-length vector s. In this case, there are bounds
on the constant δK that guarantee exact signal reconstruction for noiseless data.
An in-depth discussion of incoherence and the RIP can be found in [53, 154].

Incoherence and Measurement Matrices

Another significant result of compressed sensing is that there are generic sam-
pling matrices C that are sufficiently incoherent with respect to nearly all trans-
form bases. Specifically, Bernoulli and Gaussian random measurement matri-
ces satisfy the RIP for a generic basis Ψ with high probability [153]. There are
additional results generalizing the RIP and investigating incoherence of sparse
matrices [276].

In many engineering applications, it is advantageous to represent the sig-
nal x in a generic basis, such as Fourier or wavelets. One key advantage is that
single-point measurements are incoherent with respect to these bases, exciting
a broadband frequency response. Sampling at random point locations is ap-
pealing in applications where individual measurements are expensive, such as
in ocean monitoring. Examples of random measurement matrices, including
single-pixel, Gaussian, Bernoulli, and sparse random, are shown in Fig. 3.11.

A particularly useful transform basis for compressed sensing is obtained
by the SVD,4 resulting in a tailored basis in which the data is optimally sparse

4The SVD provides an optimal low-rank matrix approximation, and it is used in principal

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

136 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

y C Ψ s

=

y Θ s

=

Figure 3.12: Examples of a bad measurement matrix C.

[42, 112, 113, 136, 420]. A truncated SVD basis may result in a more efficient
signal recovery from fewer measurements. Progress has been made developing
a compressed SVD and PCA based on the Johnson–Lindenstrauss (JL) lemma
[250, 277, 351, 571]. The JL lemma is closely related to the RIP, indicating when
it is possible to embed high-dimensional vectors in a low-dimensional space
while preserving spectral properties.

Bad Measurements

So far we have described how to take good compressed measurements. Fig-
ure 3.12 shows a particularly poor choice of measurements C, corresponding to
the last p columns of the sparsifying basis Ψ. In this case, the product Θ = CΨ
is a p× p identity matrix padded with zeros on the left. In this case, any signal
s that is not active in the last p columns of Ψ is in the null space of Θ, and is
completely invisible to the measurements y. In this case, these measurements

component analysis (PCA) and proper orthogonal decomposition (POD).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.5. SPARSE REGRESSION 137

outlier

‖ · ‖2

‖ · ‖1

Figure 3.13: Least-squares regression is sensitive to outliers (red), while mini-
mum `1-norm regression is robust to outliers (blue).

incur significant information loss for many sparse vectors.

3.5 Sparse Regression

The use of the `1-norm to promote sparsity significantly pre-dates compressed
sensing. In fact, many benefits of the `1-norm were well known and oft used in
statistics decades earlier. In this section, we show that the `1-norm may be used
to regularize statistical regression, both to penalize statistical outliers and also
to promote parsimonious statistical models with as few factors as possible. The
role of `2 versus `1 in regression is further detailed in Chapter 4.

Outlier Rejection and Robustness

Least-squares regression is perhaps the most common statistical model used
for data fitting. However, it is well known that the regression fit may be ar-
bitrarily corrupted by a single large outlier in the data; outliers are weighted
more heavily in least-squares regression because their distance from the fit line
is squared. This is shown schematically in Fig. 3.13.

In contrast, `1-minimum solutions give equal weight to all data points, mak-
ing it potentially more robust to outliers and corrupt data. This procedure is
also known as least absolute deviations (LAD) regression, among other names.
A script demonstrating the use of least-squares (`2) and LAD (`1) regression for
a data set with an outlier is given in Code 3.4.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

138 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

Code 3.4: [MATLAB] Use of `1-norm for robust statistical regression.
x = sort(4*(rand(25,1)-.5)); % Random data from [-2,2]
b = .9*x + .1*randn(size(x)); % Line y=.9x with noise
atrue = x\b; % Least-squares slope (no outliers)

b(end) = -5.5; % Introduce outlier
acorrupt = x\b; % New slope

cvx_begin; % L1 optimization to reject outlier
variable aL1; % aL1 is slope to be optimized
minimize(norm(aL1*x-b,1)); % aL1 is robust

cvx_end;

Code 3.4: [Python] Use of `1-norm for robust statistical regression.
x = np.sort(4*(np.random.rand(25,1)-0.5),axis=0) # data
b = 0.9*x + 0.1*np.random.randn(len(x),1) # Noisy line y=ax
atrue = np.linalg.lstsq(x,b,rcond=None)[0] # Least-squares a

b[-1] = -5.5 # Introduce outlier
acorrupt = np.linalg.lstsq(x,b,rcond=None)[0] # New slope

L1 optimization to reject outlier
def L1_norm(a):

return np.linalg.norm(a*x-b,ord=1)

a0 = acorrupt # initialize to L2 solution
res = minimize(L1_norm, a0)
aL1 = res.x[0] # aL1 is robust

Feature Selection and LASSO Regression

Interpretability is important in statistical models, as these models are often
communicated to a non-technical audience, including business leaders and pol-
icy makers. Generally, a regression model is more interpretable if it has fewer
terms that bear on the outcome, motivating yet another perspective on sparsity.

The least absolute shrinkage and selection operator (LASSO) is an `1 pe-
nalized regression technique that balances model complexity with descriptive
capability [702]. This principle of parsimony in a model is also a reflection of Oc-
cam’s razor, stating that, among all possible descriptions, the simplest correct
model is probably the true one. Since its inception by Tibshirani in 1996 [702],
the LASSO has become a cornerstone of statistical modeling, with many mod-
ern variants and related techniques [315, 348, 760]. The LASSO is closely related
to the earlier non-negative garrote of Breimen [107], and is also related to earlier
work on soft thresholding by Donoho and Johnstone [207, 208]. LASSO may be

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.5. SPARSE REGRESSION 139

thought of as a sparsity-promoting regression that benefits from the stability of
the `2 regularized ridge regression [332], also known as Tikhonov regulariza-
tion. The elastic net is a frequently used regression technique that combines the
`1 and `2 penalty terms from LASSO and ridge regression [777]. Sparse regres-
sion will be explored in more detail in Chapter 4.

Given a number of observations of the predictors and outcomes of a system,
arranged as rows of a matrix A and a vector b, respectively, regression seeks to
find the relationship between the columns of A that is most consistent with the
outcomes in b. Mathematically, this may be written as

Ax = b. (3.14)

Least-squares regression will tend to result in a vector x that has non-zero coef-
ficients for all entries, indicating that all columns of A must be used to predict
b. However, we often believe that the statistical model should be simpler, indi-
cating that x may be sparse. The LASSO adds an `1 penalty term to regularize
the least-squares regression problem, i.e., to prevent overfitting:

x = argmin
x′
‖Ax′ − b‖2 + λ‖x‖1. (3.15)

Typically, the parameter λ is varied through a range of values and the fit is
validated against a test set of holdout data. If there is not enough data to have a
sufficiently large training set and test set, it is common to repeatedly train and
test the model on random selection of the data (often 80 % for training and 20 %
for testing), resulting in a cross-validated performance. This cross-validation pro-
cedure enables the selection of a parsimonious model that has relatively few
terms and avoids overfitting.

Many statistical systems are over-determined, as there are more observa-
tions than candidate predictors. Thus, it is not possible to use standard com-
pressed sensing, as measurement noise will guarantee that no exact sparse so-
lution exists that minimizes ‖Ax−b‖2. However, the LASSO regression works
well with over-determined problems, making it a general regression method.
Note that an early version of the geometric picture in Fig. 3.10 to explain the
sparsity-promoting nature of the `1-norm was presented in Tibshirani’s 1996
paper [702].

LASSO regression is frequently used to build statistical models for disease,
such as cancer and heart failure, since there are many possible predictors, in-
cluding demographics, lifestyle, biometrics, and genetic information. Thus, LASSO
represents a clever version of the kitchen-sink approach, whereby nearly all pos-
sible predictive information is thrown into the mix, and afterwards these are
then sifted and sieved through for the truly relevant predictors.

As a simple example, we consider an artificial data set consisting of 100
observations of an outcome, arranged in a vector b ∈ R100. Each outcome in b

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

140 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

is given by a combination of exactly two out of 10 candidate predictors, whose
observations are arranged in the rows of a matrix A ∈ R100×10:

A = randn(100,10); % Matrix of possible predictors
x = [0; 0; 1; 0; 0; 0; -1; 0; 0; 0]; % 2 nonzero predictors
b = A*x + 2*randn(100,1); % Observations (with noise)

The vector x is sparse by construction, with only two non-zero entries, and we
also add noise to the observations in b. The least-squares regression is:

>>xL2 = pinv(A)*b

xL2 = -0.0232
-0.3395
0.9591

-0.1777
0.2912

-0.0525
-1.2720
-0.0411
0.0413

-0.0500

Note that all coefficients are non-zero. Implementing the LASSO, with 10-fold
cross-validation, is a single straightforward command in MATLAB:

[XL1 FitInfo] = lasso(A,b,’CV’,10);

The lasso command sweeps through a range of values for λ, and the result-
ing x are each stored as columns of the matrix in XL1. To select the most parsi-
monious model that describes the data while avoiding overfitting, we may plot
the cross-validated error as a function of λ, as in Fig. 3.14:

lassoPlot(XL1,FitInfo,’PlotType’,’CV’)

The green point is at the value of λ that minimizes the cross-validated mean-
square error, and the blue point is at the minimum cross-validated error plus
one standard deviation. The resulting model is found via FitInfo.Index1SE:

>> xL1 = XL1(:,FitInfo.Index1SE)

xL1 = 0
0

0.7037
0
0
0

-0.4929
0
0

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.5. SPARSE REGRESSION 141

10
-4

10
-3

10
-2

10
-1

10
0

Lambda

4

4.5

5

5.5

6

6.5

7

M
S

E

Cross-validated MSE of Lasso fit

Figure 3.14: Output of lassoPlot command to visualize cross-validated mean-
squared error (MSE) as a function of λ.

0

Note that the resulting model is sparse and the correct terms are active.
However, the regression values for these terms are not accurate, and so it may
be necessary to de-bias the LASSO by applying a final least-squares regression
to the non-zero coefficients identified:

>>xL1DeBiased = pinv(A(:,abs(xL1)>0))*b
xL1DeBiased = 1.0980

-1.0671

In Python, the LASSO and associated analysis functions are also simple:
from sklearn import linear_model
from sklearn import model_selection
reg = linear_model.LassoCV(cv=10).fit(A, b)
lasso = linear_model.Lasso(random_state=0, max_iter=10000)
alphas = np.logspace(-4, -0.5, 30)

tuned_parameters = [{’alpha’: alphas}]

clf = model_selection.GridSearchCV(lasso, tuned_parameters,
cv=10, refit=False)

clf.fit(A, b)

Related plotting commands to reproduce this example in Python are provided
on the book’s GitHub.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

142 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

0 100 200 300 400 500 600
-100

0

100

200

300

400

500

{

{

{

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

Test image
(person 7)

Downsample

Flatten

=

y Θ s

Person 7

Classify

Person #k

εk

s

Figure 3.15: Schematic overview of sparse representation for classification.

3.6 Sparse Representation

Implicit in our discussion on sparsity is the fact that, when high-dimensional
signals exhibit low-dimensional structure, they admit a sparse representation in
an appropriate basis or dictionary. In addition to a signal being sparse in an
SVD or Fourier basis, it may also be sparse in an overcomplete dictionary whose
columns consist of the training data itself. In essence, in addition to a test signal
being sparse in generic feature library U from the SVD, X = UΣV∗, it may also
have a sparse representation in the dictionary X.

Wright et al. [762] demonstrated the power of sparse representation in a dic-
tionary of test signals for robust classification of human faces, despite signifi-
cant noise and occlusions. The so-called sparse representation for classification
(SRC) has been widely used in image processing, and more recently to classify
dynamical regimes in nonlinear differential equations [136, 147, 256, 411, 569].

The basic schematic of SRC is shown in Fig. 3.15, where a library of images
of faces is used to build an overcomplete library Θ. In this example, 30 images

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.6. SPARSE REPRESENTATION 143

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
-100

0

100

200

300

400

500Test image Downsampled

sj

j

s

Person #k

εk

Reconstruction Sparse errors

Figure 3.16: Sparse representation for classification demonstrated using a li-
brary of faces. A clean test image is correctly identified as the person 7 in the
library.

are used for each of 20 different people in the Yale B database, resulting in 600
columns in Θ. To use compressed sensing, i.e., `1-minimization, we need Θ to
be under-determined, and so we downsample each image from 192×168 to 12×
10, so that the flattened images are 120-component vectors. The algorithm used
to downsample the images has an impact on the classification accuracy. A new
test image y corresponding to class c, appropriately downsampled to match the
columns of Θ, is then sparsely represented as a sum of the columns of Θ using
the compressed sensing algorithm. The resulting vector of coefficients s should
be sparse, and ideally will have large coefficients primarily in the regions of the
library corresponding to the correct person in class c. The final classification
stage in the algorithm is achieved by computing the `2 reconstruction error
using the coefficients in the s vector corresponding to each of the categories
separately. The category that minimizes the `2 reconstruction error is chosen
for the test image. Figures 3.16–3.19 show the use of SRC to correctly identify
the correct person from images with different noise and corruption.

The entire code to reproduce this example in MATLAB and Python is avail-
able on the book’s GitHub.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

144 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400Test image Downsampled

sj

j

s

Person #k

εk

Reconstruction Sparse errors

Figure 3.17: Sparse representation for classification demonstrated on example
face from person 7 occluded by a fake mustache.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600
0

20

40

60

80

100Test image Downsampled

sj

j

s

Person #k

εk

Reconstruction Sparse errors

Figure 3.18: Sparse representation for classification demonstrated on example
image with 30% occluded pixels (randomly chosen and uniformly distributed).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.7. ROBUST PRINCIPAL COMPONENT ANALYSIS (RPCA) 145

0 100 200 300 400 500 600
-100

0

100

200

300

400

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

Test image Downsampled

sj

j

s

Person #k

εk

Reconstruction Sparse errors

Figure 3.19: Sparse representation for classification demonstrated on example
with white noise added to image.

3.7 Robust Principal Component Analysis (RPCA)

As mentioned earlier in Section 3.5, least-squares regression models are highly
susceptible to outliers and corrupted data. Principal component analysis (PCA)
suffers from the same weakness, making it fragile with respect to outliers. To
ameliorate this sensitivity, Candès et al. [155] have developed a robust principal
component analysis (RPCA) that seeks to decompose a data matrix X into a
structured low-rank matrix L and a sparse matrix S containing outliers and
corrupt data:

X = L + S. (3.16)

The principal components of L are robust to the outliers and corrupt data in
S. This decomposition has profound implications for many modern problems
of interest, including video surveillance (where the background objects appear
in L and foreground objects appear in S), face recognition (eigenfaces are in L
and shadows, occlusions, etc. are in S), natural language processing and latent
semantic indexing, and ranking problems.5

5The ranking problem may be thought of in terms of the Netflix prize for matrix completion.
In the Netflix prize, a large matrix of preferences is constructed, with rows corresponding to
users and columns corresponding to movies. This matrix is sparse, as most users only rate a
handful of movies. The Netflix prize seeks to accurately fill in the missing entries of the matrix,
revealing the likely user rating for movies the user has not seen.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

146 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

Mathematically, the goal is to find L and S that satisfy the following:

min
L,S

rank(L) + ‖S‖0 subject to L + S = X. (3.17)

However, neither the rank(L) nor the ‖S‖0 terms are convex, and this is not a
tractable optimization problem. Similar to the compressed sensing problem, it
is possible to solve for the optimal L and S with high probability using a convex
relaxation of (3.17):

min
L,S
‖L‖∗ + λ‖S‖1 subject to L + S = X. (3.18)

Here, ‖ · ‖∗ denotes the nuclear norm, given by the sum of singular values,
which is a proxy for rank. Remarkably, the solution to (3.18) converges to the
solution of (3.17) with high probability if λ = 1/

√
max(n,m), where n and m

are the dimensions of X, given that L and S satisfy the following conditions:

(a) L is not sparse; and

(b) S is not low-rank; we assume that the entries are randomly distributed so
that they do not have low-dimensional column space.

The convex problem in (3.17) is known as principal component pursuit (PCP),
and may be solved using the augmented Lagrange multiplier (ALM) algorithm.
Specifically, an augmented Lagrangian may be constructed:

L(L,S,Y) = ‖L‖∗ + λ‖S‖1 + 〈Y, X− L− S〉+
µ

2
‖X− L− S‖2

F . (3.19)

A general solution would solve for the Lk and Sk that minimize L, update the
Lagrange multipliers Yk+1 = Yk+µ(X−Lk−Sk), and iterate until the solution
converges. However, for this specific system, the alternating directions method
(ADM) [447, 768] provides a simple procedure to find L and S.

First, a shrinkage operator Sτ (x) = sign(x) max(|x| − τ, 0) is constructed. In
MATLAB, the function shrink is defined as

function out = shrink(X,tau)
out = sign(X).*max(abs(X)-tau,0);

end

In Python, the function shrink is defined as

def shrink(X,tau):
Y = np.abs(X)-tau
return np.sign(X) * np.maximum(Y,np.zeros_like(Y))

Next, the singular value threshold operator SVTτ (X) = USτ (Σ)V∗ is con-
structed. In MATLAB, the function SVT is defined as

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.7. ROBUST PRINCIPAL COMPONENT ANALYSIS (RPCA) 147

function out = SVT(X,tau)
[U,S,V] = svd(X,’econ’);
out = U*shrink(S,tau)*V’;

end

In Python, the function SVT is defined as

def SVT(X,tau):
U,S,VT = np.linalg.svd(X,full_matrices=0)
out = U @ np.diag(shrink(S,tau)) @ VT
return out

Finally, it is possible to use the Sτ and SVT operators iteratively to solve for
L and S as in Code 3.5.

Code 3.5: [MATLAB] RPCA using alternating directions method (ADM).
function [L,S] = RPCA(X)
[n1,n2] = size(X);
mu = n1*n2/(4*sum(abs(X(:))));
lambda = 1/sqrt(max(n1,n2));
thresh = 1e-7*norm(X,’fro’);

L = zeros(size(X));
S = zeros(size(X));
Y = zeros(size(X));
count = 0;
while((norm(X-L-S,’fro’)>thresh)&&(count<1000))

L = SVT(X-S+(1/mu)*Y,1/mu);
S = shrink(X-L+(1/mu)*Y,lambda/mu);
Y = Y + mu*(X-L-S);
count = count + 1

end

Code 3.5: [Python] RPCA using alternating directions method (ADM).
def RPCA(X):

n1,n2 = X.shape
mu = n1*n2/(4*np.sum(np.abs(X.reshape(-1))))
lambd = 1/np.sqrt(np.maximum(n1,n2))
thresh = 10**(-7) * np.linalg.norm(X)

S = np.zeros_like(X)
Y = np.zeros_like(X)
L = np.zeros_like(X)
count = 0
while (np.linalg.norm(X-L-S) > thresh) and (count <

1000):

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

148 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

L = SVT(X-S+(1/mu)*Y,1/mu)
S = shrink(X-L+(1/mu)*Y,lambd/mu)
Y = Y + mu*(X-L-S)
count += 1

return L,S

RPCA is demonstrated on the eigenfaces data with the following code in MAT-
LAB

load allFaces.mat
X = faces(:,1:nfaces(1));
[L,S] = RPCA(X);

and in Python

X = faces[:,:nfaces[0]]
L,S = RPCA(X)

In this example, the original columns of X, along with the low-rank and
sparse components, are shown in Fig. 3.20. Notice that in this example, RPCA
effectively fills in occluded regions of the image, corresponding to shadows. In
the low-rank component L, shadows are removed and filled in with the most
consistent low-rank features from the eigenfaces. This technique can also be
used to remove other occlusions such as fake mustaches, sunglasses, or noise.

3.8 Sparse Sensor Placement

Until now, we have investigated signal reconstruction in a generic basis, such
as Fourier or wavelets, with random measurements. This provides consider-
able flexibility, as no prior structure is assumed, except that the signal is sparse
in a known basis. For example, compressed sensing works equally well for re-
constructing an image of a mountain, a face, or a cup of coffee. However, if we
know that we will be reconstructing a human face, we can dramatically reduce
the number of sensors required for reconstruction or classification by optimiz-
ing sensors for a particular feature library Ψr = Ũ built from the SVD.

Thus, it is possible to design tailored sensors for a particular library, in con-
trast to the previous approach of random sensors in a generic library. Near-
optimal sensor locations may be obtained using fast greedy procedures that
scale well with large signal dimension, such as the matrix QR factorization.
The following discussion will closely follow Manohar et al. [481] and B. Brun-
ton et al. [122], and the reader is encouraged to find more details there. Simi-
lar approaches will be used for efficient sampling of reduced-order models in
Chapter 13, where they are termed hyper-reduction. There are also extensions of
the following for sensor and actuator placement in control [484], based on the
balancing transformations discussed in Chapter 9.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.8. SPARSE SENSOR PLACEMENT 149

Image 3 Image 4 Image 14 Image 17 Image 20
O

ri
gi

na
lX

Lo
w

-r
an

k
L

Sp
ar

se
S

Figure 3.20: Output of RPCA for images in the Yale B database.

Optimizing sensor locations is important for nearly all downstream tasks,
including classification, prediction, estimation, modeling, and control. How-
ever, identifying optimal locations involves a brute-force search through the
combinatorial choices of p sensors out of n possible locations in space. Recent
greedy and sparse methods are making this search tractable and scalable to
large problems. Reducing the number of sensors through principled selection
may be critically enabling when sensors are costly, and may also enable faster
state estimation for low-latency, high-bandwidth control.

The examples in this section are in MATLAB. However, extensive Python
code for sparse sensing is available at the following:
https://github.com/dynamicslab/pysensors.

Sparse Sensor Placement for Reconstruction

The goal of optimized sensor placement in a tailored library Ψr ∈ Rn×r is to
design a sparse measurement matrix C ∈ Rp×n, so that inversion of the linear
system of equations

y = CΨra = θa (3.20)

is as well conditioned as possible. In other words, we will design C to minimize
the condition number of CΨr = θ, so that it may be inverted to identify the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/dynamicslab/pysensors

150 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

y

=
C a

=
a r ⇥

Figure 3.21: Least-squares with r sparse sensors provides a unique solution to
a, hence x. Reproduced with permission from Manohar et al. [481].

low-rank coefficients a given noisy measurements y. The condition number of
a matrix θ is the ratio of its maximum and minimum singular values, indicating
how sensitive matrix multiplication or inversion is to errors in the input. Larger
condition numbers indicate worse performance inverting a noisy signal. The
condition number is a measure of the worst-case error when the signal a is in
the singular vector direction associated with the minimum singular value of θ,
and noise is added that is aligned with the maximum singular vector:

θ(a + εa) = σmina + σmaxεa. (3.21)

Thus, the signal-to-noise ratio decreases by the condition number after map-
ping through θ. We therefore seek to minimize the condition number through
a principled choice of C. This is shown schematically in Fig. 3.21 for p = r.

When the number of sensors is equal to the rank of the library, i.e., p = r,
then θ is a square matrix, and we are choosing C to make this matrix as well
conditioned for inversion as possible. When p > r, we seek to improve the con-
dition of M = θTθ, which is involved in the pseudo-inverse. It is possible to
develop optimization criteria that optimize the minimum singular value, the
trace, or the determinant of θ (respectively M). However, each of these opti-
mization problems is NP-hard, requiring a combinatorial search over the pos-
sible sensor configurations. Iterative methods exist to solve this problem, such
as convex optimization and semi-definite programming [101, 353], although
these methods may be expensive, requiring iterative n×nmatrix factorizations.
Instead, greedy algorithms are generally used to approximately optimize the
sensor placement. These gappy POD [239] methods originally relied on random
subsampling. However, significant performance advances were demonstrated
by using principled sampling strategies for reduced-order models (ROMs) [75]
in fluid dynamics [754] and ocean modeling [767]. More recently, variants of the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.8. SPARSE SENSOR PLACEMENT 151

so-called empirical interpolation method (EIM, DEIM and Q-DEIM) [55, 171, 215]
have provided near-optimal sampling for interpolative reconstruction of non-
linear terms in ROMs.

Random Sensors. In general, randomly placed sensors may be used to esti-
mate mode coefficients a. However, when p = r and the number of sensors is
equal to the number of modes, the condition number is typically very large.
In fact, the matrix Θ is often numerically singular and the condition number
is near 1016. Oversampling, as in Section 1.8, rapidly improves the condition
number, and even p = r + 10 usually has much better reconstruction perfor-
mance.

QR Pivoting for Sparse Sensors. The greedy matrix QR factorization with
column pivoting of ΨT

r , explored by Drmac and Gugercin [215] for reduced-
order modeling, provides a particularly simple and effective sensor optimiza-
tion. The QR pivoting method is fast, simple to implement, and provides nearly
optimal sensors tailored to a specific SVD/POD basis. QR factorization is op-
timized for most scientific computing libraries, including MATLAB, LAPACK,
and NumPy. In addition, QR can be sped-up by ending the procedure after the
first p pivots are obtained.

The reduced matrix QR factorization with column pivoting decomposes a
matrix A ∈ Rm×n into a unitary matrix Q, an upper triangular matrix R and
a column permutation matrix CT such that ACT = QR. The pivoting proce-
dure provides an approximate greedy solution method to minimize the matrix
volume, which is the absolute value of the determinant. QR column pivoting
increments the volume of the submatrix constructed from the pivoted columns
by selecting a new pivot column with maximal 2-norm, then subtracting from
every other column its orthogonal projection onto the pivot column.

Thus QR factorization with column pivoting yields r point sensors (pivots)
that best sample the r basis modes Ψr:

ΨT
r CT = QR. (3.22)

Sensor selection based on the pivoted QR algorithm is quite simple for p = r.
In MATLAB, the code is

[Q,R,pivot] = qr(Psi_r’,’vector’); % QR sensor selection
C = zeros(p,n);
for j=1:p

C(j,pivot(j))=1;
end

In Python the code is

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

152 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

Original QR Random

Figure 3.22: (left) Original image and locations of p = 100 QR sensors in a
r = 100 mode library. (middle) Reconstruction with QR sensors. (right) Re-
construction with random sensors.

from scipy import linalg
Q,R,pivot = linalg.qr(Psi_r.T,pivoting=True)
C = np.zeros_like(Psi_r.T)
C[pivot[:r]] = 1
for k in range(r):

C[k,pivot[k]] = 1

It may also be advantageous to use oversampling [557], choosing more sensors
than modes, so p > r. In this case, there are several strategies, and random
oversampling is a robust choice.

Example: Reconstructing a Face with Sparse Sensors

To demonstrate the concept of signal reconstruction in a tailored basis, we will
design optimized sparse sensors in the library of eigenfaces from Section 1.6.
Figure 3.22 shows the QR sensor placement and reconstruction, along with the
reconstruction using random sensors. We use p = 100 sensors in a r = 100
mode library. This code assumes that the faces have been loaded and the sin-
gular vectors are in a matrix U. Optimized QR sensors result in a more accurate
reconstruction, with about three times less reconstruction error. In addition, the
condition number is orders of magnitude smaller than with random sensors.
Both QR and random sensors may be improved by oversampling. From the
QR sensors C based on Ψr, it is possible to reconstruct an approximate image
from these sensors. In MATLAB, the reconstruction is given by

Theta = C*Psi_r;
y = faces(pivot(1:p),1); % Measure at pivot locations
a = Theta\y; % Estimate coefficients

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.8. SPARSE SENSOR PLACEMENT 153

X =

XA XB

SVD LDA

ΨT
r wT

a1

a2

η

w
A

B
A B

Decision
line

Figure 3.23: Schematic illustrating SVD for feature extraction, followed by lin-
ear discriminant analysis (LDA) for the automatic classification of data into two
categories A and B. Reproduced with permission from Bai et al. [40].

faceRecon = Psi_r * a; % Reconstruct face

In Python, the reconstruction is given by

Theta = np.dot(C , Psi_r)
y = faces[pivot[:r]] # Measure at pivot locations
a = np.dot(np.linalg.pinv(Theta),y) # Estimate coefficients
faceRecon = np.dot(Psi_r , a) # Reconstruct face

Sparse Classification

For image classification, even fewer sensors may be required than for recon-
struction. For example, sparse sensors may be selected that contain the most
discriminating information to characterize two categories of data [122]. Given
a library of r SVD modes Ψr, it is often possible to identify a vector w ∈ Rr in
this subspace that maximally distinguishes between two categories of data, as
described in Section 5.6 and shown in Fig. 3.23. Sparse sensors s that map into
this discriminating direction, projecting out all other information, are found by

s = argmin
s′
‖s′‖1 subject to ΨT

r s′ = w. (3.23)

This sparse sensor placement optimization for classification (SSPOC) is shown
in Fig. 3.24 for an example classifying dogs versus cats. The library Ψr contains
the first r eigen-pets and the vector w identifies the key differences between dogs
and cats. Note that this vector does not care about the degrees of freedom that
characterize the various features within the dog or cat clusters, but rather only
the differences between the two categories. Optimized sensors are aligned with
regions of interest, such as the eyes, nose, mouth, and ears.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

154 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

SPARSE SENSORS FOR CLASSIFICATION 2111

Time

C
yl

in
de

r C
oo

rd
s.

G
en

es

Re = 40 Re = 150 Re = 1000

RMS EWS NB BL

Time

Space

Regime 1 Regime 2

Samples

C
at

s

D
og

s

Example 4: Classification of Reynolds number of flow

Example 1: Dynamic regimes classification of CQGLE soln.

Example 2: Image recognition of cats and dogs

Example 3: Face recognition

Example 5: Classification of cancer type

Fa
ce

 1

Fa
ce

 2

Fa
ce

 3

Sensor Locations

Flow Direction

Fig. 3. Data from the five examples used to demonstrate learning sparse sensor placement and
schematics of the sensor locations identified by the SSPOC algorithm; see section 4 for data sources
and results.

Interestingly, solutions of the CQGLE exhibit different regimes of behavior that
can be characterized by the parameter values β = (τ, κ, µ, ν, ϵ, γ). Solutions to
these equations are obtained numerically using a spectral method with a fourth-
order Runge–Kutta adaptive time-stepping algorithm, simulated using 1024 Fourier
modes [37]. Here we focus on two typical dynamical regimes, β1 = (−0.3, −0.05, 1.45,
0, −0.1, −0.5) and β2 = (0.08, −0.05, 0.6, −0.1, −0.1,−0.1). The solutions in these
regimes are shown in Figure 3.

c⃝ 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

10
/2

8/
16

 to
 1

73
.2

50
.2

05
.1

42
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

SPARSE SENSORS FOR CLASSIFICATION 2111

Time

C
yl

in
de

r C
oo

rd
s.

G
en

es

Re = 40 Re = 150 Re = 1000

RMS EWS NB BL

Time

Space

Regime 1 Regime 2

Samples

C
at

s

D
og

s

Example 4: Classification of Reynolds number of flow

Example 1: Dynamic regimes classification of CQGLE soln.

Example 2: Image recognition of cats and dogs

Example 3: Face recognition

Example 5: Classification of cancer type

Fa
ce

 1

Fa
ce

 2

Fa
ce

 3

Sensor Locations

Flow Direction

Fig. 3. Data from the five examples used to demonstrate learning sparse sensor placement and
schematics of the sensor locations identified by the SSPOC algorithm; see section 4 for data sources
and results.

Interestingly, solutions of the CQGLE exhibit different regimes of behavior that
can be characterized by the parameter values β = (τ, κ, µ, ν, ϵ, γ). Solutions to
these equations are obtained numerically using a spectral method with a fourth-
order Runge–Kutta adaptive time-stepping algorithm, simulated using 1024 Fourier
modes [37]. Here we focus on two typical dynamical regimes, β1 = (−0.3, −0.05, 1.45,
0, −0.1, −0.5) and β2 = (0.08, −0.05, 0.6, −0.1, −0.1,−0.1). The solutions in these
regimes are shown in Figure 3.

c⃝ 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

10
/2

8/
16

 to
 1

73
.2

50
.2

05
.1

42
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

SPARSE SENSORS FOR CLASSIFICATION 2111

Time

C
yl

in
de

r C
oo

rd
s.

G
en

es

Re = 40 Re = 150 Re = 1000

RMS EWS NB BL

Time

Space

Regime 1 Regime 2

Samples

C
at

s

D
og

s

Example 4: Classification of Reynolds number of flow

Example 1: Dynamic regimes classification of CQGLE soln.

Example 2: Image recognition of cats and dogs

Example 3: Face recognition

Example 5: Classification of cancer type

Fa
ce

 1

Fa
ce

 2

Fa
ce

 3

Sensor Locations

Flow Direction

Fig. 3. Data from the five examples used to demonstrate learning sparse sensor placement and
schematics of the sensor locations identified by the SSPOC algorithm; see section 4 for data sources
and results.

Interestingly, solutions of the CQGLE exhibit different regimes of behavior that
can be characterized by the parameter values β = (τ, κ, µ, ν, ϵ, γ). Solutions to
these equations are obtained numerically using a spectral method with a fourth-
order Runge–Kutta adaptive time-stepping algorithm, simulated using 1024 Fourier
modes [37]. Here we focus on two typical dynamical regimes, β1 = (−0.3, −0.05, 1.45,
0, −0.1, −0.5) and β2 = (0.08, −0.05, 0.6, −0.1, −0.1,−0.1). The solutions in these
regimes are shown in Figure 3.

c⃝ 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

10
/2

8/
16

 to
 1

73
.2

50
.2

05
.1

42
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

Dogs Cats Sensors

SSPOC

XA XB Ψrw (s in red)
Figure 3.24: Sparse sensor placement optimization for classification (SSPOC)
illustrated for optimizing sensors to classify dogs and cats. Reproduced with
permission from B. Brunton et al. [122].

Suggested Reading

Papers and reviews

(1) Regression shrinkage and selection via the lasso, by R. Tibshirani, Journal
of the Royal Statistical Society B, 1996 [702].

(2) Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information, by E. J. Candès, J. Romberg, and T.
Tao, IEEE Transactions on Automatic Control, 2006 [156].

(3) Compressed sensing, by D. L. Donoho, IEEE Transactions on Information
Theory, 2006 [204].

(4) Compressive sensing, by R. G. Baraniuk, IEEE Signal Processing Magazine,
2007 [53].

(5) Robust face recognition via sparse representation, by J. Wright, A. Yang,
A. Ganesh, S. Sastry, and Y. Ma, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2009 [762].

(6) Robust principal component analysis?, by E. J. Candès, X. Li, Y. Ma, and J.
Wright, Journal of the ACM, 2011 [155].

(7) Signal recovery from random measurements via orthogonal matching pur-
suit, by J. A. Tropp and A. C. Gilbert, IEEE Transactions on Information The-
ory, 2007 [717].

(8) Data-driven sparse sensor placement, by K. Manohar, B. W. Brunton, J. N.
Kutz, and S. L. Brunton, IEEE Control Systems Magazine, 2018 [481].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.8. SPARSE SENSOR PLACEMENT 155

Homework

Exercise 3-1. Load the image dog.jpg and convert to grayscale. We will repeat
Exercise 2-1, using the FFT to compress the image at different compression ra-
tios. However, now, we will compare the error versus compression ratio for
the image downsampled at different resolutions. Compare the original image
(2000×1500) and downsampled copies of the following resolutions: 1000×750,
500 × 375, 200 × 150, and 100 × 75. Plot the error versus compression ratio for
each image resolution on the same plot. Explain the observed trends.

Exercise 3-2. This example will explore geometry and sampling probabilities in
high-dimensional spaces. Consider a two-dimensional square dart board with
length L = 2 on both sides and a circle of radius R = 1 in the middle. Write a
program to throw 10 000 darts by generating a uniform random x and y position
on the square. Compute the radius for each point and compute what fraction
land inside the circle (i.e., how many have radius < 1). Is this consistent with
your expectation based on the area of the circle and the square?

Repeat this experiment, throwing 10 000 darts randomly (sampled from a uni-
form distribution) on anN -dimensional cube (lengthL = 2) with anN -dimensional
sphere inside (radius R = 1), for N = 2 through N = 10. For a given N , what
fraction of the points land inside the sphere. Plot this fraction versus N . Also
compute the histogram of the radii of the randomly sampled points for each N
and plot these. What trends do you notice in the data?

Exercise 3-3. This exercise will explore the relationship between the sparsity K,
the signal size n, and the number of samples p in compressed sensing.

(a) For n = 1000 and K = 5, create a K-sparse vector s of Fourier coefficients
in a Fourier basis Ψ. For each p from 1 to 100, create a Gaussian random
sampling matrix C ∈ Rp×n to create a measurement vector y = CΨs. Use
compressed sensing based on this measurement to estimate ŝ. For each
p, repeat this with at least 10 realizations of the random measurement
matrix C. Plot the average relative error of ‖ŝ − s‖2/‖s‖ versus p; it may
be helpful to visualize the errors with a box-and-whisker plot. Explain the
trends. Also plot the average `1 and `0 error versus p.

(b) Repeat the above experiment for K = 1 through K = 20. What changes?

(c) Now repeat the above experiment forK = 5, varying the signal size using
n = 100, n = 500, n = 1000, n = 2000, and n = 5000.

Exercise 3-4. Repeat the above exercise with a uniformly sampled random sam-
ple matrix. Also repeat with a Bernoulli random matrix and a matrix that com-
prises random single pixels. Plot the average relative errors for these different

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

156 CHAPTER 3. SPARSITY AND COMPRESSED SENSING

sampling matrices on the same plot (including the plot for Gaussian random
sampling). Discuss the trends.

Exercise 3-5. Generate a DFT matrix Ψ for n = 512. We will use this as a basis
for compressed sensing, and we will compute the incoherence of this basis and
different measurement matrices. For p = 16, create different random measure-
ment matrices C given by Gaussian random measurements, Bernoulli random
measurements, and random single-pixel measurements. For each matrix, nor-
malize the length of each row to 1. Now, for each measurement matrix type,
compute the incoherence µ(C,Ψ). Repeat this for many random instances of
each C matrix type and compare the histogram of incoherence values for each
matrix type. Further, compare the histogram of each inner product

√
n〈ck,ψj〉

for each matrix type. Discuss any trends and the implications for compressed
sensing with these measurement matrices. Are there other factors that are rele-
vant for the sensing matrix?

Exercise 3-6. This exercise will explore sparse representation from Section 3.6
to estimate a fluid flow field, following Callaham et al. [147]. Load the cylin-
der flow data set. Coarsen each flow field by a factor of 20 in each direction
using imresize, and build a library of these coarsened measurements (i.e., a
matrix, where each column contains these downsampled measurements). Plot
a movie of the flow field in these new coordinates. Now, pick a column of the
full flow field matrix and add Gaussian random noise to this field. Downsam-
ple the noisy field by a factor of 20 and use SRC to find the closest downsam-
pled library element. Then use this column of the full flow field library as your
reconstructed estimate.

Try this approach with different levels of noise added to the original flow field.
See how much noise is required before the method breaks. Try different ap-
proaches to creating a low-dimensional representation of the image (i.e., in-
stead of downsampling, you can measure the flow field in a small 5× 10 patch
and use this as the low-dimensional feature for SRC).

Exercise 3-7. This exercise will explore RPCA from Section 3.7 for robust flow
field analysis, following Scherl et al. [631].

(a) Load the cylinder flow data set. Compute the SVD as in Exercise 1-7 and
plot the movie of the flow. Also plot the singular values and first 10 sin-
gular vectors.

(b) Now, contaminate a random 10% of the entries of the data matrix with
salt-and-pepper noise. The contaminated points should not be the same
for each column, and the salt-and-pepper noise should be ±5η, where
η is the standard deviation of the entire data set. Compute the SVD of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

3.8. SPARSE SENSOR PLACEMENT 157

the contaminated matrix and plot the movie of the flow along with the
singular values and first 10 singular vectors.

(c) Clean the contaminated data set by applying RPCA and keeping the low-
rank portion L. Again, compute the SVD of the decontaminated matrix L
and plot the movie of the flow along with the singular values and first 10
singular vectors. Compare these with the results from the original clean
and contaminated data sets.

(d) Try to clean the data by applying the Gavish–Donoho threshold to the
data matrix contaminated with salt-and-pepper noise. Does this work?
Explain why or why not.

Exercise 3-8. This exercise will explore the sparse sensor selection approach
based on QR from Section 3.8.

(a) Load the Yale B faces data set. Randomly choose one person to omit from
the data matrix and compute the SVD of the remaining data. Compute the
QR sensor locations for p = 100 using the first r = 100 modes of this SVD
basis Ũ. Use these sensor locations to reconstruct the images of the person
that was left out of the matrix for the SVD. Compare the reconstruction
error using these QR sensor locations with reconstruction using p = 100
randomly chosen sensors, as in Fig. 3.22.

(b) Now, repeat this experiment 36 times, each time omitting a different per-
son from the data before computing the SVD, and use the sensor locations
to reconstruct the images of the omitted person. This will provide enough
reconstruction errors on which to perform statistics. For each experiment,
also compute the reconstruction error using 36 different configurations of
p = 100 random sensors. Plot the histograms of the error for the QR and
random sensors, and discuss.

(c) Finally, repeat the above experiments for different sensor number p = 10
through p = 200 in increments of 10. Plot the error distributions versus
p for QR and random sensor configurations. Because each value of p cor-
responds to many reconstruction errors, it would be best to plot this as a
box-and-whisker plot or as a violin plot.

Exercise 3-9. In the exercise above, for p = 100, compare the reconstruction
results using the p = 100 QR sensors to reconstruct in the first r = 100 modes,
versus using the same sensors to reconstruct in the first r = 90 SVD modes.
Is one more accurate than the other? Compare the condition number of the
100× 100 and 100× 90 matrices obtained by sampling the p rows of the r = 100

and r = 90 columns of Ũ from the SVD.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Part II

Machine Learning and Data
Analysis

158

Chapter 4

Regression and Model Selection

All of machine learning revolves around optimization. This includes regres-
sion and model selection frameworks that aim to provide parsimonious and
interpretable models for data [350]. Curve fitting is the most basic of regression
techniques, with polynomial and exponential fitting resulting in solutions that
come from solving the linear system

Ax = b. (4.1)

When the model is not prescribed, then optimization methods are used to select
the best model. This changes the underlying mathematics for function fitting to
either an over-determined or an under-determined optimization problem for
linear systems given by

argmin
x

(‖Ax− b‖2 + λg(x)) or (4.2a)

argmin
x

g(x) subject to ‖Ax− b‖2 ≤ ε, (4.2b)

where g(x) is a given penalization (with penalty parameter λ for over-determined
systems).

For over- and under-determined linear systems of equations, which result
in either no solutions or an infinite number of solutions of (4.1), a choice of con-
straint or penalty, which is also known as regularization, must be made in order
to produce a solution. For instance, one can enforce a solution minimizing the
smallest `2-norm in an under-determined system so that min g(x) = min ‖x‖2.
More generally, when considering regression to nonlinear models, then the
overall mathematical framework takes the more general form

argmin
x

(f(A,x,b) + λg(x)) or (4.3a)

argmin
x

g(x) subject to f(A,x,b) ≤ ε, (4.3b)

which are often solved using gradient descent algorithms. Indeed, this general
framework is also at the center of deep learning algorithms.

160

161

(a) (b)Overfitting Underfitting
Er

ro
r

Er
ro

r

Model complexity Model complexity

withhold

training

Figure 4.1: Prototypical behavior of over- and underfitting of data. (a) For over-
fitting, increasing the model complexity or training epochs (iterations) leads to
improved reduction of error on training data while increasing the error on the
withheld data. (b) For underfitting, the error performance is limited due to re-
strictions on model complexity. These canonical graphs are ubiquitous in data
science and of paramount importance when evaluating a model.

In addition to optimization strategies, a central concern in data science is
understanding if a proposed model has overfit or underfit the data. Thus cross-
validation strategies are critical for evaluating any proposed model. Cross-validation
will be discussed in detail in what follows, but the main concepts can be un-
derstood from Fig. 4.1. A given data set must be partitioned into training, val-
idation, and withhold sets. A model is constructed from the training and val-
idation data and finally tested on the withhold set. For overfitting, increasing
the model complexity or training epochs (iterations) improves the error on the
training set while leading to increased error on the withhold set. Figure 4.1(a)
shows the canonical behavior of data overfitting, suggesting that the model
complexity and/or training epochs be limited in order to avoid the overfitting.
In contrast, underfitting limits the ability to achieve a good model as shown in
Fig. 4.1(b). However, it is not always clear if you are underfitting or if the model
can be improved. Cross-validation is of such paramount importance that it is
automatically included in most machine learning algorithms in MATLAB. Im-
portantly, the following mantra holds: If you do not cross-validate, you is dumb.

The next few chapters will outline how optimization and cross-validation
arise in practice, and will highlight the choices that need to be made in apply-
ing meaningful constraints and structure to g(x) so as to achieve interpretable
solutions. Indeed, the objective (loss) function f(·) and regularization g(·) are
equally important in determining computationally tractable optimization strate-
gies. Often times, proxy loss and regularization functions are chosen in order to
achieve approximations to the true objective of the optimization. Such choices
depend strongly upon the application area and data under consideration.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

162 CHAPTER 4. REGRESSION AND MODEL SELECTION

4.1 Classic Curve Fitting

Curve fitting is one of the most basic and foundational tools in data science.
From our earliest educational experiences in the engineering and physical sci-
ences, least-squares polynomial fitting was advocated for understanding the
dominant trends in real data. Adrien-Marie Legendre used least-squares as
early as 1805 to fit astronomical data [436], with Gauss more fully developing
the theory of least-squares as an optimization problem in a seminal contribu-
tion of 1821 [264]. Curve fitting in such astronomical applications was highly ef-
fective given the simple elliptical orbits (quadratic polynomial functions) man-
ifest by planets and comets. Thus one can argue that data science has long been
a cornerstone of our scientific efforts. Indeed, it was through Kepler’s access to
Tycho Brahe’s state-of-the-art astronomical data that he was able, after 11 years
of research, to produce the foundations for the laws of planetary motion, posit-
ing the elliptical nature of planetary orbits, which were clearly best-fit solutions
to the available data [380].

A broader mathematical viewpoint of curve fitting, which we will advocate
throughout this text, is regression. Like curve fitting, regression attempts to esti-
mate the relationship among variables using a variety of statistical tools. Specif-
ically, one can consider the general relationship between independent variables
X, dependent variables Y, and some unknown parameters β:

Y = f(X,β), (4.4)

where the regression function f(·) is typically prescribed and the parameters
β are found by optimizing the goodness-of-fit of this function to data. In what
follows, we will consider curve fitting as a special case of regression. Impor-
tantly, regression and curve fitting discover relationships among variables by
optimization. Broadly speaking, machine learning is framed around regression
techniques, which are themselves framed around optimization based on data.
Thus, at its absolute mathematical core, machine learning and data science re-
volve around positing an optimization problem. Of course, the success of op-
timization itself depends critically on defining an objective function to be opti-
mized.

Least-Squares Fitting Methods

To illustrate the concepts of regression, we will consider classic least-squares
polynomial fitting for characterizing trends in data. The concept is straight-
forward and simple: use a simple function to describe a trend by minimizing
the sum-square error between the selected function f(·) and its fit to the data.
As we show here, classical curve fitting is formulated as a simple solution of
Ax = b.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.1. CLASSIC CURVE FITTING 163

Consider a set of n data points:

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn). (4.5)

Further, assume that we would like to find a best-fit line through these points.
We can approximate the line by the function

f(x) = β1x+ β2, (4.6)

where the constants β1 and β2, which are the parameters of the vector β in (4.4),
are chosen to minimize some error associated with the fit. The line fit gives the
linear regression model Y = f(A,β) = β1X+β2. Thus the function gives a linear
model which approximates the data, with the approximation error at each point
given by

f(xk) = yk + Ek, (4.7)

where yk is the true value of the data and Ek is the error of the fit from this
value.

Various error metrics can be minimized when approximating with a given
function f(x). The choice of error metric, or norm, used to compute a goodness-
of-fit will be critical in this chapter. Three standard possibilities are often con-
sidered, which are associated with the `2- (least-squares), `1-, and `∞-norms.
These are defined as follows:

E∞(f) = max
1<k<n

|f(xk)− yk| maximum error (`∞), (4.8a)

E1(f) =
1

n

n∑

k=1

|f(xk)− yk| mean absolute error (`1), (4.8b)

E2(f) =

(
1

n

n∑

k=1

|f(xk)− yk|2
)1/2

least-squares error (`2). (4.8c)

Such regression error metrics have been previously considered in Chapter 1,
but they will be considered once again here in the framework of model selec-
tion.

In addition to the above norms, one can more broadly consider the error
based on the `p-norm:

Ep(f) =

(
1

n

n∑

k=1

|f(xk)− yk|p
)1/p

. (4.9)

For different values of p, the best-fit line will be different. In most cases, the
differences are small. However, when there are outliers in the data, the choice
of norm can have a significant impact.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

164 CHAPTER 4. REGRESSION AND MODEL SELECTION

0 2 4 6 8 10
0

1

2

3

4

E
∞

E
1

E
2

0 2 4 6 8 10
0

1

2

3

4

E
∞

E
1

E
2

(a)

(b)

x

y

x

y

Figure 4.2: Line fits for the three different error metrics E∞, E1, and E2. In (a),
the data has no outliers and the three linear models, although different, produce
approximately the same model. With outliers, (b) shows that the predictions are
significantly different.

When fitting a curve to a set of data, the root-mean-square error (4.8c) is
often chosen to be minimized. This is called a least-squares fit. Figure 4.2 depicts
three line fits that minimize the errors E∞, E1, and E2 listed above. The E∞
error line fit is strongly influenced by the one data point that does not fit the
trend. The E1 and E2 lines fit nicely through the bulk of the data, although their
slopes are quite different in comparison to when the data has no outliers. The
linear models for these three error metrics are constructed using MATLAB’s
fminsearch command. The code for all three is given as follows.

Code 4.1: [MATLAB] Regression for linear fit.
p1=fminsearch(’fit1’,[1 1],[],x,y);
p2=fminsearch(’fit2’,[1 1],[],x,y);
p3=fminsearch(’fit3’,[1 1],[],x,y);

xf=0:0.1:11
y1=polyval(p1,xf); y2=polyval(p2,xf); y3=polyval(p3,xf);

Code 4.1: [Python] Regression for linear fit.
p1 = scipy.optimize.fmin(fit1,x0,args=(t,));
p2 = scipy.optimize.fmin(fit2,x0,args=(t,));

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.1. CLASSIC CURVE FITTING 165

p3 = scipy.optimize.fmin(fit3,x0,args=(t,));

xf = np.arange(0,11,0.1)
y1 = np.polyval(p1,xf); y2 = np.polyval(p2,xf); y3 = np.

polyval(p3,xf)

For each error metric, the computation of the error metrics (4.8) must be com-
puted. The fminsearch command requires that the objective function for min-
imization be given. For the three error metrics considered, this results in the
following set of functions for fminsearch.

Code 4.2: [MATLAB] Maximum error `∞.
function E=fit1(x0,x,y)
E=max(abs(x0(1)*x+x0(2)-y));

Code 4.2: [MATLAB] Sum of absolute error `1.
function E=fit2(x0,x,y)
E=sum(abs(x0(1)*x+x0(2)-y));

Code 4.2: [MATLAB] Least-squares error `2.
function E=fit3(x0,x,y)
E=sum(abs(x0(1)*x+x0(2)-y).ˆ2);

Code 4.2: [Python] Fitting errors.
def fit1(x0,t):

x,y=t
return np.max(np.abs(x0[0]*x + x0[1]-y))

def fit2(x0,t):
x,y=t
return np.sum(np.abs(x0[0]*x + x0[1]-y))

def fit3(x0,t):
x,y=t
return np.sum(np.power(np.abs(x0[0]*x + x0[1]-y),2))

Finally, for the outlier data, an additional point is added to the data in order to
help illustrate the influence of the error metrics on producing a linear regression
model.

Least-Squares Line

Least-squares fitting to linear models has critical advantages over other norms
and metrics. Specifically, the optimization is inexpensive, since the error can
be computed analytically. To show this explicitly, consider applying the least-
squares fit criteria to the data points (xk, yk), where k = 1, 2, 3, . . . , n. To fit the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

166 CHAPTER 4. REGRESSION AND MODEL SELECTION

curve
f(x) = β1x+ β2 (4.10)

to this data, the error E2 is found by minimizing the sum:

E2(f) =
n∑

k=1

|f(xk)− yk|2 =
n∑

k=1

(β1xk + β2 − yk)2. (4.11)

Minimizing this sum requires differentiation. Specifically, the constants β1 and
β2 are chosen so that a minimum occurs. Thus we require ∂E2/∂β1 = 0 and
∂E2/∂β2 = 0. Note that although a zero derivative can indicate either a mini-
mum or a maximum, we know this must be a minimum of the error since there
is no maximum error, i.e., we can always choose a line that has a larger error.
The minimization condition gives

∂E2

∂β1

= 0:
n∑

k=1

2(β1xk + β2 − yk)xk = 0, (4.12a)

∂E2

∂β2

= 0:
n∑

k=1

2(β1xk + β2 − yk) = 0. (4.12b)

Upon rearranging, a 2× 2 system of linear equations is found for A and B:
(∑n

k=1 x
2
k

∑n
k=1 xk∑n

k=1 xk n

)(
β1

β2

)
=

(∑n
k=1 xkyk∑n
k=1 yk

)
=⇒ Ax = b. (4.13)

This linear system of equations can be solved using the backslash command in
MATLAB. Thus an optimization procedure is unnecessary since the solution is
computed exactly from a 2× 2 matrix.

This method can be easily generalized to higher polynomial fits. In particu-
lar, a parabolic fit to a set of data requires the fitting function

f(x) = β1x
2 + β2x+ β3, (4.14)

where now the three constants β1, β2, and β3 must be found. These can be
solved for with the 3×3 system resulting from minimizing the errorE2(β1, β2, β3)
by taking

∂E2

∂β1

= 0, (4.15a)

∂E2

∂β2

= 0, (4.15b)

∂E2

∂β3

= 0. (4.15c)

In fact, any polynomial fit of degree k will yield a (k+ 1)× (k+ 1) linear system
of equations Ax = b whose solution can be found.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.1. CLASSIC CURVE FITTING 167

Data Linearization

Although a powerful method, the minimization procedure for general fitting of
arbitrary functions results in equations which are non-trivial to solve. Specifi-
cally, consider fitting data to the exponential function

f(x) = β2 exp(β1x). (4.16)

The error to be minimized is

E2(β1, β2) =
n∑

k=1

(β2 exp(β1xk)− yk)2. (4.17)

Applying the minimizing conditions leads to

∂E2

∂β1

= 0:
n∑

k=1

2(β2 exp(β1xk)− yk)β2xk exp(β1xk) = 0, (4.18a)

∂E2

∂β2

= 0:
n∑

k=1

2(β2 exp(β1xk)− yk) exp(β1xk) = 0. (4.18b)

This in turn leads to the 2× 2 system

β2

n∑

k=1

xk exp(2β1xk)−
n∑

k=1

xkyk exp(β1xk) = 0, (4.19a)

β2

n∑

k=1

exp(2β1xk)−
n∑

k=1

yk exp(β1xk) = 0. (4.19b)

This system of equations is nonlinear and cannot be solved in a straightforward
fashion. Indeed, a solution may not even exist. Or many solutions may exist.
Section 4.2 describes a possible iterative procedure, called gradient descent, for
solving this nonlinear system of equations.

To avoid the difficulty of solving this nonlinear system, the exponential fit
can be linearized by the transformation

Y = ln(y), (4.20a)
X = x, (4.20b)
β3 = ln β2. (4.20c)

Then the fit function
f(x) = y = β2 exp(β1x) (4.21)

can be linearized by taking the natural log of both sides so that

ln y = ln(β2 exp(β1x)) = ln β2 + ln(exp(β1x)) = β3 + β1x

=⇒ Y = β1X + β3. (4.22)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

168 CHAPTER 4. REGRESSION AND MODEL SELECTION

By fitting to the natural log of the y data,

(xi, yi)→ (xi, ln yi) = (Xi, Yi), (4.23)

the curve fit for the exponential function becomes a linear fitting problem,
which is easily handled. Thus, if a transform exists that linearizes the data, then
standard polynomial fitting methods can be used to solve the resulting linear
system Ax = b.

4.2 Nonlinear Regression and Gradient Descent

Polynomial and exponential curve fitting admit analytically tractable, best-fit
least-squares solutions. However, such curve fits are highly specialized and a
more general mathematical framework is necessary for solving a broader set
of problems. For instance, one may wish to fit a nonlinear function of the form
f(x) = β1 cos(β2x + β3) + β4 to a data set. Instead of solving a linear system of
equations, general nonlinear curve fitting leads to a system of nonlinear equa-
tions. The general theory of nonlinear regression assumes that the fitting func-
tion takes the general form

f(x) = f(x,β), (4.24)

where the m < n fitting coefficients β ∈ Rm are used to minimize the error. The
root-mean-square error is then defined as

E2(β) =
n∑

k=1

(f(xk,β)− yk)2, (4.25)

which can be minimized by considering them×m system generated from min-
imizing with respect to each parameter βj :

∂E2

∂βj
= 0 for j = 1, 2, . . . ,m. (4.26)

In general, this gives the nonlinear set of equations

n∑

k=1

(f(xk,β)− yk)
∂f

∂βj
= 0 for j = 1, 2, 3, . . . ,m. (4.27)

There are no general methods available for solving such nonlinear systems. In-
deed, nonlinear systems can have no solutions, several solutions, or even an
infinite number of solutions. Most attempts at solving nonlinear systems are
based on iterative schemes which require a good initial guess to converge to
the global minimum error. Regardless, the general fitting procedure is straight-
forward and allows for the construction of a best-fit curve to match the data.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.2. NONLINEAR REGRESSION AND GRADIENT DESCENT 169

(a) (b)

x y

f(x, y)

x y

Figure 4.3: Two objective function landscapes representing (a) a convex func-
tion and (b) a non-convex function. Convex functions have many guarantees
of convergence, while non-convex functions have a variety of pitfalls that can
limit the success of gradient descent. For non-convex functions, local minima
and an inability to compute gradient directions (derivatives that are near zero)
make it challenging for optimization.

In such a solution procedure, it is imperative that a reasonable initial guess be
provided by the user. Otherwise, rapid convergence to the desired root may not
be achieved.

Figure 4.3 shows two example functions to be minimized. The first is a con-
vex function (Fig. 4.3(a)). Convex functions are ideal in that guarantees of con-
vergence exist for many algorithms, and gradient descent can be tuned to per-
form exceptionally well for such functions. The second illustrates a non-convex
function (Fig. 4.3(b)) and shows many of the typical problems associated with
gradient descent, including the fact that the function has multiple local min-
ima as well as flat regions where gradients are difficult to actually compute,
i.e., the gradient is near zero. Optimizing this non-convex function requires
a good guess for the initial conditions of the gradient descent algorithm, al-
though there are many advances around gradient descent for restarting and
ensuring that one is not stuck in a local minimum. Recent training algorithms
for deep neural networks have greatly advanced gradient descent innovations.
This will be further considered in Chapter 6 on neural networks.

Gradient Descent

For high-dimensional systems, we generalize the concept of a minimum or
maximum, i.e., an extremum of a multi-dimensional function f(x). At an ex-
tremum, the gradient must be zero, so that

∇f(x) = 0. (4.28)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

170 CHAPTER 4. REGRESSION AND MODEL SELECTION

Since saddles exist in higher-dimensional spaces, one must test if the extremum
point is a minimum or a maximum. The idea behind gradient descent, or steep-
est descent, is to use the derivative information as the basis of an iterative algo-
rithm that progressively converges to a local minimum point of f(x).

To illustrate how to proceed in practice, consider the simple two-dimensional
surface

f(x, y) = x2 + 3y2, (4.29)

which has a single minimum located at the origin (x, y) = 0. The gradient for
this function is

∇f(x) =
∂f

∂x
x̂ +

∂f

∂y
ŷ = 2x x̂ + 6y ŷ, (4.30)

where x̂ and ŷ are unit vectors in the x and y directions, respectively.
Figure 4.4 illustrates the gradient steepest descent algorithm. At the initial

guess point, the gradient ∇f(x) is computed. This gives the direction of steep-
est descent towards the minimum point of f(x), i.e., the minimum is located
in the direction given by −∇f(x). Note that the gradient does not point at
the minimum, but rather gives the locally steepest path for minimizing f(x).
The geometry of the steepest descent suggests the construction of an algorithm
whereby the next point in the iteration is picked by following the steepest de-
scent, so that

xk+1(δ) = xk − δ∇f(xk), (4.31)

where the parameter δ dictates how far to move along the gradient descent
curve. This formula represents a generalization of a Newton method where the
derivative is used to compute an update in the iteration scheme. In gradient
descent, it is crucial to determine how much to step forward according to the
computed gradient, so that the algorithm is always going downhill in an optimal
way. This requires the determination of the correct value of δ in the algorithm.

To compute the value of δ, consider the construction of a new function

F (δ) = f(xk+1(δ)), (4.32)

which must be minimized now as a function of δ. This is accomplished by com-
puting ∂F/∂δ = 0. Thus one finds

∂F

∂δ
= −∇f(xk+1)∇f(xk) = 0. (4.33)

The geometrical interpretation of this result is the following:∇f(xk) is the gra-
dient direction of the current iteration point and∇f(xk+1) is the gradient direc-
tion of the future point; thus δ is chosen so that the two gradient directions are
orthogonal.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.2. NONLINEAR REGRESSION AND GRADIENT DESCENT 171

x y

f(x, y)

Figure 4.4: Gradient descent algorithm applied to the function f(x, y) = x2 +
3y2. The contours are plotted for each successive value (x, y) in the iteration
algorithm given the initial guess (x, y) = (3, 2). Note the orthogonality of each
successive gradient in the steepest descent algorithm.

For the example given above with f(x, y) = x2 + 3y2, we can compute this
condition as follows:

xk+1 = xk − δ∇f(xk) = (1− 2δ)x x̂ + (1− 6δ)y ŷ. (4.34)

This expression is used to compute

F (δ) = f(xk+1(δ)) = (1− 2δ)2x2 + 3(1− 6δ)2y2, (4.35)

whereby its derivative with respect to δ gives

F ′(δ) = −4(1− 2δ)x2 − 36(1− 6δ)y2. (4.36)

Setting F ′(δ) = 0 then gives

δ =
x2 + 9y2

2x2 + 54y2
(4.37)

as the optimal descent step length. Note that the length of δ is updated as the
algorithm progresses. This gives us all the information necessary to perform
the steepest descent search for the minimum of the given function.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

172 CHAPTER 4. REGRESSION AND MODEL SELECTION

Code 4.3: [MATLAB] Gradient descent example.
x(1)=3; y(1)=2; % initial guess
f(1)=x(1)ˆ2+3*y(1)ˆ2; % initial function value
for j=1:10

del=(x(j)ˆ2 +9*y(j)ˆ2)/(2*x(j)ˆ2 + 54*y(j)ˆ2);
x(j+1)=(1-2*del)*x(j); % update values
y(j+1)=(1-6*del)*y(j);
f(j+1)=x(j+1)ˆ2+3*y(j+1)ˆ2;

if abs(f(j+1)-f(j))<10ˆ(-6) % check convergence
break

end
end

Code 4.3: [Python] Gradient descent example.
x[0] = 3; y[0] = 2 # Initial guess

f[0] = x[0]**2 + 3*y[0]**2 # Initial function value

for j in range(len(x)-1):
Del = (x[j]**2 + 9*y[j]**2)/(2*x[j]**2 + 54*y[j]**2)
x[j+1] = (1 - 2*Del)*x[j] # update values
y[j+1] = (1 - 6*Del)*y[j]
f[j+1] = x[j+1]**2 + 3*y[j+1]**2

if np.abs(f[j+1]-f[j]) < 10**(-6): # check convergence
x = x[:j+2]
y = y[:j+2]
f = f[:j+2]
break

As is clearly evident, this descent search algorithm based on derivative infor-
mation is similar to Newton’s method for root finding both in one dimension
as well as in higher dimensions. Figure 4.4 shows the rapid convergence to the
minimum for this convex function. Moreover, the gradient descent algorithm is
the core algorithm of advanced iterative solvers such as the bi-conjugate gradi-
ent descent method (bicgstab) and the generalized method of residuals (gmres)
[295].

In the example above, the gradient could be computed analytically. More
generally, given just data itself, the gradient can be computed with numeri-
cal algorithms. The gradient command can be used to compute local or global
gradients. Figure 4.5 shows the gradient terms ∂f/∂x and ∂f/∂y for the two
functions shown in Fig. 4.3, where the function f(x, y) is a two-dimensional
function computed from a known function or directly from data. The output

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.2. NONLINEAR REGRESSION AND GRADIENT DESCENT 173

(a) (b)

(c) (d)

∂f/∂x ∂f/∂y

x y

Figure 4.5: Computation of the gradient for the two functions illustrated in
Fig. 4.3. In the left panels, the gradient terms (a) ∂f/∂x and (c) ∂f/∂y are
computed for Fig. 4.3(a), while the right panels compute these same terms for
Fig. 4.3(b) in panels (b) and (d), respectively. The gradient command numeri-
cally generates the gradient.

are matrices containing the values of ∂f/∂x and ∂f/∂y over the discretized do-
main. The gradient can be used to approximate either local or global gradients
to execute the gradient descent, as shown in Fig. 4.5.

The above discussion provides a rudimentary introduction to gradient de-
scent. A wide range of innovations have attempted to speed up this domi-
nant nonlinear optimization procedure, including alternating descent methods.
Some of these will be discussed further in the neural network chapter where
gradient descent plays a critical role in training a network. For now, one can
see that there are a number of issues for this nonlinear optimization procedure,
including determining the initial guess, and step size δ, and computing the gra-
dient efficiently.

Alternating Descent

Another common technique for optimizing nonlinear functions of several vari-
ables is the alternating descent method (ADM). Instead of computing the gradient
in several variables, optimization is done iteratively in one variable at a time,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

174 CHAPTER 4. REGRESSION AND MODEL SELECTION

x

y

f(x, y)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x

y

Figure 4.6: Gradient descent applied to the function featured in Fig. 4.3(b).
Three initial conditions are shown: (x0, y0) = {(0, 4), (−5, 0), (2,−5)} . The first
of these (red circles) gets stuck in a local minimum, while the other two initial
conditions (blue and magenta) find the global minimum. Interpolation of the
gradient functions of Fig. 4.5 are used to update the solutions.

as shown in Fig. 4.7. For the example just demonstrated, this would make the
computation of the gradient unnecessary. The basic strategy is simple: optimize
along one variable at a time, seeking the minimum while holding all other vari-
ables fixed. After passing through each variable once, the process is repeated
until a desired convergence is reached. Note that the alternating descent only
requires a line search along one variable at a time, thus potentially speeding up
computations. Moreover, the method is derivative-free, which is attractive in
many applications.

4.3 Regression and Ax = b: Over- and Under-Determined
Systems

Curve fitting, as shown in the previous two sections, results in an optimiza-
tion problem. In many cases, the optimization can be mathematically framed
as solving the linear system of equations Ax = b. Before proceeding to dis-
cuss model selection and the various optimization methods available for this
problem, it is instructive to consider that, in many circumstances in modern
data science, the linear system Ax = b is typically massively over- or under-
determined. Over-determined systems have more constraints (equations) than
unknown variables while under-determined systems have more unknowns than
constraints. Thus in the former case, there are generally no solutions satisfying
the linear system, and, instead, approximate solutions are found to minimize
a given error. In the latter case, there are an infinite number of solutions, and

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.3. REGRESSION AND AX = B: OVER- AND UNDER-DETERMINED
SYSTEMS 175

x

y

f(x, y)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

x

y

Figure 4.7: Alternating descent applied to the function in Fig. 4.3(b). Three ini-
tial conditions are shown: (x0, y0) = {(4, 0), (0,−5), (−5, 2)}. The first of these
(red circles) gets stuck in a local minimum, while the other two initial condi-
tions (blue and magenta) find the global minimum. No gradients are computed
to update the solution. Note the rapid convergence in comparison with Fig. 4.6.

some choice of constraint must be made in order to select an appropriate and
unique solution. The goal of this section is to highlight two different norms
(`2 and `1) used for optimization that are used to solve Ax = b for over- and
under-determined systems. The choice of norm has a profound impact on the
optimal solution achieved.

Before proceeding further, it should be noted that the system Ax = b con-
sidered here is a restricted instance of Y = f(X,β) in (4.4). Thus the solution
x contains the loadings or leverage scores characterizing the relationship between
the input data A and outcome data b. A simple solution for this linear problem
uses the Moore–Penrose pseudo-inverse A† from Section 1.4:

x = A†b. (4.38)

This operator is computed with the pinv(A) command in MATLAB. However,
such a solution is restrictive, and a greater degree of flexibility is sought for
computing solutions. Our particular aim in this section is to demonstrate the
interplay in solving over- and under-determined systems using the `1- and `2-
norms.

Over-determined Systems

Figure 4.8 shows the general structure of an over-determined system. As al-
ready stated, there are generally no solutions that satisfy Ax = b. Thus, the
optimization problem to be solved involves minimizing the error, for example,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

176 CHAPTER 4. REGRESSION AND MODEL SELECTION

=

A x = b

Model terms Loadings Outcomes

Figure 4.8: Regression framework for over-determined systems. In this case,
Ax = b cannot be satisfied in general. Thus, finding solutions for this system
involves minimizing, for instance, the least-squares error ‖Ax − b‖2 subject to
a constraint on the solution x, such as minimizing the `2-norm ‖x‖2.

the least-squares `2 error E2, by finding an appropriate value of x̂:

x̂ = argmin
x
‖Ax− b‖2. (4.39)

This basic architecture does not explicitly enforce any constraints on the
loadings x. In order to both minimize the error and enforce a constraint on the
solution, the basic optimization architecture can be modified to the following:

x̂ = argmin
x
‖Ax− b‖2 + λ1‖x‖1 + λ2‖x‖2, (4.40)

where the parameters λ1 and λ2 control the penalization of the `1- and `2-norms,
respectively. This now explicitly enforces a constraint on the solution vector it-
self, not just on the error. The ability to design the penalty by adding regulariz-
ing constraints is critical for understanding model selection in the following.

In the examples that follow, a particular focus will be given to the role of
the `1-norm. The `1-norm, as already shown in Chapter 3, promotes sparsity so

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.3. REGRESSION AND AX = B: OVER- AND UNDER-DETERMINED
SYSTEMS 177

that many of the loadings of the solution x are zero. This will play an impor-
tant role in variable and model selection in the next section. For now, consider
solving the optimization problem (4.40) with λ2 = 0. We use the open-source
convex optimization package cvx in MATLAB [293] to compute our solution
to (4.40). The following code considers various values of the `1 penalization
in producing solutions to an over-determined system with 500 constraints and
100 unknowns.

Code 4.4: [MATLAB] Solutions for an over-determined system.
n=500; m=100;
A=rand(n,m);
b=rand(n,1);
xdag=pinv(A)*b;

lam=[0 0.1 0.5];
for j=1:3

cvx_begin;
variable x(m)
minimize(norm(A*x-b,2) + lam(j)*norm(x,1));
cvx_end;

subplot(4,1,j),bar(x)
subplot(4,3,9+j), hist(x,20)

end

Code 4.4: [Python] Solutions for an over-determined system.
n = 500; m = 100
A = np.random.rand(n,m)
b = np.random.rand(n)

xdag = np.linalg.pinv(A)@b
lam = np.array([0, 0.1, 0.5])

def reg_norm(x,A,b,lam):
return np.linalg.norm(A@x-b,ord=2) + lam*np.linalg.norm(

x,ord=1)

fig,axs = plt.subplots(len(lam),2)
res = minimize(reg_norm,args=(A,b,lam[j]),x0=xdag)
x = res.x

Figure 4.9 highlights the results of the optimization process as a function of
the parameter λ1. It should be noted that the solution with λ1 = 0 is equivalent
to the solution xdag produced by computing the pseudo-inverse of the matrix

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

178 CHAPTER 4. REGRESSION AND MODEL SELECTION

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

-0.1 0 0.1

0

40

80

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

-0.1 0 0.1

0

40

80

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

-0.1 0 0.1

0

40

80

(a) λ1 = 0.0

(b) λ1 = 0.1

(c) λ1 = 0.5

(d) (e) (f)

Figure 4.9: Solutions to an over-determined system with 500 constraints and
100 unknowns. Panels (a)–(c) show bar plots of the values of the loadings of
the vectors x. Note that as the `1 penalty is increased from (a) λ1 = 0 to (b) λ1 =
0.1 to (c) λ1 = 0.5, the number of zero elements of the vector increases, i.e., it
becomes more sparse. A histogram of the loading values for (a)–(c) is shown
in panels (d)–(f), respectively. This highlights the role that the `1-norm plays in
promoting sparsity in the solution.

A. Note that the `1-norm promotes a sparse solution where many of the com-
ponents of the solution vector x are zero. The histograms of the solution values
of x in Fig. 4.9(d)–(f) are particularly revealing, as they show the sparsification
process for increasing λ1.

The regression for over-determined systems can be generalized to matrix
systems as shown in Fig. 4.8. In this case, the cvx command structure simply
modifies the size of the matrix b and solution matrix x. Figure 4.10 shows the
results of this over-determined matrix system for two different values of the
added `1 penalty. Note that the addition of the `1-norm sparsifies the solution
and produces a matrix that is dominated by zero entries. The two examples in
Figs. 4.9 and 4.10 show the important role that the `2- and `1-norms have in
generating different types of solutions. In the following sections of this book,
these norms will be exploited to produce parsimonious models from data.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.3. REGRESSION AND AX = B: OVER- AND UNDER-DETERMINED
SYSTEMS 179

1 20 40 60

1

10

20

-0.2

0

0.2

1 20 40 60

1

10

20

0

0.1

0.2

(a) λ1 = 0.0

(b) λ1 = 0.1

Figure 4.10: Solutions to an over-determined system Ax = b with 300 con-
straints and 60 × 20 unknowns. Panels (a) and (b) show a plot of the values of
the loadings of the matrix x with `1 penalty (a) λ1 = 0 to (b) λ1 = 0.1.

Under-determined Systems

For underdetermined systems, there are an infinite number of possible solu-
tions satisfying Ax = b. The goal in this case is to impose an additional con-
straint, or set of constraints, whereby a unique solution is generated from the
infinite possibilities. The basic mathematical structure is shown in Fig. 4.11. As
an optimization, the solution to the under-determined system can be stated as

min ‖x‖p subject to Ax = b, (4.41)

where the p denotes the p-norm of the vector x. For simplicity, we consider the
`2- and `1-norms only. As has already been shown for over-determined systems,
the `1-norm promotes sparsity of the solution.

We again use the convex optimization package cvx to compute our solu-
tion to (4.42). The following code considers both `2 and `1 penalization in pro-
ducing solutions to an under-determined system with 20 constraints and 100
unknowns.

Code 4.5: [MATLAB] Solutions for an under-determined matrix system.
n=20; m=100

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

180 CHAPTER 4. REGRESSION AND MODEL SELECTION

A=rand(n,m); b=rand(n,1);

cvx_begin;
variable x2(m)
minimize(norm(x2,2));
subject to
A*x2 == b;
cvx_end;

cvx_begin;
variable x1(m)
minimize(norm(x1,1));
subject to
A*x1 == b;
cvx_end;

Code 4.5: [Python] Solutions for an under-determined matrix system.
n = 20; m = 100
A = np.random.rand(n,m)
b = np.random.rand(n)

def two_norm(x):
return np.linalg.norm(x,ord=2)

def one_norm(x):
return np.linalg.norm(x,ord=1)

constr = ({’type’: ’eq’, ’fun’: lambda x: A @ x - b})
x0 = np.random.rand(m)
res = minimize(two_norm, x0, method=’SLSQP’,constraints=

constr)
x2 = res.x

res = minimize(one_norm, x0, method=’SLSQP’,constraints=
constr)

x1 = res.x

This code produces two solution vectors x2 and x1, which minimize the `2- and
`1-norm, respectively. Note the way that cvx allows one to impose constraints
in the optimization routine. Figure 4.12 shows a bar plot and histogram of the
two solutions produced. As before, the sparsity-promoting `1-norm yields a so-
lution vector dominated be zeros. In fact, for this case, there are exactly 80 zeros
for this linear system since there are only 20 constraints for the 100 unknowns.

As with the over-determined system, the optimization can be modified to
handle more general under-determined matrix equations, as shown in Fig. 4.11.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.4. OPTIMIZATION AS THE CORNERSTONE OF REGRESSION 181

=

A x = b
Model terms Loadings Outcomes

Figure 4.11: Regression framework for under-determined systems. In this case,
Ax = b can be satisfied. In fact, there are an infinite number of solutions. Thus
pinning down a unique solution for this system involves minimizing a con-
straint. For instance, from an infinite number of solutions, we choose the one
that minimizes the `2-norm ‖x‖2, which is subject to the constraint Ax = b.

The cvx optimization package may be used for this case as before with over-
determined systems. The software engine can also work with more general p-
norms as well as minimize with both `1 and `2 penalties simultaneously. For
instance, a common optimization modifies (4.42) to the following:

min(λ1‖x‖1 + λ2‖x‖2) subject to Ax = b, (4.42)

where the weighting between λ1 and λ2 can be used to promote a desired spar-
sification of the solution. These different optimization strategies are common
and will be considered further in the following.

4.4 Optimization as the Cornerstone of Regression

In the previous two sections of this chapter, the fitting function f(x) was speci-
fied. For instance, it may be desirable to produce a line fit so that f(x) = β1x+β2.
The coefficients are then found by the regression and optimization methods al-
ready discussed. In what follows, our objective is to develop techniques which
allow us to objectively select a good model for fitting the data, i.e., should one
use a quadratic or cubic fit? The error metric alone does not dictate a good

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

182 CHAPTER 4. REGRESSION AND MODEL SELECTION

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80 90 100
-0.4

-0.2

0

0.2

0.4

-0.1 0 0.1
0

40

80

-0.1 0 0.1
0

40

80

(a)

(b)

(c) (d)

Figure 4.12: Solutions to an under-determined system with 20 constraints and
100 unknowns. Panels (a) and (b) show bar plots of the values of the loadings
of the vectors x. In panel (a), the optimization is subject to minimizing the `2-
norm of the solution, while panel (b) is subject to minimizing the `1-norm. Note
that the `1 penalization produces a sparse solution vector. A histogram of the
loading values for (a) and (b) is shown in panels (c) and (d), respectively.

model selection, as the more terms that are chosen for fitting, the more param-
eters are available for lowering the error, regardless of whether the additional
terms have any meaning or interpretability.

Optimization strategies will play a foundational role in extracting inter-
pretable results and meaningful models from data. As already shown in pre-
vious sections, the interplay of the `2- and `1-norms has a critical impact on the
optimization outcomes. To illustrate further the role of optimization and the
variety of possible outcomes, consider the simple example of data generated
from noisy measurements of a parabola:

f(x) = x2 +N (0, σ), (4.43)

where N (0, σ) is a normally distributed random variable with mean zero and
standard deviation σ. Figure 4.13(a) shows an example of 100 random mea-
surements of (4.43). The parabolic structure is clearly evident despite the noise
added to the measurement. Indeed, a parabolic fit is trivial to compute using
the classic least-squares fitting methods outlined in the first section of this chap-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.4. OPTIMIZATION AS THE CORNERSTONE OF REGRESSION 183

5 10 15 20

-2

-1

0

1

2

5 10 15 20

-5

0

5

5 10 15 20

-2

0

2

4

5 10 15 20

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

15

20

(b) (c)

(d) (e)

(a)

Polynomial degree xp−1

Lo
ad

in
gs

f(x)

x

Figure 4.13: (a) One hundred realizations of the parabolic function (4.43) with
additive white noise parameterized by σ = 0.1. Although the noise is small, the
least-squares fitting procedure produces significant variability when fitting to a
polynomial of degree 20. Panels (b)–(e) demonstrate the loadings (coefficients)
for the various polynomial coefficients for four different noise realizations. This
demonstrated model variability frames the model selection architecture.

ter.
The goal is to discover the best model for the data given. So, instead of speci-

fying a model a priori, in practice, we do not know what the function is and need
to discover it. We can begin by positing a regression to a set of polynomial mod-
els. In particular, consider framing the model selection problem Y = f(X,β) of
(4.4) as the following system Ax = b:

 1 xj x2

j · · · xp−1
j

β1
...
βp

 =

f(x1)
f(x2)

...
f(x100)

, (4.44)

where the matrix A contains polynomial models up to degree p− 1, with each
row representing a measurement, the βk are the coefficients for each polyno-
mial, and the matrix b contains the outcomes (data) f(xj). In what follows,
we will consider a scenario where 100 measurements are taken and a 20-term

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

184 CHAPTER 4. REGRESSION AND MODEL SELECTION

(19th-order) polynomial is fit. Thus the matrix system Ax = b results in an
over-determined system as illustrated in Fig. 4.8. Figure 4.13(b)–(e) shows four
typical loadings β computed from the regression procedure. Note that, despite
the low level of noise added, the loadings are significantly different from one
another. Thus each noise realization produces a very different model to explain
the data.

The variability of the regression results is problematic for model selection.
It suggests that even a small amount of measurement noise can lead to signif-
icantly different conclusions about the underlying model. In what follows, we
quantify this variability while also considering various regression procedures
for solving the over-determined linear system Ax = b. Highlighted here are
five standard methods: least-squares regression (pinv), the backslash opera-
tor (\), (least absolute shrinkage and selection operator) LASSO (lasso), robust
fit (robustfit), and ridge regression (ridge). Returning to the last section, and
specifically (4.40), helps frame the mathematical architecture for these various
Ax = b solvers. Specifically, the Moore–Penrose pseudo-inverse (pinv) solves
(4.40) with λ1 = λ2 = 0. The backslash command (\) for over-determined sys-
tems solves the linear system via a QR decomposition [711]. The LASSO (lasso)
solves (4.40) with λ1 > 0 and λ2 = 0. Ridge regression (ridge) solves (4.40) with
λ1 = 0 and λ2 > 0. However, the modern implementation of ridge in MATLAB
is a bit more nuanced. The popular elastic net algorithm weights both the `2 and
`1 penalty, thus providing a tunable hybrid model regression between ridge
and LASSO. Robust fit (robustfit) solves (4.40) by a weighted least-squares fit-
ting. Moreover, it allows one to leverage robust statistics methods and penalize
according to the Huber norm so as to promote outlier rejection [343]. In the
data considered here, no outliers are imposed on the data, so that the power
of robust fit is not properly leveraged. Regardless, it is an important technique
one should consider.

Figure 4.14 shows a series of box plots for 100 realizations of data that illus-
trate the differences with the various regression techniques considered. It also
highlights critically important differences with optimization strategies based
on the `2- and `1-norm. From a model selection point of view, the least-squares
fitting procedure produces significant variability in the loading parameters β
as illustrated in Fig. 4.14(a,b,e). The least-squares fitting was produced by the
Moore–Penrose pseudo-inverse or QR decomposition, respectively. If some `1

penalty (regularization) is allowed, then Fig. 4.14(c,d,f) show that a more parsi-
monious model is selected with low variability. This is expected, as the `1-norm
sparsifies the solution vector of loading values β. Indeed, the standard LASSO
regression correctly selects the quadratic polynomial as the dominant contribu-
tion to the data.

Despite the significant variability exhibited in Fig. 4.14 for most of the load-
ing values by the different regression techniques, the error produced in the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.4. OPTIMIZATION AS THE CORNERSTONE OF REGRESSION 185

1 5 10 15 20

-20

0

20

1 5 10 15 20

-40

-20

0

20

40

1 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20

0

0.5

1

1 5 10 15 20

-40

-20

0

20

40

1 5 10 15 20

0

0.5

1

Polynomial degree xp−1

Er
ro

r

(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Comparison of regression methods for Ax = b for an over-
determined system of linear equations. The 100 realizations of data are gen-
erated from a simple parabola (4.43) that is fit to a 20th-degree polynomial via
(4.44). The box plots show (a) least-squares regression via the Moore–Penrose
pseudo-inverse (pinv), (b) the backslash command (\), (c) LASSO regression
(lasso), (d) LASSO regression with different `2 versus `1 penalization, (e) robust
fit, and (f) ridge regression. Note the significant variability in the loading val-
ues for the strictly `2-based methods ((a), (b), and (e)), and the low-variability
for `1-weighted methods and ridge ((c), (d), and (f)). Only the standard LASSO
(c) identifies the dominance of the parabolic term.

fitting procedure has little variability. Moreover, the various methods all pro-
duce regressions that have comparable error. Thus despite their differences in
optimization frameworks, the error from fitting is relatively agnostic to the un-
derlying method. This suggests that using the error alone as a metric for model
selection is potentially problematic, since almost any method can produce a re-
liable, low-error model. Figure 4.15(a) shows a box plot of the error produced
using the regression methods of Fig. 4.14. All of the regression techniques pro-
duce comparably low-error and low-variability results using significantly dif-
ferent strategies.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

186 CHAPTER 4. REGRESSION AND MODEL SELECTION

1 2 3 4 5 6
0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

×10
-3

0

2

4

6

8

Er
ro

r

(a) (b) (c)

Regression method

x

x2

Polynomial degree xp−1

Figure 4.15: (a) Comparison of the error for the six regression methods used in
Fig. 4.14. Despite the variability across the optimization methods, all of them
produce low-error solutions. (b) Error using least-squares regression as a func-
tion of increasing degree of polynomial. The error drops rapidly until the quad-
ratic term is used in the regression. (c) Detail of the error showing that the error
actually increases slightly by using a higher-degree polynomial to fit the data.

As a final note to this section and the code provided, we can consider in-
stead the regression procedure as a function of the number of polynomials in
(4.44). In our example of Fig. 4.14, polynomials up to degree 20 were consid-
ered. If, instead, we sweep through polynomial degrees, then something inter-
esting and important occurs, as illustrated in Fig. 4.15(b)–(c). Specifically, the
error of the regression collapses to 10−3 after the quadratic term is added, as
shown in panel (b). This is expected since the original model was a quadratic
function with a small amount of noise. Remarkably, as more polynomial terms
are added, the ensemble error actually increases in the regression procedure, as
highlighted in panel (c). Thus simply adding more terms does not improve the
error, which is counter-intuitive at first. Note that we have only swept through
polynomials up to degree 10. Note further that Fig. 4.15(c) is a detail of panel
(b). The error produced by a simple parabolic fit is approximately twice as good
as a polynomial with degree 10. These results will help frame our model selec-
tion framework of the remaining sections.

4.5 The Pareto Front and Lex Parsimoniae

The preceding chapters have shown that regression is more nuanced than sim-
ply choosing a model and performing a least-squares fit. Not only are there
numerous metrics for constraining the solution, the model itself should be care-
fully selected in order to achieve a better, more interpretable description of the
data. Such considerations on an appropriate model date back to William of Oc-
cam (c. 1287–1347), who was an English Franciscan friar, scholastic philosopher,
and theologian. Occam proposed his law of parsimony (in Latin lex parsimo-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.5. THE PARETO FRONT AND LEX PARSIMONIAE 187

Number of terms

Error

Pareto
optimal

Pareto frontier

Models

Figure 4.16: For model selection, the criteria of accuracy (low error) is balanced
against parsimony. There can be a variety of models with the same number of
terms (green and magenta points), but the Pareto frontier (magenta points) is
defined by the envelope of models that produce the lowest error for a given
number of terms. The solid line provides an approximation to the Pareto fron-
tier. The Pareto optimal solutions (shaded region) are those models that produce
accurate models while remaining parsimonious.

niae), commonly known as Occam’s razor, whereby he stated that, among com-
peting hypotheses, the one with the fewest assumptions should be selected, or
when you have two competing theories that make exactly the same predictions,
the simpler one is the more likely. The philosophy of Occam’s razor has been
used extensively throughout the physical and biological sciences for develop-
ing governing equations to model observed phenomena.

Parsimony also plays a central role in the mathematical work of Vilfredo
Pareto (c. 1848–1923). Pareto was an Italian engineer, sociologist, economist,
political scientist, and philosopher. He made several important contributions
to economics, specifically in the study of income distribution and in the analy-
sis of individuals’ choices. He was also responsible for popularizing the use of
the term elite in social analysis. In more recent times, he has become known for
the popular 80/20 rule, which is qualitatively illustrated in Fig. 4.16, named af-
ter him as the “Pareto principle” by management consultant Joseph M. Juran in
1941. Stated simply, it is a common principle in business and consulting man-
agement, for instance, that observes that 80% of sales come from 20% of clients.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

188 CHAPTER 4. REGRESSION AND MODEL SELECTION

This concept was popularized by Richard Koch’s book The 80/20 Principle [395]
(along with several follow-up books [396, 397, 398]), which illustrated a num-
ber of practical applications of the Pareto principle in business management
and life.

Pareto and Occam ultimately advocated the same philosophy: explain the
majority of observed data with a parsimonious model. Importantly, model se-
lection is not simply about reducing error; rather, it is about producing a model
that has a high degree of interpretability, generalization, and predictive capa-
bilities. Figure 4.16 shows the basic concept of the Pareto frontier and Pareto op-
timal solutions. Specifically, for each model considered, the number of terms
and the error in matching the data are computed. The solutions with the lowest
error for a given number of terms define the Pareto frontier. Those parsimo-
nious solutions that optimally balance error and complexity are in the shaded
region and represent the Pareto optimal solutions. In game theory, the Pareto
optimal solution is thought of as a strategy that cannot be made to perform
better against one opposing strategy without performing less well against an-
other (in this case, error and complexity). In economics, it describes a situation
in which the profit of one party cannot be increased without reducing the profit
of another. Our objective is to select, in a principled way, the best model from
the space of Pareto optimal solutions. To this end, information criteria, which
will be discussed in subsequent sections, will be used to select from candidate
modes in the Pareto optimal region.

Overfitting

The Pareto concept needs amending when considering application to real data.
Specifically, when building models with many free parameters, which is of-
ten the case in machine learning applications with high-dimensional data, it is
easy to overfit a model to the data. Indeed, the increase in error illustrated in
Fig. 4.15(c) as a function of increasing model complexity illustrates this point.
Thus, unlike what is depicted in Fig. 4.16, where the error goes towards zero
as the number of model terms (parameters) is increased, the error may actually
increase when considering models with a higher number of terms and/or pa-
rameters. To determine the correct model, various cross-validation and model
selection algorithms are necessary.

To illustrate the overfitting that occurs with real data, consider the sim-
ple example of the last section. In this example, we are simply trying to find
the correct parabolic model measured with additive noise (4.43). The results of
Figs. 4.15(b) and 4.15(c) already indicate that overfitting is occurring for poly-
nomial models beyond second order. The following MATLAB example will
highlight the effects of overfitting. Consider the production of a training and
test set for the parabola of (4.43). The training set is on the region x ∈ [0, 4]

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.5. THE PARETO FRONT AND LEX PARSIMONIAE 189

0 1 2 3 4 5 6 7 8
0

20

40

60

80

1 5 10 15 20 25 30
0

0.2

0.4

0.6

1 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

1 5 10 15 20 25 30

×10
13

0

5

10

15

1 5 10 15 20 25 30
0

10

20

30

(a)

(b) (c)

(d) (e)

Interpolation
Extrapolationf(x)

x

In
te

rp
ol

at
io

n
er

ro
r

Ex
tr

ap
ol

at
io

n
er

ro
r

Polynomial degree xp−1

lo
g(

E+
1)

Figure 4.17: (a) The ideal model f(x) = x2 over the domain x ∈ [0, 8]. Data is
collected in the region x ∈ [0, 4] in order to build a polynomial regression model
(4.44) with increasing polynomial degree. In the interpolation regime x ∈ [0, 4],
the model error stays constrained, with increasing error due to overfitting for
polynomials of degree greater than two. The error is shown in panel (b) with a
zoom-in of the error in panel (c). For extrapolation, x ∈ [4, 8], the error grows
exponentially beyond a parabolic fit. In panel (d), the error is shown to grow
to 1013. A zoom-in of the region on a logarithmic scale of the error (log(E +
1), where unity is added so that zero error produces a zero score) shows the
exponential growth of error. This clearly shows that the model trained on the
interval x ∈ [0, 4] does not generalize (extrapolate) to the region x ∈ [4, 8]. This
example should serve as a serious warning and note of caution in model fitting.

while the test set (extrapolation region) will be for x ∈ [4, 8].
This produces the ideal model on two distinct regions: x ∈ [0, 4] and x ∈

[4, 8]. Once measurement noise is added to the model, then the parameters for
a polynomial fit no longer produce the perfect parabolic model. We can com-
pute for given noisy measurements both an interpolation error, where mea-
surements are taken in the data regime of x ∈ [0, 4], and extrapolation error,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

190 CHAPTER 4. REGRESSION AND MODEL SELECTION

where measurements are taken in the data regime of x ∈ [4, 8]. For this exam-
ple, a least-squares regression is performed using the pseudo-inverse (pinv)
from MATLAB.

This simple example shows some of the most basic and common features
associated with overfitting of models. Specifically, overfitting does not allow
for generalization. Consider the results of Fig. 4.17 generated from the above
code. In this example, the least-squares loadings (4.44) for a polynomial are
computed using the pseudo-inverse for data in the range x ∈ [0, 4]. The interpo-
lation error for these loadings is demonstrated in Figs. 4.17(b) and (c). Note the
impact of overfitting by polynomials for this interpolation of the data. Specif-
ically, the error of the interpolated fit increases from beyond a second-degree
polynomial. Extrapolation for an overfit model produces significant errors. Fig-
ure 4.17(d) and (e) show the error growth as a function of the least-squares fit
pth-degree polynomial model. The error in Fig. 4.17(d) is on a logarithmic plot
since it grows to 1013. This demonstrates a clear inability of the overfit model
to generalize to the range x ∈ [4, 8]. Indeed, only a parsimonious model with
a second-degree polynomial can easily generalize to the range x ∈ [4, 8] while
keeping the error small.

The above example shows that some form of model selection to systemati-
cally deduce a parsimonious model is critical for producing viable models that
can generalize outside of where data is collected. Much of machine learning
revolves around (i) using data to generate predictive models, and (ii) applying
cross-validation techniques to remove the most deleterious effects of overfit-
ting. Without a cross-validation strategy, one will almost certainly produce a
non-generalizable model such as that exhibited in Fig. 4.17. In what follows,
we will consider some standard strategies for producing reasonable models.

4.6 Model Selection: Cross-Validation

The previous section highlights many of the fundamental problems with re-
gression. Specifically, it is easy to overfit a model to the data, thus leading to a
model that is incapable of generalizing for extrapolation. This is an especially
pernicious issue in training deep neural nets. To overcome the consequences
of overfitting, various techniques have been proposed to more appropriately
select a parsimonious model with only a few parameters, thus balancing the
error with a model that can more easily generalize or extrapolate. This pro-
vides a reinterpretation of the Pareto front in Fig. 4.16. Specifically, the error
increases dramatically with the number of terms due to overfitting, especially
when used for extrapolation.

There are two common mathematical strategies for circumventing the ef-
fects of overfitting in model selection: cross-validation and computing informa-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.6. MODEL SELECTION: CROSS-VALIDATION 191

0 10 20

-1

0

1

0 10 20

-1

0

1

0 10 20

-1

0

1

0 10 20

-1

0

1

0 10 20

-1

0

1

0 10 20

-1

0

1

0 10 20

-1

0

1

0 10 20

-1

0

1

0 10 20

-1

0

1

k = 2 k = 20 k = 100

pseudo-inverse

backslash

LASSO

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Lo
ad

in
gs

Polynomial degree xp−1

Figure 4.18: Cross-validation using k-fold strategy with k = 2, 20, and 100 (left,
middle, and right columns, respectively). Three different regression strategies
are cross-validated: least-squares fitting of pseudo-inverse, the QR-based back-
slash, and the sparsity-promoting LASSO. Note that the LASSO for this exam-
ple produces the quadratic model within even a one- or two-fold validation.
The backslash-based QR algorithm has a strong signature after 100-fold cross-
validation, while the least-squares fitting suggests that the quadratic and cubic
terms are both important even after 100-fold cross-validation.

tion criteria. This section considers the former, while the latter method is con-
sidered in the next section.

Cross-validation strategies are perhaps the most common and critical tech-
niques in almost all machine learning algorithms. Indeed, one should never
trust a model unless properly cross-validated. Cross-validation can be stated
quite simply: Take random portions of your data and build a model. Do this
k times and average the parameter scores (regression loadings) to produce the
cross-validated model. Test the model predictions against withheld (extrapo-
lation) data and evaluate whether the model is actually any good. This com-
monly used strategy is called k-fold cross-validation. It is simple, intuitively

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

192 CHAPTER 4. REGRESSION AND MODEL SELECTION

appealing, and the k-fold model-building procedure produces a statistically
based model for evaluation.

To illustrate the concept of cross-validation, we will once again consider
fitting polynomial models to the simple function f(x) = x2 (see Fig. 4.18).
The previous sections of this chapter have already considered this problem in
detail, looking at both the various regression frameworks available (pseudo-
inverse, LASSO, robust fit, etc.), as well as their ability to accurately produce a
model for interpolating and extrapolating data. The following MATLAB code
considers three regression techniques (least-squares fitting of pseudo-inverse,
the QR-based backslash, and the sparsity-promoting LASSO) for k-fold cross-
validation (k = 2, 20, and 100). In this case, one can think of the k snapshots of
data as trial measurements. As one might expect, there would be an advantage
as more trials are taken, and k = 100 models are averaged for a final model.

Figure 4.18 shows the results of the k-fold cross-validation computations.
By promoting sparsity (parsimony), the LASSO achieves the desired quadratic
model after even a single k = 1 fold (i.e., thus this is not even cross-validated).
In contrast, the least-squares regression (pseudo-inverse) and QR-based regres-
sion both require a significant number of folds to produce the dominant quad-
ratic term. The least-squares regression, even after k = 100 folds, still includes
both a quadratic and a cubic term.

The final model selection process under k-fold cross-validation often can
involve a thresholding of terms that are small in the regression. We demonstrate
the regression using three modeling strategies. Although the LASSO looks al-
most ideal, it still has a small contributing linear component. The QR strategy of
backslash produces a number of small components scattered among the poly-
nomials used in the fit. The least-squares regression has the dominant quadratic
and cubic terms with a large number of non-zero coefficients scattered across
the polynomials. If one thresholds the loadings, then the LASSO and backslash
will produce exactly the quadratic model, while the least-squares fit produces
a quadratic–cubic model. The loading coefficients are thresholded to produce
the final cross-validated model. This model can then be evaluated against both
the interpolated and extrapolated data regions as in Fig. 4.19.

The results of Fig. 4.19 show that the model selection process, and the re-
gression technique used, makes a critical difference in producing a viable model.
It further shows that, despite a k-fold cross-validation, the extrapolation error,
or generalizability, of the model can still be poor. A good model is one that
keeps errors small and also generalizes well, as does the LASSO in the previ-
ous example.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.6. MODEL SELECTION: CROSS-VALIDATION 193

0

0

0.2

5

0.4

10

0.6

15

0.8

20

1

Lo
ad

in
gs

Polynomial degree xp−1

LASSO
backslash

pseudo-inverse

(a)

not thresholded
0

0

0.2

5

0.4

10

0.6

15

0.8

20

1

(b)

thresholded

1 2 3 4 5 6

0

0.5

1

1.5

1 2 3 4 5 6

0

1

2
10

8

1 2 3 4 5 6

0

0.005

0.01

1 2 3 4 5 6

0

0.05

0.1

Er
ro

r

Interpolation Extrapolation
(c) (d)

(e) (f)

LA
SS

O
+

ba
ck

sl
as

h +

pi
nv

+

LA
SS

O

ba
ck

sl
as

h

pi
nv

Model

Figure 4.19: Error and loading results for k = 100-fold cross-validation. The
loadings for the k-fold validation (panel (b) with thresholding denoted by sub-
script +, and panel (a) without thresholding) are shown for least-squares fit-
ting of pseudo-inverse, the QR-based backslash, and the sparsity-promoting
LASSO (see Fig. 4.18). Both the interpolation error (panel (c) and detail in (e))
and extrapolation error (panel (d) and detail in (f)) are computed. The LASSO
performs well for both interpolation and extrapolation, while a least-squares
fit gives poor performance under extrapolation. The six models considered
are: 1, pseudo-inverse; 2, backslash; 3, LASSO; 4, thresholded pseudo-inverse;
5, thresholded backslash; and 6, thresholded LASSO.

k-Fold Cross-Validation

The process of k-fold cross-validation is highlighted in Fig. 4.20. The concept is
to partition a data set into a training set and a test set. The test set, or withhold
set, is kept separate from any training procedure for the model. Importantly, the
test set is where the model produces an extrapolation approximation, which

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

194 CHAPTER 4. REGRESSION AND MODEL SELECTION

D
at

a

Withhold
(test) data

Training
data
=⇒

k-
fo

ld
s

Y
1
=
f

(X
1
,β

1
)

Y
2
=
f

(X
2
,β

2
)

Y
k
=
f

(X
k
,β

k
)

Y=f(X, β̄)
Cross-validated error

Figure 4.20: Procedure for k-fold cross-validation of models. The data is initially
partitioned into a training set and test (withhold) set. Typically, the withhold
set is generated from a random sample of the overall data. The training data
is partitioned into k-folds whereby a random sub-selection of the training data
is collected in order to build a regression model Yj = f(Xj,βj). Importantly,
each model generates the loading parameters βj . After the k-fold models are
generated, the best model Y = f(X, β̄) is produced. There are different ways to
get the best model; in some cases, it may be appropriate to average the model
parameters so that β̄ = (1/k)

∑k
j=1 βj . One could also simply pick the best

parameters from the k-fold set. In either case, the best model is then tested on
the withheld data to evaluate its viability.

the figures of the last two sections show to be challenging. In k-fold cross-
validation, the training data is further partitioned into k-folds, which are typi-
cally randomly selected portions of the data. For instance, in standard 10-fold
cross-validation, the training data is randomly partitioned into 10 partitions (or
folds). Each partition is used to construct a regression model Yj = f(Xj,βj)
for j = 1, 2, · · · , 10. One method for constructing the final model is to aver-
age the loading values β̄ = (1/k)

∑k
j=1 βj , which are then used for the final,

cross-validated regression model Y = f(X, β̄). This model is then used on the
withhold data to test its extrapolation power, or generalizability. The error on
this withhold test set is what determines the efficacy of the model. There are a
variety of other methods for selecting the best model, including simply choos-
ing the best of the k-fold models. As for partitioning the data, a common strat-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.7. MODEL SELECTION: INFORMATION CRITERIA 195

egy is to break the data into 70% training data, 20% validation data, and 10%
withheld data. For very large data sets, the validation and withheld data sets
can be reduced provided there is enough data to accurately assess the model
constructed.

Leave-p-Out Cross-Validation

Another standard technique for cross-validation involves the so-called leave-
p-out cross-validation (LpO CV). In this case, p samples of the training data are
removed from the data and kept as the validation set. A model is built on the re-
maining training data, and the accuracy of the model is tested on the pwithheld
samples. This is repeated with a new selection of p samples until all the training
data has been part of the validation data set. The accuracy of the model is then
evaluated on the withheld data from averaging the accuracy of the models and
the loadings produced from the various partitions of the data.

4.7 Model Selection: Information Criteria

There is a different approach to model selection than the cross-validation strate-
gies outlined in the previous section. Indeed, model selection has a rigorous
set of mathematical innovations starting from the early 1950s. The Kullback–
Leibler (KL) divergence [418] measures the distance between two probability
density distributions (or data sets which represent the truth and a model) and
is the core of modern information theory criteria for evaluating the viability
of a model. The KL divergence has deep mathematical connections to statis-
tical methods characterizing entropy as developed by Ludwig E. Boltzmann
(c. 1844–1906), as well as a relation to information theory developed by Claude
Shannon [653]. Model selection is a well-developed field with a large body of
literature, most of which is exceptionally well reviewed by Burnham and An-
derson [142]. In what follows, only brief highlights will be given to demonstrate
some of the standard methods.

The KL divergence between two models f(X,β) and g(X,µ) is defined as

I(f, g) =

∫
f(X,β) log

[
f(X,β)

g(X,µ)

]
dX, (4.45)

where β and µ are parameterizations of the models f(·) and g(·), respectively.
From an information theory perspective, the quantity I(f, g) measures the in-
formation lost when g is used to represent f . Note that if f = g, then the log
term is zero (i.e., log(1) = 0) and I(f, g) = 0, so that there is no information lost.
In practice, f will represent the truth, or measurements of an experiment, while
g will be a model proposed to describe f .

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

196 CHAPTER 4. REGRESSION AND MODEL SELECTION

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(x)

g2(x)

g1(x)

g3(x)

I1(f, g1) = 1.1582
I2(f, g2) = 2.7318
I3(f, g3) = 2.5539

x
Figure 4.21: Comparison of three models g1(x), g2(x), and g3(x) against the truth
model f(x). The KL divergence Ij(f, gj) for each model is computed, showing
that the model g1(x) is closest to statistically representing the true data.

Unlike the regression and cross-validation performed previously, when com-
puting KL divergence, a model must be specified. Recall that we used cross-
validation previously to generate a model using different regression strategies
(see Fig. 4.20 for instance). Here a number of models will be posited and the loss
of information, or KL divergence, of each model will be computed. The model
with the lowest loss of information is generally regarded as the best model.
Thus given M proposed models gj(X,µj), where j = 1, 2, . . . ,M , we can com-
pute Ij(f, gj) for each model. The correct model, or best model, is the one that
minimizes the information loss minj Ij(f, gj).

As a simple example, consider Fig. 4.21, which shows three different models
that are compared to the truth data. The computation of the KL divergence
score is also illustrated. Note that, in order to avoid division by zero, a constant
offset is added to each probability distribution. The truth data generated, f(x),
is a simple normally distributed variable. The three models shown are variants
of normally and uniformly distributed functions.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.7. MODEL SELECTION: INFORMATION CRITERIA 197

Information Criteria: AIC and BIC

This simple example shows the basic ideas behind model selection: compute a
distance between a proposed model output gj(x) and the measured truth f(x).
In the early 1970s, Hirotugu Akaike combined Fisher’s maximum-likelihood
computation [244] with the KL divergence score to produce what is now called
the Akaike information criterion (AIC) [9]. This was later modified by Gideon
Schwarz to the so-called Bayesian information criterion (BIC) [646], which pro-
vided an information score that was guaranteed to converge to the correct
model in the large-data limit, provided the correct model was included in the
set of candidate models.

To be more precise, we turn to Akaike’s seminal contribution [9]. Akaike
was aware that KL divergence cannot be computed in practice since it requires
full knowledge of the statistics of the truth model f(x) and of all the parame-
ters in the proposed models gj(x). Thus, Akaike proposed an alternative way
to estimate KL divergence based on the empirical log-likelihood function at its
maximum point. This is computable in practice and was a critically enabling in-
sight for rigorous methods of model selection. The technical aspects of Akaike’s
work connecting log-likelihood estimates and KL divergence [9, 142] was a
paradigm shifting mathematical achievement, and thus led to the development
of the AIC score

AIC = 2K − 2 log[L(µ̂|x)], (4.46)

where K is the number of parameters used in the model, µ̂ is an estimate of the
best parameters used (i.e., lowest KL divergence) in g(X,µ) computed from a
maximum-likelihood estimate (MLE), and x are independent samples of the data
to be fit. Thus, instead of a direct measure of the distance between two models,
the AIC provides an estimate of the relative distance between the approximat-
ing model and the true model or data. As the number of terms gets large in
a proposed model, the AIC score increases with slope 2K, thus providing a
penalty for non-parsimonious models. Importantly, due to its relative measure,
it will always result in an objective “best” model with the lowest AIC score, but
this best model may still be quite poor in prediction and reconstruction of the
data.

AIC is one of the standard model selection criteria used today. However,
there are others. Highlighted here is the modification of AIC by Schwarz to
construct BIC [646]. BIC is almost identical to AIC aside from the penalization
of the information criteria by the number of terms. Specifically, BIC is defined
as

BIC = log(n)K − 2 log[L(µ̂|x)], (4.47)

where n is the number of data points, or sample size, considered. This slightly
different version of the information criterion has one significant consequence.
The seminal contribution of Schwarz was to prove that, if the correct model was

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

198 CHAPTER 4. REGRESSION AND MODEL SELECTION

included along with a set of candidate models, then it would be theoretically
guaranteed to be selected as the best model based upon BIC for a sufficiently
large set of data x. This is in contrast to AIC, which, in certain pathological
cases, can select the wrong model.

Computing AIC and BIC Scores

MATLAB allows us to directly compute the AIC and/or BIC score from the
aicbic command. This computational tool is embedded in the econometrics
toolbox, and it allows one to evaluate a set of models against one another. The
evaluation is made from the log-likelihood estimate of the models under con-
sideration. An arbitrary number of models can be compared.

In the specific example considered here, we consider a ground-truth model
constructed from the autoregressive model

xn = −4 + 0.2xn−1 + 0.5xn−2 +N (0, 2), (4.48)

where xn is the value of the time series at time tn and N (0, 2) is a white-noise
process with mean zero and variance two. We fit three autoregressive inte-
grated moving average (ARIMA) models to the data. The three ARIMA models
have one, two, and three time delays in their models. The following code com-
putes their log-likelihood and corresponding AIC and BIC scores.

Code 4.6: [MATLAB] Computation of AIC and BIC scores.
T = 100; % Sample size
DGP = arima(’Constant’,-4,’AR’,[0.2, 0.5],’Variance’,2);
y = simulate(DGP,T);

EstMdl1 = arima(’ARLags’,1);
EstMdl2 = arima(’ARLags’,1:2);
EstMdl3 = arima(’ARLags’,1:3);

logL = zeros(3,1); % Preallocate loglikelihood vector
[˜,˜,logL(1)] = estimate(EstMdl1,y);%,’print’,false);
[˜,˜,logL(2)] = estimate(EstMdl2,y);%,’print’,false);
[˜,˜,logL(3)] = estimate(EstMdl3,y);%,’print’,false);

[aic,bic] = aicbic(logL, [3; 4; 5], T*ones(3,1))

Code 4.6: [Python] Computation of AIC and BIC scores.
arparams = np.array([-4, .2, 0.5])
maparams = np.array([1])

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.7. MODEL SELECTION: INFORMATION CRITERIA 199

arma_process = sm.tsa.arima_process.ArmaProcess(arparams,
maparams)

y = arma_process.generate_sample(T,scale=2)

logL = np.zeros(3) # log likelihood vector
aic = np.zeros(3) # AIC vector
bic = np.zeros(3) # BIC vector

for j in range(2):
model_res = sm.tsa.arima_model.ARMA(y, (0,0)).fit(trend=

’c’, disp=0,start_ar_lags=j+1,method=’mle’)
logL[j] = model_res.llf
aic[j] = model_res.aic
bic[j] = model_res.bic

Note that the best model, the one with both the lowest AIC and BIC scores,
is the second model, which has two time delays. This is expected, as it cor-
responds to the ground-truth model. The output in this case is given by the
following.

aic =
381.7732
358.2422
358.8479

bic =
389.5887
368.6629
371.8737

The lowest AIC and BIC score is 358.2422 and 368.6629, respectively. Note that,
although the correct model was selected, the AIC score provides little distinc-
tion between models, especially the two and three time delay models.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

200 CHAPTER 4. REGRESSION AND MODEL SELECTION

Suggested Reading

Texts

(1) Model selection and multimodel inference, by K. P. Burnham and D. R.
Anderson [142].

(2) Multivariate analysis, by R. A. Johnson and D. Wichern, 2002 [350].

(3) An introduction to statistical learning, by G. James, D. Witten, T. Hastie,
and R. Tibshirani, 2013 [348].

Papers and reviews

(1) On the mathematical foundations of theoretical statistics, by R. A. Fischer,
Philosophical Transactions of the Royal Society of London, 1922 [244].

(2) A new look at the statistical model identification, by H. Akaike, IEEE
Transactions on Automatic Control, 1974 [9].

(3) Estimating the dimension of a model, by G. Schwarz et al., The Annals of
Statistics, 1978 [646].

(4) On information and sufficiency, by S. Kullback and R. A. Leibler, The An-
nals of Statistics, 1951 [418].

(5) A mathematical theory of communication, by C. Shannon, ACM SIGMOBILE
Mobile Computing and Communications Review, 2001 [646].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

4.7. MODEL SELECTION: INFORMATION CRITERIA 201

Homework

Exercise 4-1. Derive in closed form the 3× 3 matrix which results from a least-
squares regression to a parabolic fit f(x) = Ax2 +Bx+ C.

Exercise 4-2. Consider the following temperature data taken over a 24-hour
(military time) cycle:

75 at 01 77 at 02 76 at 03 73 at 04 69 at 05 68 at 06 63 at 07 59 at 08
57 at 09 55 at 10 54 at 11 52 at 12 50 at 13 50 at 14 49 at 15 49 at 16
49 at 17 50 at 18 54 at 19 56 at 20 59 at 21 63 at 22 67 at 23 72 at 24

Fit the data with the parabolic fit

f(x) = Ax2 +Bx+ C (4.49)

and calculate theE2 error. Use both a linear interpolation and spline to generate
an interpolated approximation to the data for x = 1 : 0.01 : 24.

Develop a least-squares algorithm and calculate E2 for

y = A cos(Bx) + C. (4.50)

Evaluate the resulting fit as a function of the initial guess for the values of A, B,
and C.

Exercise 4-3. For the temperature data of the previous example, consider a poly-
nomial fit of the form

f(x) =
10∑

k=0

αkx
k, (4.51)

where the loadings αk are to be determined by four regression techniques: least-
squares, LASSO, ridge, and elastic net. Compare the models for each against
each other.

Randomly pick any time point and corrupt the temperature measurement at
that location. For instance, the temperature reading at that location could be
zero. Investigate the resulting model and E2 error for the four regression tech-
niques considered. Identify the models that are robust to such an outlier and
those that are not. Explicitly calculate the variance of the loading coefficients
αk for each method for a number of random trials with one or more corrupt
data points.

Exercise 4-4. Download the MNIST data set (both training and test sets and la-
bels) from http://yann.lecun.com/exdb/mnist/.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://yann.lecun.com/exdb/mnist/

202 CHAPTER 4. REGRESSION AND MODEL SELECTION

The labels will tell you which digit it is: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Let each output
be denoted by the vector yj .

“1” =

1
0
0
...
0
0

, “2” =

0
1
0
...
0
0

, . . . , “9” =

0
0
0
...
1
0

, “0” =

0
0
0
...
0
1

. (4.52)

Now let B be the set of output vectors

B = [y1 y2 y3 . . . yn] (4.53)

and let the matrix A be the corresponding reshaped (vectorized) MNIST images

A = [x1 x2 x3 . . . xn] . (4.54)

Thus each vector xj ∈ Rn2 is a vector reshaped from the n× n image.

Using various AX = B solvers, determine a mapping from the image space to
the label space.

By promoting sparsity, determine and rank which pixels in the MNIST set are
most informative for correctly labeling the digits. (You will have to come up
with your own heuristics or empirical rules for this. Be sure to visualize the re-
sults from X.) Apply your most important pixels to the test data set to see how
accurate you are with as few pixels as possible. Redo the analysis with each
digit individually to find the most important pixels for each digit. Think about
the interpretation of what you are doing with this AX = B problem.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 5

Clustering and Classification

Machine learning is based upon optimization techniques for data. The goal is
to find both a low-rank subspace for optimally embedding the data, as well
as regression methods for clustering and classification of different data types.
Machine learning thus provides a principled set of mathematical methods for
extracting meaningful features from data, i.e., data mining, as well as binning
the data into distinct and meaningful patterns that can be exploited for decision
making. Specifically, it learns from and makes predictions based on data. For
business applications, this is often called predictive analytics, and it is at the fore-
front of modern data-driven decision making. In an integrated system, such as
is found in autonomous robotics, various machine learning components (e.g.,
for processing visual and tactile stimuli) can be integrated to form what we now
call artificial intelligence (AI). To be explicit: AI is built upon integrated machine
learning algorithms, which in turn are fundamentally rooted in optimization.

There are two broad categories for machine learning: supervised machine
learning and unsupervised machine learning. In the former, the algorithm is pre-
sented with labeled data sets. The training data, as outlined in the cross-validation
method of the last chapter, is labeled by a teacher/expert. Thus examples of the
input and output of a desired model are explicitly given, and regression meth-
ods are used to find the best model for the given labeled data, via optimization.
This model is then used for prediction and classification using new data. There
are important variants of supervised methods, including semi-supervised learn-
ing in which incomplete training is given so that some of the input/output
relationships are missing, i.e., for some input data, the actual output is missing.
Active learning is another common subclass of supervised methods whereby the
algorithm can only obtain training labels for a limited set of instances, based
on a budget, and also has to optimize its choice of objects for which to ac-
quire labels. In an interactive framework, these can be presented to the user
for labeling. Finally, in reinforcement learning, rewards or punishments are the
training labels that help shape the regression architecture in order to build the
best model. In contrast, no labels are given for unsupervised learning algorithms.

203

204 CHAPTER 5. CLUSTERING AND CLASSIFICATION

Thus, they must find patterns in the data in a principled way in order to de-
termine how to cluster data and generate labels for predicting and classifying
new data. In unsupervised learning, the goal itself may be to discover patterns
in the data embedded in the low-rank subspaces so that feature engineering or
feature extraction can be used to build an appropriate model.

In this chapter, we will consider some of the most commonly used super-
vised and unsupervised machine learning methods. As will be seen, our goal is
to highlight how data mining can produce important data features (feature en-
gineering) for later use in model building. We will also show that the machine
learning methods can be broadly used for clustering and classification, as well
as for building regression models for prediction. Critical to all of this machine
learning architecture is finding low-rank feature spaces that are informative
and interpretable.

5.1 Feature Selection and Data Mining

To exploit data for diagnostics, prediction, and control, dominant features of the
data must be extracted. In the opening chapter of this book, singular value de-
composition (SVD) and principal component analysis (PCA) were introduced
as methods for determining the dominant correlated structures contained within
a data set. In the eigenfaces example of Section 1.6, for instance, the dominant
features of a large number of cropped face images were shown. These eigen-
faces, which are ordered by their ability to account for commonality (corre-
lation) across the database of faces, were guaranteed to give the best set of r
features for reconstructing a given face in an `2 sense with a rank-r trunca-
tion. The eigenface modes gave clear and interpretable features for identifying
faces, including highlighting the eyes, nose, and mouth regions, as might be
expected. Importantly, instead of working with the high-dimensional measure-
ment space, the feature space allows one to consider a significantly reduced
subspace where diagnostics can be performed.

The goal of data mining and machine learning is to construct and exploit the
intrinsic low-rank feature space of a given data set. The feature space can be found
in an unsupervised fashion by an algorithm, or it can be explicitly constructed
by expert knowledge and/or correlations among the data. For eigenfaces, the
features are the PCA modes generated by the SVD. Thus each PCA mode is
high-dimensional, but the only quantity of importance in feature space is the
weight of that particular mode in representing a given face. If one performs
an r-rank truncation, then any face needs only r features to represent it in fea-
ture space. This ultimately gives a low-rank embedding of the data in an in-
terpretable set of r features that can be leveraged for diagnostics, prediction,
reconstruction, and/or control.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.1. FEATURE SELECTION AND DATA MINING 205

8

7

6

5

42

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

4.5

setosa
versicolor
virginica

Sepal length (cm)
Sepal width (cm)

Pe
ta

ll
en

gt
h

(c
m

)

Figure 5.1: Fisher iris data set with 150 measurements over three varieties, in-
cluding 50 measurements each of Iris setosa, I. versicolor, and I. virginica. Each
flower includes a measurement of sepal length, sepal width, petal length, and
petal width. The first three of these are illustrated here, showing that these sim-
ple biological features are sufficient to show that the data has distinct, quantifi-
able differences between the species.

Several examples will be developed that illustrate how to generate a feature
space, starting with a standard data set included with MATLAB. The Fisher
iris data set includes measurements of 150 irises of three varieties: Iris setosa, I.
versicolor, and I. virginica. The 50 samples of each flower include measurements
in centimeters of the sepal length, sepal width, petal length, and petal width.
For this data set, the four features are already defined in terms of interpretable
properties of the biology of the plants. For visualization purposes, Fig. 5.1 con-
siders only the first three of these features. The following code accesses the
Fisher iris data set:

Code 5.1: [MATLAB] Features of the Fisher irises.
load fisheriris;
x1=meas(1:50,:); % setosa
x2=meas(51:100,:); % versicolor
x3=meas(101:150,:); % virginica

Code 5.1: [Python] Features of the Fisher irises.
fisheriris_mat = io.loadmat(os.path.join(’..’,’DATA’,’

fisheriris.mat’))

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

206 CHAPTER 5. CLUSTERING AND CLASSIFICATION

Figure 5.2: Example images of dogs (left) and cats (right). Our goal is to con-
struct a feature space where automated classification of these images can be
efficiently computed.

meas = fisheriris_mat[’meas’]
x1 = meas[:50,:] # setosa
x2 = meas[50:100,:] # versicolor
x3 = meas[100:,:] # virginica

Figure 5.1 shows that the properties measured can be used as a good set
of features for clustering and classification purposes. Specifically, the three iris
varieties are well separated in this feature space. The setosa is most distinc-
tive in its feature profile, while the versicolor and virginica have a small over-
lap among the samples taken. For this data set, machine learning is certainly
not required to generate a good classification scheme. However, data generally
does not so readily reduce down to simple two- and three-dimensional visual
cues. Rather, decisions about clustering in feature space occur with many more
variables, thus requiring the aid of computational methods to provide good
classification schemes.

As a second example, we consider in Fig. 5.2 a selection from an image
database of 80 dogs and 80 cats. A specific goal for this data set is to develop
an automated classification method whereby the computer can distinguish be-
tween cats and dogs. In this case, the data for each cat and dog is the 64 × 64
pixel space of the image. Thus each image has 4096 measurements, in contrast
to the four measurements for each example in the iris data set. Like eigenfaces,
we will use the SVD to extract the dominant correlations among the images.
The following code loads the data and performs a singular value decomposi-
tion on the data after the mean is subtracted. The SVD produces an ordered
set of modes characterizing the correlation between all the dog and cat images.
Figure 5.3 shows the first four SVD modes of the 160 images (80 dogs and 80
cats).

Code 5.2: [MATLAB] Features of dogs and cats.
load dogData.mat
load catData.mat

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.1. FEATURE SELECTION AND DATA MINING 207

(a) (b)

(c) (d)

Figure 5.3: First four features (a)–(d) generated from the SVD of the 160 images
of dogs and cats, i.e., these are the first four columns of the U matrix of the
SVD. Typical cat and dog images are shown in Fig. 5.2. Note that the first two
modes (a) and (b) show that the triangular ears are important features when
images are correlated. This is certainly a distinguishing feature for cats, while
dogs tend to lack this feature. Thus, in feature space, cats generally add these
two dominant modes to promote this feature, while dogs tend to subtract these
features to remove the triangular ears from their representation.

CD=double([dog cat]);
[u,s,v]=svd(CD-mean(CD(:)),’econ’);

Code 5.2: [Python] Features of dogs and cats.
dog = dogdata_mat[’dog’]
cat = catdata_mat[’cat’]
CD = np.concatenate((dog,cat),axis=1)
u,s,vT = np.linalg.svd(CD-np.mean(CD),full_matrices=0)

The original image space, or pixel space, is only one potential set of data to
work with. The data can be transformed into a wavelet representation where
edges of the images are emphasized. The following code loads the images in
their wavelet representation and computes a new low-rank embedding space.

Code 5.3: [MATLAB] Wavelet features of dogs and cats.
load catData_w.mat
load dogData_w.mat

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

208 CHAPTER 5. CLUSTERING AND CLASSIFICATION

(a) (b)

(c) (d)

Figure 5.4: First four features (a)–(d) generated from the SVD of the 160 images
of dogs and cats in the wavelet domain. As before, the first two modes (a) and
(b) show that the triangular ears are important. This is an alternative represen-
tation of the dogs and cats that can help better classify dogs versus cats.

CD2=[dog_wave cat_wave];
[u2,s2,v2]=svd(CD2-mean(CD2(:)),’econ’);

Code 5.3: [Python] Wavelet features of dogs and cats.
dog_wave = dogdata_w_mat[’dog_wave’]
cat_wave = catdata_w_mat[’cat_wave’]
CD2 = np.concatenate((dog_wave,cat_wave),axis=1)
u2,s2,vT2 = np.linalg.svd(CD2-np.mean(CD2),full_matrices=0)

The equivalent of Fig. 5.3 in wavelet space is shown in Fig. 5.4. Note that the
wavelet representation helps emphasize many key features such as the eyes,
nose, and ears, potentially making it easier to make a classification decision.
Generating a feature space that enables classification is critical for constructing
effective machine learning algorithms.

Whether using the image space directly or a wavelet representation, Figs. 5.3
and 5.4, respectively, the goal is to project the data onto the feature space gen-
erated by each. A good feature space helps find distinguishing features that
allow one to perform a variety of tasks that may include clustering, classifica-
tion, and prediction. The importance of each feature to an individual image is
given by the V matrix in the SVD. Specifically, each column of V determines
the loading, or weighting, of each feature onto a specific image. Histograms of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.1. FEATURE SELECTION AND DATA MINING 209

-0.2 -0.1 0 0.1 0.2
0

10

20

-0.2 -0.1 0 0.1 0.2
0

10

20

-0.2 -0.1 0 0.1 0.2
0

10

20

-0.2 -0.1 0 0.1 0.2
0

10

20

-0.2 -0.1 0 0.1 0.2
0

10

20

-0.2 -0.1 0 0.1 0.2
0

10

20

-0.2 -0.1 0 0.1 0.2
0

10

20

-0.2 -0.1 0 0.1 0.2
0

10

20

mode 1

mode 2

mode 3

mode 4

Raw images Wavelet images

Figure 5.5: Histogram of the distribution of loadings for dogs (blue) and cats
(red) on the first four dominant SVD modes. The left panels show the distribu-
tions for the raw images (see Fig. 5.3) while the right panels show the distri-
bution for wavelet-transformed data (see Fig. 5.4). The loadings come from the
columns of the V matrix of the SVD. Note the good separability between dogs
and cats using the second mode.

these loadings can then be used to visualize how distinguishable cats and dogs
are from each other by each feature (see Fig. 5.5). The following code produces
a histogram of the distribution of loadings for the dogs and the cats (first 80
images versus second 80 images, respectively).

Code 5.4: [MATLAB] Feature histograms of dogs and cats.
xbin=linspace(-0.25,0.25,20);
for j=1:4

subplot(4,2,2*j-1)
pdf1=hist(v(1:80,j),xbin)
pdf2=hist(v(81:160,j),xbin)
plot(xbin,pdf1,xbin,pdf2,’Linewidth’,[2])

end

Code 5.4: [Python] Feature histograms of dogs and cats.
pdf1 = np.histogram(vT[j,:80],bins=xbin_edges)[0]
pdf2 = np.histogram(vT[j,80:],bins=xbin_edges)[0]

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

210 CHAPTER 5. CLUSTERING AND CLASSIFICATION

-0.2

0

0.2-0.2

0

0.2

0

0.5

-0.5
-0.2

0

0.2-0.2

0

0.2

0.5

0

-0.5

PCA1
PCA2

PCA3

PCA1
PCA2

PCA3

Raw images Wavelet images

Figure 5.6: Projection of dogs (green) and cats (magenta) into feature space.
Note that the raw images and their wavelet counterparts produce different em-
beddings of the data. Both exhibit clustering around their labeled states of dogs
and cats. This is exploited in the learning algorithms that follow. The wavelet
images are especially good for clustering and classification, as this feature space
more easily separates the data.

Figure 5.5 shows the distribution of loading scores for the first four modes
for both the raw images as well as the wavelet-transformed images. For both
the sets of images, the distribution of loadings on the second mode clearly
shows a strong separability between dogs and cats. The wavelet-processed im-
ages also show a nice separability on the fourth mode. Note that the first mode
for both shows very little discrimination between the distributions and is thus
not useful for classification and clustering objectives.

Features that provide strong separability between different types of data
(e.g., dogs and cats) are typically exploited for machine learning tasks. This
simple example shows that feature engineering is a process whereby an ini-
tial data exploration is used to help identify potential pre-processing methods.
These features can then help the computer identify highly distinguishable fea-
tures in a higher-dimensional space for accurate clustering, classification, and
prediction. As a final note, consider Fig. 5.6, which projects the dogs and cats
data onto the first three PCA modes (SVD modes) discovered from the raw
images or their wavelet-transformed counterparts. As will be seen later, the
wavelet-transformed images provide a higher degree of separability, and thus
improved classification.

5.2 Supervised versus Unsupervised Learning

As previously stated, the goal of data mining and machine learning is to con-
struct and exploit the intrinsic low-rank feature space of a given data set. Good
feature engineering and feature extraction algorithms can then be used to learn
classifiers and predictors for the data. Two dominant paradigms exist for learn-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.2. SUPERVISED VERSUS UNSUPERVISED LEARNING 211

ing from data: supervised methods and unsupervised methods. Supervised data-
mining algorithms are presented with labeled data sets, where the training data
is labeled by a teacher/expert/supervisor. Thus examples of the input and out-
put of a desired model are explicitly given, and regression methods are used
to find the best model via optimization for the given labeled data. This model
is then used for prediction and classification using new data. There are impor-
tant variants of this basic architecture which include semi-supervised learning,
active learning, and reinforcement learning. For unsupervised learning algo-
rithms, no training labels are given, so that an algorithm must find patterns in
the data in a principled way in order to determine how to cluster and classify
new data. In unsupervised learning, the goal itself may be to discover patterns
in the data embedded in the low-rank subspaces so that feature engineering or
feature extraction can be used to build an appropriate model.

To illustrate the difference in supervised versus unsupervised learning, con-
sider Fig. 5.7. This shows a scatter plot of two Gaussian distributions. In one
case, the data are well separated so that their means are sufficiently far apart
and two distinct clusters are observed. In the second case, the two distributions
are brought close together so that separating the data is a challenging task. The
goal of unsupervised learning is to discover clusters in the data. This is a trivial
task by visual inspection, provided the two distributions are sufficiently sep-
arated. Otherwise, it becomes very difficult to distinguish clusters in the data.
Supervised learning provides labels for some of the data. In this case, points
are labeled with either green dots or magenta dots and the task is to classify
the unlabeled data (grey dots) as either green or magenta. Much like the unsu-
pervised architecture, if the statistical distributions that produced the data are
well separated, then using the labels in combination with the data provides a
simple way to classify all the unlabeled data points. Supervised algorithms also
perform poorly if the data distributions have significant overlap.

Supervised and unsupervised learning can be stated mathematically. Let

D ⊂ Rn, (5.1)

so that D is an open bounded set of dimension n. Further, let

D′ ⊂ D. (5.2)

The goal of classification is to build a classifier labeling all data in D given data
from D′.

To make our problem statement more precise, consider a set of data points
xj ∈ Rn and labels yj for each point, where j = 1, 2, . . . ,m. Labels for the data
can come in many forms, from numeric values, including integer labels, to text
strings. For simplicity, we will label the data in a binary way as either plus one
or minus one, so that yj ∈ {±1}.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

212 CHAPTER 5. CLUSTERING AND CLASSIFICATION

-5 0 5
-2

-1

0

1

2

-5 0 5
-2

-1

0

1

2

-5 0 5
-2

-1

0

1

2

-5 0 5
-2

-1

0

1

2

(a) (b)

(c) (d)

Unsupervised Supervised

Figure 5.7: Illustration of unsupervised versus supervised learning. In panels
(a) and (c), unsupervised learning attempts to find clusters for the data in or-
der to classify them into two groups. For well-separated data (a), the task is
straightforward and labels can easily be produced. For overlapping data (c), it
is a very difficult task for an unsupervised algorithm to accomplish. In panels
(b) and (d), supervised learning provides a number of labels: green balls and
magenta balls. The remaining unlabeled data is then classified as green or ma-
genta. For well-separated data (b), labeling data is easy, while overlapping data
presents significant challenge.

For unsupervised learning, the following inputs and outputs are then asso-
ciated with learning a classification task:

Input
data {xj ∈ Rn, j ∈ Z := {1, 2, . . . ,m}}, (5.3a)

Output
labels {yj ∈ {±1}, j ∈ Z}. (5.3b)

Thus the mathematical framing of unsupervised learning is focused on pro-
ducing labels yj for all the data. Generally, the data xj used for training the
classifier is from D′. The classifier is then more broadly applied, i.e., it general-
izes, to the open bounded domain D. If the data used to build a classifier only
samples a small portion of the larger domain, then it is often the case that the
classifier will not generalize well.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.2. SUPERVISED VERSUS UNSUPERVISED LEARNING 213

Supervised learning provides labels for the training stage. The inputs and
outputs for this learning classification task can be stated as follows:

Input
data {xj ∈ Rn, j ∈ Z := {1, 2, . . . ,m}}, (5.4a)
labels {yj ∈ {±1}, j ∈ Z ′ ⊂ Z}, (5.4b)

Output
labels {yj ∈ {±1}, j ∈ Z}. (5.4c)

In this case, a subset of the data is labeled and the missing labels are provided
for the remaining data. Technically speaking, this is a semi-supervised learning
task, since some of the training labels are missing. For supervised learning,
all the labels are known in order to build the classifier on D′. The classifier is
then applied to D. As with unsupervised learning, if the data used to build a
classifier only samples a small portion of the larger domain, then it is often the
case that the classifier will not generalize well.

For the data sets considered in our feature selection and data-mining sec-
tion, we can consider in more detail the key components required to build a
classification model: xj , yj , D, and D′. The Fisher iris data of Fig. 5.1 is a clas-
sic example for which we can detail these quantities. We begin with the data
collected:

xj = {sepal length, sepal width, petal length, petal width}. (5.5)

Thus each iris measurement contains four data fields, or features, for our anal-
ysis. The labels can be one of the following:

yj = {setosa, versicolor, virginica}. (5.6)

In this case the labels are text strings, and there are three of them. Note that, in
our formulation of supervised and unsupervised learning, there were only two
outputs (binary), which were labeled either ±1. Generally, there can be many
labels, and they are often text strings. Finally, there is the domain of the data.
For this case,

D′ ∈ {150 iris samples: 50 setosa, 50 versicolor, and 50 virginica} (5.7)

and
D ∈ {the universe of setosa, versicolor, and virginica irises}. (5.8)

We can similarly assess the dogs and cats data as follows:

xj = {64× 64 image = 4096 pixels}, (5.9)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

214 CHAPTER 5. CLUSTERING AND CLASSIFICATION

-5 0 5

-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

(a) (b)

Figure 5.8: Classification and regression models for data can be difficult when
the data have nonlinear functions which separate them. In this case, the func-
tion separating the green and magenta balls can be difficult to extract. More-
over, if only a small sample of the data D′ is available, then a generalizable
model may be impossible to construct for D. The data set in panel (a) repre-
sents two half-moon shapes that are just superimposed, while the concentric
rings in panel (b) require a circle as a separation boundary between the data.
Both are challenging to produce.

where each dog and cat is labeled as

yj = {dog, cat} = {1, −1}. (5.10)

In this case the labels are text strings, which can also be translated to numeric
values. This is consistent with our formulation of supervised and unsupervised
learning, where there are only two outputs (binary), labeled either ±1. Finally,
there is the domain of the data, which is

D′ ∈ {160 image samples: 80 dogs and 80 cats} (5.11)

and
D ∈ {the universe of dogs and cats}. (5.12)

Supervised and unsupervised learning methods aim to create algorithms
for classification, clustering, or regression. The discussion above is a general
strategy for classification. The previous chapter discusses regression architec-
tures. For both tasks, the goal is to build a model from data on D′ that can gen-
eralize to D. As already shown in the preceding chapter on regression, gener-
alization can be very difficult, and cross-validation strategies are critical. Deep
neural networks, which are state-of-the-art machine learning algorithms for re-
gression and classification, often have difficulty generalizing. Creating strong
generalization schemes is at the forefront of machine learning research.

Some of the difficulties in generalization can be illustrated in Fig. 5.8. These
data sets, although easily classified and clustered through visual inspection,
can be difficult for many regression and classification schemes. Essentially, the
boundary between the data forms a nonlinear manifold that is often difficult

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.3. UNSUPERVISED LEARNING: K-MEANS CLUSTERING 215

to characterize. Moreover, if the sampling data D′ only captures a portion of
the manifold, then a classification or regression model will almost surely fail
in characterizing D. These are also only two-dimensional depictions of a classi-
fication problem. It is not difficult to imagine how complicated such data em-
beddings can be in higher-dimensional space. Visualization in such cases is
essentially impossible and one must rely on algorithms to extract the mean-
ingful boundaries separating data. What follows in this chapter and the next
are methods for classification and regression given data on D′ that may or may
not be labeled. There is quite a diversity of mathematical methods available for
performing such tasks.

5.3 Unsupervised Learning: k-Means Clustering

A variety of supervised and unsupervised algorithms will be highlighted in
this chapter. We will start with one of the most prominent unsupervised algo-
rithms in use today: k-means clustering. The k-means algorithm assumes one is
given a set of vector-valued data with the goal of partitioning m observations
into k clusters. Each observation is labeled as belonging to a cluster with the
nearest mean, which serves as a proxy (prototype) for that cluster. This results
in a partitioning of the data space into Voronoi cells.

Although the number of observations and the dimension of the system are
known, the number of partitions k is generally unknown and must also be de-
termined. Alternatively, the user simply chooses a number of clusters to extract
from the data. The k-means algorithm is iterative, first assuming initial values
for the mean of each cluster and then updating the means until the algorithm
has converged. Figure 5.9 depicts the update rule of the k-means algorithm.
The algorithm proceeds as follows: (i) Given initial values for k distinct means,
compute the distance of each observation xj to each of the k means. (ii) Label
each observation as belonging to the nearest mean. (iii) Once labeling is com-
pleted, find the center-of-mass (mean) for each group of labeled points. These
new means are then used to start back at step (i) in the algorithm. This is a
heuristic algorithm that was first proposed by Stuart Lloyd in 1957 [452], al-
though it was not published until 1982.

The k-means objective can be stated formally in terms of an optimization
problem. Specifically, the following minimization describes this process:

argmin
µj

k∑

j=1

∑

xn∈D′j

‖xn − µj‖2, (5.13)

where µj denotes the mean of the jth cluster and D′j denotes the subdomain
of data associated with that cluster. This minimizes the within-cluster sum of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

216 CHAPTER 5. CLUSTERING AND CLASSIFICATION

Figure 5.9: Illustration of the k-means algorithm for k = 2. Two initial starting
values of the mean are given (black +). Each point is labeled as belonging to one
of the two means. The green balls are thus labeled as part of the cluster with the
left + and the magenta balls are labeled as part of the right +. Once labeled, the
mean of the two clusters is recomputed (red +). The process is repeated until
the means converge.

squares. In general, solving the optimization problem as stated is NP-hard,
making it computationally intractable. However, there a number of heuristic
algorithms that provide good performance despite not having a guarantee that
they will converge to the globally optimal solution.

Cross-validation of the k-means algorithm, as well as any machine learning
algorithm, is critical for determining its effectiveness. Without labels, the cross-
validation procedure is more nuanced, as there is no ground truth to compare
with. The cross-validation methods of the last section, however, can still be
used to test the robustness of the classifier to different sub-selections of the
data through k-fold cross-validation. The following portions of code generate
Lloyd’s algorithm for k-means clustering. We first consider making two clusters
of data and partitioning the data into a training set and a test set.

Code 5.5: [MATLAB] The Lloyd algorithm for k-means.
g1=[-1 0]; g2=[1 0]; % Initial guess
for j=1:4

class1=[]; class2=[];
for jj=1:length(Y)

d1=norm(g1-Y(jj,:));
d2=norm(g2-Y(jj,:));
if d1<d2

class1=[class1; [Y(jj,1) Y(jj,2)]];
else

class2=[class2; [Y(jj,1) Y(jj,2)]];

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.3. UNSUPERVISED LEARNING: K-MEANS CLUSTERING 217

end
end
g1=[mean(class1(1:end,1)) mean(class1(1:end,2))];
g2=[mean(class2(1:end,1)) mean(class2(1:end,2))];

end

Code 5.5: [Python] The Lloyd algorithm for k-means.
g1=np.array([-1,0]); g2=np.array([1,0]) # Initial guess
for j in range(4):

class1 = np.zeros((1,2))
class2 = np.zeros((1,2))
for jj in range(Y.shape[0]):

d1 = np.linalg.norm(g1-Y[jj,:],ord=2)
d2 = np.linalg.norm(g2-Y[jj,:],ord=2)
if d1<d2:

class1 = np.append(class1,Y[jj,:].reshape((1,2))
,axis=0)

else:
class2 = np.append(class2,Y[jj,:].reshape((1,2))

,axis=0)
class1=np.delete(class1,(0),axis=0) # remove initial
class2=np.delete(class2,(0),axis=0)

Figures 5.10 and 5.11 show the data generated from two distinct Gaussian
distributions. In this case, we have ground-truth data to check the k-means
clustering against. In general, this is not the case. The Lloyd algorithm guesses
the number of clusters and the initial cluster means, and then proceeds to up-
date them in an iterative fashion. Thus, k-means is sensitive to the initial guess
and many modern versions of the algorithm also provide principled strategies
for initialization.

Figure 5.10 shows the iterative procedure of the k-means clustering. The
two initial guesses are used to initially label all the data points (Fig. 5.10(a)).
New means are computed and the data relabeled. After only four iterations,
the clusters converge. This algorithm was explicitly developed here to show
how the iteration procedure rapidly provides an unsupervised labeling of all
of the data. MATLAB has a built-in k-means algorithm that only requires a data
matrix and the number of clusters desired. It is simple to use and provides a
valuable diagnostic tool for data. The following code uses the MATLAB com-
mand kmeans and also extracts the decision line generated from the algorithm
separating the two clusters.

Code 5.6: [MATLAB] k-means using MATLAB.
[ind,c]=kmeans(Y,2);

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

218 CHAPTER 5. CLUSTERING AND CLASSIFICATION

-2 0 2 4
-3

-2

-1

0

1

2

-2 0 2 4
-3

-2

-1

0

1

2

-2 0 2 4
-3

-2

-1

0

1

2

-2 0 2 4
-3

-2

-1

0

1

2

(a) (b)

(c) (d)

Figure 5.10: Illustration of the k-means iteration procedure based upon Lloyd’s
algorithm [452]. Two clusters are sought so that k = 2. The initial guesses (black
circles in panel (a)) are used to initially label all the data according to their dis-
tance from each initial guess for the mean. The means are then updated by
computing the means of the newly labeled data. This two-stage heuristic con-
verges after approximately four iterations.

Code 5.6: [Python] k-means using Python.
kmeans = KMeans(n_clusters=2, random_state=0).fit(Y)

Figure 5.11 shows the results of the k-means algorithm and depicts the de-
cision line separating the data into two clusters. The green and magenta balls
denote the true labels of the data, showing that the k-means line does not cor-
rectly extract the labels. Indeed, a supervised algorithm is more proficient in
extracting the ground-truth results, as will be shown later in this chapter. Re-
gardless, the algorithm does get a majority of the data labeled correctly.

The success of k-means is based on two factors: (i) no supervision is re-
quired, and (ii) it is a fast heuristic algorithm. The example here shows that the
method is not very accurate, but this is often the case in unsupervised methods,
as the algorithm has limited knowledge of the data. Cross-validation efforts,
such as k-fold cross-validation, can help improve the model and make the un-
supervised learning more accurate, but it will generally be less accurate than a
supervised algorithm that has labeled data.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.4. UNSUPERVISED HIERARCHICAL CLUSTERING: DENDROGRAM 219

-2 0 2 4
-3

-2

-1

0

1

2

-2 0 2 4
-3

-2

-1

0

1

2

(a) (b)

Training data Test data

Figure 5.11: The k-means clustering of the data using MATLAB’s kmeans com-
mand. Only the data and number of clusters need be specified. (a) The training
data is used to produce a decision line (black line) separating the clusters. Note
that the line is clearly not optimal. The classification line can then be used on
withheld data to test the accuracy of the algorithm. For the test data, one ma-
genta ball (of 50) would be mislabeled, while six green balls (of 50) are misla-
beled.

5.4 Unsupervised Hierarchical Clustering: Dendro-
gram

Another commonly used unsupervised algorithm for clustering data is a den-
drogram. Like k-means clustering, dendrograms are created from a simple hi-
erarchical algorithm, allowing one to efficiently visualize if data is clustered
without any labeling or supervision. This hierarchical approach will be applied
to the data illustrated in Fig. 5.12, where a ground truth is known. Hierarchi-
cal clustering methods are generated from either a top-down or a bottom-up
approach. Specifically, they are one of two types:

Agglomerative. Each data point xj is its own cluster initially. The data is merged
in pairs as one creates a hierarchy of clusters. The merging of data eventually
stops once all the data has been merged into a single über cluster. This is the
bottom-up approach in hierarchical clustering.

Divisive. In this case, all the observations xj are initially part of a single giant
cluster. The data is then recursively split into smaller and smaller clusters. The
splitting continues until the algorithm stops according to a user-specified ob-
jective. The divisive method can split the data until each data point is its own
node.

In general, the merging and splitting of data is accomplished with a heuris-
tic, greedy algorithm, which is easy to execute computationally. The results of
hierarchical clustering are usually presented in a dendrogram.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

220 CHAPTER 5. CLUSTERING AND CLASSIFICATION

-4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.12: Example data used for construction of a dendrogram. The data is
constructed from two Gaussian distributions (50 points each) that are easy to
discern through a visual inspection. The dendrogram will produce a hierarchy
that ideally would separate green balls from magenta balls.

In this section, we will focus on agglomerative hierarchical clustering and
the dendrogram command from MATLAB. Like the Lloyd algorithm for k-
means clustering, building the dendrogram proceeds from a simple algorith-
mic structure based on computing the distance between data points. Although
we typically use a Euclidean distance, there are a number of important distance
metrics one might consider for different types of data. Some typical distances
are given as follows:

Euclidean distance ‖xj − xk‖2, (5.14a)
squared Euclidean distance ‖xj − xk‖2

2, (5.14b)
Manhattan distance ‖xj − xk‖1, (5.14c)
maximum distance ‖xj − xk‖∞, (5.14d)

Mahalanobis distance
√

(xj − xk)TC−1(xj − xk), (5.14e)

where C−1 is the covariance matrix. As already illustrated in the previous chap-
ter, the choice of norm can make a tremendous difference for exposing patterns
in the data that can be exploited for clustering and classification.

The dendrogram algorithm is shown in Fig. 5.13. The algorithm is as fol-
lows: (i) Compute the distance between all m data points xj (Fig. 5.13 illus-
trates the use of a Euclidian distance). (ii) Merge the closest two data points
into a single new data point midway between their original locations. (iii) Re-
peat the calculation with the new m − 1 points. The algorithm continues until
the data has been hierarchically merged into a single data point.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.4. UNSUPERVISED HIERARCHICAL CLUSTERING: DENDROGRAM 221

1

2

3
4

2 3 1 4

iteration 1 iteration 2

iteration 3 iteration 4

Figure 5.13: Illustration of the agglomerative hierarchical clustering scheme ap-
plied to four data points. In the algorithm, the distances between the four data
points are computed. Initially, the Euclidean distance between points 2 and
3 is the least. Points 2 and 3 are thus merged into a point midway between
them, and the distances are once again computed. The dendrogram on the right
shows how the process generates a summary (dendrogram) of the hierarchical
clustering. Note that the length of the branches of the dendrogram tree are di-
rectly related to the distance between the merged points.

The following code performs a hierarchical clustering using the dendrogram
command from MATLAB. The example we use is the same as that considered
for k-means clustering. Figure 5.12 shows the data under consideration. Visual
inspection shows two clear clusters that are easily discernible. As with k-means,
our goal is to see how well a dendrogram can extract the two clusters.

Code 5.7: [MATLAB] Dendrogram for unsupervised clustering.
Y3=[X1(1:50,:); X2(1:50,:)];
Y2 = pdist(Y3,’euclidean’);
Z = linkage(Y2,’average’);
thresh=0.85*max(Z(:,3));
[H,T,O]=dendrogram(Z,100,’ColorThreshold’,thresh);

Code 5.7: [Python] Dendrogram for unsupervised clustering.
Y2 = pdist(Y3,metric=’euclidean’)
Z = hierarchy.linkage(Y2,method=’average’)
thresh = 0.85*np.max(Z[:,2])
dn = hierarchy.dendrogram(Z,p=100,color_threshold=thresh)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

222 CHAPTER 5. CLUSTERING AND CLASSIFICATION

Figure 5.14: Dendrogram structure produced from the data in Fig. 5.12. The
dendrogram shows which points are merged as well as the distance between
points. Two clusters are generated for this level of threshold.

Figure 5.14 shows the dendrogram associated with the data in Fig. 5.12. The
structure of the algorithm shows which points are merged as well as the dis-
tance between points. The threshold command is important in labeling where
each point belongs in the hierarchical scheme. By setting the threshold at differ-
ent levels, there can be more or fewer clusters in the dendrogram. The output
of the dendrogram is used to show how the data was labeled. Recall that the
first 50 data points are from the green cluster and the second 50 data points are
from the magenta cluster.

Figure 5.15 shows how the data was clustered in the dendrogram. If per-
fect clustering had been achieved, then the first 50 points would have been
below the horizontal dotted red line while the second 50 points would have
been above the horizontal dotted red line. The vertical dotted red line is the
line separating the green dots on the left from the magenta dots on the right.

A greater number of clusters are generated by adjusting the threshold in
the dendrogram command. This is equivalent to setting the number of clus-
ters in k-means to something greater than two. Recall that one rarely has a
ground truth to compare with when doing unsupervised clustering, so tuning
the threshold becomes important.

Figure 5.16 shows a new dendrogram with a different threshold. Note that

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.5. MIXTURE MODELS AND THE EXPECTATION-MAXIMIZATION
ALGORITHM 223

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 5.15: Clustering outcome from dendrogram routine. This is a summary
of Fig. 5.14, showing how each of the points was clustered through the dis-
tance metric. The horizontal red dotted line shows where the ideal separation
should occur. The first 50 points (green dots of Fig. 5.12) should be grouped
so that they are below the red horizontal line in the lower left quadrant. The
second 50 points (magenta dots of Fig. 5.12) should be grouped above the red
horizontal line in the upper right quadrant. In summary, the dendrogram only
misclassified two green points and two magenta points.

in this case, the hierarchical clustering produces more than a dozen clusters.
The tuning parameter can be seen to be critical for unsupervised clustering,
much like choosing the number of clusters in k-means. In summary, both k-
means and hierarchical clustering provide a method whereby data can be parsed
automatically into clusters. This provides a starting point for interpretations
and analysis in data mining.

5.5 Mixture Models and the Expectation-Maximization
Algorithm

The third unsupervised method we consider is known as finite mixture models.
Often the models are assumed to be Gaussian distributions, in which case this
method is known as Gaussian mixture models (GMM). The basic assumption in
this method is that data observations xj are a mixture of a set of k processes

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

224 CHAPTER 5. CLUSTERING AND CLASSIFICATION

Figure 5.16: Dendrogram structure produced from the data in Fig. 5.12 with a
different threshold used than in Fig. 5.14. The dendrogram shows which points
are merged as well as the distance between points. In this case, more than a
dozen clusters are generated.

that combine to form the measurement. Like k-means and hierarchical cluster-
ing, the GMM model we fit to the data requires that we specify the number of
mixtures k and the individual statistical properties of each mixture that best fit
the data. GMMs are especially useful since the assumption that each mixture
model has a Gaussian distribution implies that it can be completely character-
ized by two parameters: the mean and the variance.

The algorithm that enables the GMM computes the maximum-likelihood
using the famous expectation-maximization (EM) algorithm of Dempster, Laird,
and Rubin [200]. The EM algorithm is designed to find maximum-likelihood pa-
rameters of statistical models. Likelihood is a fundamental concept of statistics
and probability theory [91, 453]. Although not covered here, it provides the
mathematical construct for the EM algorithm and GMM. Generally, the iter-
ative structure of the algorithm finds a local maximum likelihood, which esti-
mates the true parameters that cannot be directly solved for. As with most data,
the observed data involves many latent or unmeasured variables and unknown
parameters. Regardless, the alternating and iterative construction of the algo-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.5. MIXTURE MODELS AND THE EXPECTATION-MAXIMIZATION
ALGORITHM 225

rithm recursively estimates the best parameters possible from an initial guess.
The EM algorithm proceeds like the k-means algorithm in that initial guesses
for the mean and variance are given for the assumed k-distributions. The algo-
rithm then recursively updates the weights of the mixtures versus the param-
eters of each mixture. One alternates between these two until convergence is
achieved.

In any such iteration scheme, it is not obvious that the solution will con-
verge, or that the solution is good, since it typically falls into a local value of
the maximum likelihood. But it can be proven that in this context it does con-
verge, and that the derivative of the likelihood is arbitrarily close to zero at
that point, which in turn means that the point is either a maximum or a saddle
point [763]. In general, multiple maxima may occur, with no guarantee that the
global maximum will be found. Some likelihoods also have singularities, i.e.,
nonsensical maxima. For example, one of the solutions that may be found by
EM in a mixture model involves setting one of the components to have zero
variance and the mean equal to one of the data points. Cross-validation can
often alleviate some of the common pitfalls that can occur by initializing the
algorithm with some bad initial guesses.

The fundamental assumption of the mixture model is that the probability
density function (PDF) for observations of data xj is a weighted linear sum of
a set of unknown distributions,

f(xj,Θ) =
k∑

p=1

αpfp(xj,Θp), (5.15)

where f(·) is the measured PDF, fp(·) is the PDF of the mixture p, and k is the
total number of mixtures. Each of the PDFs fp(·) is weighted by αp (with α1 +
α2 + · · ·+ αk = 1) and parameterized by an unknown vector of parameters Θp.
To state the objective of mixture models more precisely then: Given the observed
PDF f(xj,Θ), estimate the mixture weights αp and the parameters of the distribution
Θp. Note that Θ is a vector containing all the parameters Θp. Making this task
somewhat easier is the fact that we assume the form of the PDF distribution
fp(·).

For GMM, the parameters in the vector Θp are known to include only two
variables: the mean µp and variance σp. Moreover, the distribution fp(·) is nor-
mally distributed, so that (5.15) becomes

f(xj,Θ) =
k∑

p=1

αpNp(xj, µp, σp). (5.16)

This gives a much more tractable framework since there is now a limited set
of parameters. Thus, once one assumes a number of mixtures k, then the task

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

226 CHAPTER 5. CLUSTERING AND CLASSIFICATION

is to determine αp along with µp and σp for each mixture. It should be noted
that there are many other distributions besides Gaussian that can be imposed,
but GMM are common since, without prior knowledge, an assumption of a
Gaussian distribution is typically assumed.

An estimate of the parameter vector Θ can be computed using the maximum-
likelihood estimate (MLE) of Fisher. The MLE computes the value of Θ from the
roots of

∂L(Θ)

∂Θ
= 0, (5.17)

where the log-likelihood function L is

L(Θ) =
n∑

j=1

log f(xj|Θ) (5.18)

and the sum is over all the n data vectors xj . The solution to this optimiza-
tion problem, i.e., when the derivative is zero, produces a local maximizer. This
maximizer can be computed using the EM algorithm since derivatives cannot
be explicitly computed without an analytic form.

The EM algorithm starts by assuming an initial estimate (guess) of the pa-
rameter vector Θ. This estimate can be used to estimate

τp(xj,Θ) =
αpfp(xj,Θp)

f(xj,Θ)
, (5.19)

which is the posterior probability of component membership of xj in the pth
distribution. In other words, does xj belong to the pth mixture? The E step of
the EM algorithm uses this posterior to compute memberships. For GMM, the
algorithm proceeds as follows: Given an initial parameterization of Θ and αp,
compute

τ (k)
p (xj) =

α
(k)
p Np(xj, µ(k)

p , σ
(k)
p)

f(xj,Θ(k))
. (5.20)

With an estimated posterior probability, the M step of the algorithm then up-
dates the parameters and mixture weights,

α(k+1)
p =

1

n

n∑

j=1

τ (k)
p (xj), (5.21a)

µ(k+1)
p =

∑n

j=1
xjτ

(k)
p (xj)

∑n

j=1
τ (k)
p (xj)

, (5.21b)

Σ(k+1)
p =

∑n

j=1
τ (k)
p (xj)(xj − µ(k+1)

p)(xj − µ(k+1)
p)T

∑n

j=1
τ (k)
p (xj)

, (5.21c)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.5. MIXTURE MODELS AND THE EXPECTATION-MAXIMIZATION
ALGORITHM 227

where the matrix Σ
(k+1)
p is the covariance matrix containing the variance pa-

rameters. The E and M steps are alternated until convergence within a specified
tolerance. Recall that, to initialize the algorithm, the number of mixture models
k must be specified and initial parameterization (guesses) of the distributions
given. This is similar to the k-means algorithm, where the number of clusters k
is prescribed and an initial guess for the cluster centers is specified.

The GMM is popular since it simply fits k Gaussian distributions to data,
which is reasonable for unsupervised learning. The GMM algorithm also has
a stronger theoretical base than most unsupervised methods, as both k-means
and hierarchical clustering are simply defined as algorithms. The primary as-
sumption in GMM is the number of clusters and the form of the distribution
f(·).

The following code executes a GMM model on the second and fourth prin-
cipal components of the dogs and cats wavelet image data introduced previ-
ously in Figs. 5.4–5.6. Thus the features are the second and fourth columns of
the right singular vector of the SVD. The fitgmdist command is used to extract
the mixture model.

Code 5.8: [MATLAB] Gaussian mixture model for cats versus dogs.
dogcat=v(:,2:2:4);
GMModel=fitgmdist(dogcat,2)
AIC= GMModel.AIC

Code 5.8: [Python] Gaussian mixture model for cats versus dogs.
GMModel = GaussianMixture(n_components=2).fit(dogcat)
AIC = GMModel.aic(dogcat)

The results of the algorithm can be plotted for visual inspection, and the
parameters associated with each Gaussian are given: specifically, the mixing
proportion of each model along with the mean in each of the two dimensions
of the feature space. The following is displayed to the screen.

Component 1:
Mixing proportion: 0.355535
Mean: -0.0290 -0.0753

Component 2:
Mixing proportion: 0.644465
Mean: 0.0758 0.0076

AIC =

-792.8105

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

228 CHAPTER 5. CLUSTERING AND CLASSIFICATION

-0.2 0 0.2

-0.2

-0.1

0

0.1

0.2

0

0.2

10

20

0

30

0.2-0.2 0
-0.2

dogs

cats

PCA2

PCA4

PCA2

PCA4

f1(µ1, σ1) f2(µ2, σ2)

(a) (b)

Figure 5.17: GMM fit of the second and fourth principal components of the
dogs and cats wavelet image data. The two Gaussians are well placed over the
distinct dogs and cats features as shown in (a). The PDF of the Gaussian models
extracted are highlighted in (b) in arbitrary units.

The code can also produce an AIC score for how well the mixture of Gaussians
explains the data. This gives a principled method for cross-validating in order
to determine the number of mixtures required to describe the data.

Figure 5.17 shows the results of the GMM fitting procedure along with the
original data of cats and dogs. The Gaussians produced from the fitting proce-
dure are also illustrated. The fitgmdist command can also be used with cluster
to label new data from the feature separation discovered by GMM.

5.6 Supervised Learning and Linear Discriminants

We now turn our attention to supervised learning methods. One of the earliest
supervised methods for classification of data was developed by Fisher in 1936
in the context of taxonomy [245]. His linear discriminant analysis (LDA) is still
one of the standard techniques for classification. It was generalized by C. R. Rao
for multi-class data in 1948 [586]. The goal of these algorithms is to find a linear
combination of features that characterizes or separates two or more classes of
objects or events in the data. Importantly, for this supervised technique we have
labeled data that guides the classification algorithm. Figure 5.18 illustrates the
concept of finding an optimal low-dimensional embedding of the data for clas-
sification. The LDA algorithm aims to solve an optimization problem to find
a subspace whereby the different labeled data have clear separation between
their distributions of points. This then makes classification easier because an
optimal feature space has been selected.

The supervised learning architecture includes a training set and a withhold
set of data. The withhold set is never used to train the classifier. However, the
training data can be partitioned into k folds, for instance, to help build a bet-
ter classification model. The last chapter details how cross-validation should

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.6. SUPERVISED LEARNING AND LINEAR DISCRIMINANTS 229

dogs

cats

Optimal projection
Poor discrimination

−→−→

PCA2

PCA4

Figure 5.18: Illustration of linear discriminant analysis (LDA). The LDA opti-
mization method produces an optimal dimensionality reduction to a decision
line for classification. The figure illustrates the projection of data onto the sec-
ond and fourth principal component modes of the dogs and cats wavelet data
considered in Fig. 5.4. Without optimization, a general projection can lead to
very poor discrimination between the data. However, the LDA separates the
probability density functions in an optimal way.

be appropriately used. The goal here is to train an algorithm that uses feature
space to make a decision about how to classify data. Figure 5.18 gives a cartoon
of the key idea involved in LDA. In our example, two data sets are considered
and projected onto new bases. On the left-hand side, the projection shows that
the data is completely mixed, making it difficult to separate the data. On the
right-hand side, which is the ideal caricature for LDA, the data are well sep-
arated, with the means µ1 and µ2 being well apart when projected onto the
chosen subspace. Thus the goal of LDA is two-fold: find a suitable projection that
maximizes the distance between the inter-class data while minimizing the intra-class
data.

For a two-class LDA, this results in the following mathematical formulation.
Construct a projection w such that

w = arg max
w

wTSBw

wTSWw
, (5.22)

where the scatter matrices for between-class SB and within-class SW data are

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

230 CHAPTER 5. CLUSTERING AND CLASSIFICATION

given by

SB = (µ2 − µ1)(µ2 − µ1)T , (5.23)

SW =
2∑

j=1

∑

x∈Dj
(x− µj)(x− µj)T . (5.24)

These quantities essentially measure the variance of the data sets as well as
the variance of the difference in the means. The criterion in (5.22) is commonly
known as the generalized Rayleigh quotient, whose solution can be found via
the generalized eigenvalue problem

SBw = λSWw, (5.25)

where the maximum eigenvalue λ and its associated eigenvector give the quan-
tity of interest and the projection basis. Thus, once the scatter matrices are con-
structed, the generalized eigenvectors can be constructed with MATLAB.

Performing an LDA analysis in MATLAB is simple. One needs only to or-
ganize the data into a training set with labels, which can then be applied to a
test data set. Given a set of data xj for j = 1, 2, . . . ,m with corresponding labels
yj , the algorithm will find an optimal classification space as shown in Fig. 5.18.
New data xk with k = m + 1,m + 2, . . . ,m + n can then be evaluated and la-
beled. We illustrate the classification of data using the dogs and cats data set
introduced in the feature section of this chapter. Specifically, we consider the
dogs and cats images in the wavelet domain and label them so that yj ∈ {±1}
(where yj = 1 is a dog and yj = −1 is a cat). The following code trains on the
first 60 images of dogs and cats, and then tests the classifier on the remaining 20
dogs and cats images. For simplicity, we train on the second and fourth prin-
cipal components, as these show good discrimination between dogs and cats
(see Fig. 5.5).

Code 5.9: [MATLAB] LDA analysis of dogs versus cats.
class=classify(test,xtrain,label);

Code 5.9: [Python] LDA analysis of dogs versus cats.
lda = LinearDiscriminantAnalysis()
test_class = lda.fit(xtrain, label).predict(test)

Note that the classify command in MATLAB takes in the three matrices of
interest: the training data, the test data, and the labels for the training data.
What is produced are the labels for the test set. One can also extract from this
command the decision line for online use. Figure 5.19 shows the results of the
classification on the 40 test data samples. Recall that this classification is per-
formed using only the second and fourth PCA modes, which cluster as shown

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.6. SUPERVISED LEARNING AND LINEAR DISCRIMINANTS 231

PCA2 PCA4

Labels yj ∈ {±1}
Wavelet
images

Raw
images

⇐⇒dog (+1) cat (−1)

Figure 5.19: Depiction of the performance achieved for classification using the
second and fourth principal component modes. The top two panels are PCA
modes (features) used to build a classifier. The labels returned are either yj ∈
{±1}. The ground-truth answer in this case should produce a vector of 20 ones
followed by 20 negative ones.

in Fig. 5.18. The returned labels are either ±1 depending on whether a cat or
a dog is labeled. The ground-truth labels for the test data should return a +1
(dogs) for the first 20 test sets and a −1 (cats) for the second test set. The accu-
racy of classification for this realization is 82.5% (2/20 cats are mislabeled while
5/20 dogs are mislabeled). Comparing the wavelet images to the raw images,
we see that the feature selection in the raw images is not as good. In particu-
lar, for the same two principal components, 9/20 cats are mislabeled and 4/20
dogs are mislabeled. Of course, the data is fairly limited and cross-validation
should always be performed to evaluate the classifier. We run 100 trials of the
classify command where 60 dogs and cats images are randomly selected and
tested against the remaining 20 images.

Figure 5.20 shows the results of the cross-validation over 100 trials. Note
the variability that can occur from trial to trial. Specifically, the performance can
achieve 100%, but can also be as low as 40%, which is worse than a coin flip. The
average classification score (red dotted line) is around 70%. Cross-validation, as
already highlighted in the regression chapter, is critical for testing and robus-
tifying the model. Recall that the methods for producing a classifier are based

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

232 CHAPTER 5. CLUSTERING AND CLASSIFICATION

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Trials

A
cc

ur
ac

y

Average

Figure 5.20: Performance of the LDA over 100 trials. Note the variability that
can occur in the classifier depending on which data is selected for training and
testing. This highlights the importance of cross-validation for building a robust
classifier.

on optimization and regression, so that all the cross-validation methods can be
ported to the clustering and classification problem.

In addition to a linear discriminant line, a quadratic discriminant line can be
found to separate the data. Indeed, the classify command in MATLAB allows
one to not only produce the classifier, but also extract the line of separation
between the data.

Figure 5.21 shows the dogs and cats data along with the linear and quadratic
lines separating them. This linear or quadratic fit is found in the structured vari-
able coeff which is returned with classify. The quadratic line of separation can
often offer a little more flexibility when trying to fit boundaries separating data.
A major advantage of LDA-based methods is that they are easily interpretable
and easy to compute. Thus, they are widely used across many branches of the
sciences for classification of data.

5.7 Support Vector Machines (SVM)

One of the most successful data-mining methods developed to date is the sup-
port vector machine (SVM). It is a core machine learning tool that is used widely
in industry and science, often providing results that are better than competing
methods. Along with the random forest algorithm, they have been pillars of ma-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.7. SUPPORT VECTOR MACHINES (SVM) 233

-0.1 0 0.1 0.2
-0.3

-0.2

-0.1

0

0.1

0.2

-0.1 0 0.1 0.2
-0.3

-0.2

-0.1

0

0.1

0.2

(a) (b)

PCA2

PCA4

PCA2

PCA4

Figure 5.21: Classification line for (a) linear discriminant analysis (LDA) and
(b) quadratic discriminant analysis (QDA) for dog (green dots) versus cat (ma-
genta dots) data projected onto the second and fourth principal components.
This two-dimensional feature space allows for a good discrimination in the
data. The two lines represent the best line and parabola for separating the data
for a given training sample.

chine learning in the last few decades. With enough training data, the SVM can
now be replaced with deep neural nets. But otherwise, SVM and random for-
est are frequently used algorithms for applications where the best classification
scores are required.

The original SVM algorithm by Vapnik and Chervonenkis evolved out of
the statistical learning literature in 1963, where hyperplanes are optimized to
split the data into distinct clusters. Nearly three decades later, Boser, Guyon and
Vapnik created nonlinear classifiers by applying the kernel trick to maximum-
margin hyperplanes [98]. The current standard incarnation (soft margin) was
proposed by Cortes and Vapnik in the mid-1990s [184].

Linear SVM

The key idea of the linear SVM method is to construct a hyperplane

w · x + b = 0, (5.26)

where the vector w and constant b parameterize the hyperplane. Figure 5.22
shows two potential hyperplanes splitting a set of data. Each has a different
value of w and constant b. The optimization problem associated with SVM is
not only to optimize a decision line that makes the fewest labeling errors for
the data, but also to optimize the largest margin between the data, shown in
the shaded regions of Fig. 5.22. The vectors that determine the boundaries of
the margin, i.e., the vectors touching the edge of the shaded regions, are termed
the support vectors. Given the hyperplane (5.26), a new data point xj can be clas-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

234 CHAPTER 5. CLUSTERING AND CLASSIFICATION

margin
margin

w · x + b = 0
w · x + b = 0

w · x + b > 0

w · x + b < 0

w
w

(a) (b)

Figure 5.22: The SVM classification scheme constructs a hyperplane w ·x+b = 0
that optimally separates the labeled data. The area of the margin separating the
labeled data is maximal in (a) and much less in (b). Determining the vector w
and parameter b is the goal of the SVM optimization. Note that for data to the
right of the hyperplane w · x + b > 0, while for data to the left w · x + b < 0.
Thus the classification labels yj ∈ {±1} for the data to the left or right of the
hyperplane is given by yj(w · xj + b) = sign(w · xj + b). So only the sign of
w ·x+ b needs to be determined in order to label the data. The vectors touching
the edge of the shaded regions are termed the support vectors.

sified by simply computing the sign of (w ·xj + b). Specifically, for classification
labels yj ∈ {±1}, the data to the left or right of the hyperplane is given by

yj(w · xj + b) = sign(w · xj + b) =

{
+1 magenta ball,
−1 green ball. (5.27)

Thus the classifier yj is explicitly dependent on the position of xj .
Critical to the success of the SVM is determining w and b in a principled

way. As with all machine learning methods, an appropriate optimization must
be formulated. The optimization is aimed at both minimizing the number of
misclassified data points as well as creating the largest margin possible. To con-
struct the optimization objective function, we define a loss function

`(yj, ȳj) = `(yj, sign(w · xj + b)) =

{
0 if yj = sign(w · xj + b),

+1 if yj 6= sign(w · xj + b).
(5.28)

Stated more simply,

`(yj, ȳj) =

{
0 if data is correctly labeled,

+1 if data is incorrectly labeled. (5.29)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.7. SUPPORT VECTOR MACHINES (SVM) 235

Thus each mislabeled point produces a loss of unity. The training error over m
data points is the sum of the loss functions `(yj, ȳj).

In addition to minimizing the loss function, the goal is also to make the
margin as large as possible. We can then frame the linear SVM optimization
problem as

argmin
w,b

m∑

j=1

`(yj, ȳj) +
1

2
‖w‖2 subject to min

j
|xj ·w| = 1. (5.30)

Although this is a concise statement of the optimization problem, the fact that
the loss function is discrete and constructed from ones and zeros makes it very
difficult to actually optimize. Most optimization algorithms are based on some
form of gradient descent, which requires smooth objective functions in order
to compute derivatives or gradients to update the solution. A more common
formulation then is given by

argmin
w,b

m∑

j=1

H(yj, ȳj) +
1

2
‖w‖2 subject to min

j
|xj ·w| = 1, (5.31)

where H(yj, ȳj) = max(0, 1 − yj · ȳj) is called a Hinge loss function. This is
a smooth function that counts the number of errors in a linear way and that
allows for piecewise differentiation so that standard optimization routines can
be employed.

Nonlinear SVM

Although easily interpretable, linear classifiers are of limited value. They are
simply too restrictive for data embedded in a high-dimensional space and which
may have the structured separation as illustrated in Fig. 5.8. To build more so-
phisticated classification curves, the feature space for SVM must be enriched.
SVM does this by including nonlinear features and then building hyperplanes
in this new space. To do this, one simply maps the data into a nonlinear, higher-
dimensional space

x 7→ Φ(x). (5.32)

We can call the Φ(x) new observables of the data. The SVM algorithm now learns
the hyperplanes that optimally split the data into distinct clusters in a new
space. Thus one now considers the hyperplane function

f(x) = w ·Φ(x) + b, (5.33)

with corresponding labels yj ∈ {±1} for each point f(xj).
This simple idea, of enriching feature space by defining new functions of the

data x, is exceptionally powerful for clustering and classification. As a simple

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

236 CHAPTER 5. CLUSTERING AND CLASSIFICATION

z1, x1
z2, x2

z3

decision
hyperplane
−→

Figure 5.23: The nonlinear embedding of Fig. 5.8(b) using the variables
(x1, x2) 7→ (z1, z2, z3) := (x1, x2, x

2
1 + x2

2) in (5.34). A hyperplane can now easily
separate the green from magenta balls, showing that linear classification can be
accomplished simply by enriching the measurement space of the data. Visual
inspection alone suggests that nearly optimal separation can be achieved with
the plane z3 ≈ 14 (shaded gray plane). In the original coordinate system, this
gives a circular classification line (black line on the plane x1 versus x2) with
radius r =

√
z3 =

√
x2

1 + x2
2 ≈
√

14. This example makes it obvious how a hy-
perplane in higher dimensions can produce curved classification lines in the
original data space.

example, consider two-dimensional data x = (x1, x2). One can easily enrich the
space by considering polynomials of the data:

(x1, x2) 7→ (z1, z2, z3) := (x1, x2, x
2
1 + x2

2). (5.34)

This gives a new set of polynomial coordinates in x1 and x2 that can be used to
embed the data. This philosophy is simple: by embedding the data in a higher-
dimensional space, it is much more likely to be separable by hyperplanes. As
a simple example, consider the data illustrated in Fig. 5.8(b). A linear classifier
(or hyperplane) in the x1–x2 plane will clearly not be able to separate the data.
However, the embedding (5.34) projects into a three-dimensional space, which
can be easily separated by a hyperplane as illustrated in Fig. 5.23.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.7. SUPPORT VECTOR MACHINES (SVM) 237

The ability of SVM to embed in higher-dimensional nonlinear spaces makes it one
of the most successful machine learning algorithms developed. The underlying opti-
mization algorithm (5.31) remains unchanged, except that the previous labeling
function ȳj = sign(w · xj+b) is now

ȳj = sign(w ·Φ(xj) + b). (5.35)

The function Φ(x) specifies the enriched space of observables. As a general
rule, more features are better for classification.

Kernel Methods for SVM

Despite its promise, the SVM method of building nonlinear classifiers by en-
riching in higher dimensions leads to a computationally intractable optimiza-
tion. Specifically, the large number of additional features leads to the curse of
dimensionality. Thus computing the vectors w is prohibitively expensive and
may not even be represented explicitly in memory. The kernel trick solves this
problem. In this scenario, the w vector is represented as

w =
m∑

j=1

αjΦ(xj), (5.36)

where αj are parameters that weight the different nonlinear observable func-
tions Φ(xj). Thus the vector w is expanded in the observable set of functions.
We can then generalize (5.33) to the following:

f(x) =
m∑

j=1

αjΦ(xj) ·Φ(x) + b. (5.37)

The kernel function [643] is then defined as

K(xj,x) = Φ(xj) ·Φ(x). (5.38)

With this new definition of w, the optimization problem (5.31) becomes

argmin
α,b

m∑

j=1

H(yj, ȳj) +
1

2

∥∥∥∥∥
m∑

j=1

αjΦ(xj)

∥∥∥∥∥

2

subject to min
j
|xj ·w| = 1, (5.39)

where α is the vector of αj coefficients that must be determined in the min-
imization process. There are different conventions for representing the mini-
mization. However, in this formulation, the minimization is now overα instead
of w.

In this formulation, the kernel functionK(xj,x) essentially allows us to rep-
resent Taylor series expansions of a large (infinite) number of observables in

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

238 CHAPTER 5. CLUSTERING AND CLASSIFICATION

a compact way [643]. The kernel function enables one to operate in a high-
dimensional, implicit feature space without ever computing the coordinates
of the data in that space, but rather by simply computing the inner products
between all pairs of data in the feature space. For instance, two of the most
commonly used kernel functions are

radial basis function (RBF): K(xj,x) = exp(−γ‖xj − x‖2), (5.40a)

polynomial kernel: K(xj,x) = (xj · x + 1)N , (5.40b)

where N is the degree of polynomials to be considered, which is exceptionally
large to evaluate without using the kernel trick, and γ is the width of the Gaus-
sian kernel measuring the distance between individual data points xj and the
classification line. These functions can be differentiated in order to optimize
(5.39).

This represents the major theoretical underpinning of the SVM method. It
allows us to construct higher-dimensional spaces using observables generated
by kernel functions. Moreover, it results in a computationally tractable opti-
mization. The following code shows the basic workings of the kernel method
on the example of dogs and cats classification data. In the first example, a stan-
dard linear SVM is used, while in the second, the RBF is executed as an option.

Code 5.10: [MATLAB] SVM classification.
Mdl = fitcsvm(xtrain,label);
test_labels = predict(Mdl,test);

Mdl = fitcsvm(xtrain,label,’KernelFunction’,’RBF’);
test_labels = predict(Mdl,test);
CMdl = crossval(Mdl); % cross-validate the model
classLoss = kfoldLoss(CMdl) % compute class loss

Code 5.10: [Python] SVM classification.
Mdl = svm.SVC(kernel=’rbf’,gamma=’auto’).fit(xtrain,label)
test_labels = Mdl.predict(test)

CMdl = cross_val_score(Mdl, xtrain, label, cv=10) #cross-
validate the model

classLoss = 1-np.mean(CMdl) # average error over all cross-
validation iterations

Note that in this code we have demonstrated some of the diagnostic features
of the SVM method in MATLAB, including the cross-validation and class loss
scores that are associated with training. This is a superficial treatment of the
SVM. Overall, SVM is one of the most sophisticated machine learning tools in
MATLAB, and there are many options that can be executed in order to tune
performance and extract accuracy/cross-validation metrics.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.8. CLASSIFICATION TREES AND RANDOM FOREST 239

5.8 Classification Trees and Random Forest

Decision trees are common in business. They establish an algorithmic flow
chart for making decisions based on criteria that are deemed important and re-
lated to a desired outcome. Often the decision trees are constructed by experts
with knowledge of the workflow involved in the decision making process. De-
cision tree learning provides a principled method based on data for creating a
predictive model for classification and/or regression. Along with SVM, clas-
sification and regression trees are core machine learning and data-mining al-
gorithms used in industry, given their demonstrated success. The work of Leo
Breiman and co-workers [110] established many of the theoretical foundations
exploited today for data mining.

The decision tree is a hierarchical construct that looks for optimal ways to
split the data in order to provide a robust classification and regression. It is the
opposite of the unsupervised dendrogram hierarchical clustering previously
demonstrated. In this case, our goal is not to move from bottom up in the clus-
tering process, but from top down in order to create the best splits possible
for classification. The fact that it is a supervised algorithm, which uses labeled
data, allows us to split the data accordingly.

There are significant advantages in developing decision trees for classifi-
cation and regression: (i) they often produce interpretable results that can be
graphically displayed, making them easy to interpret even for non-experts;
(ii) they can handle numerical or categorical data equally well; (iii) they can
be statistically validated so that the reliability of the model can be assessed;
(iv) they perform well with large data sets at scale; and (v) the algorithms mir-
ror human decision making, again making them more interpretable and useful.

As one might expect, the success of decision tree learning has produced a
large number of innovations and algorithms for how to best split the data. The
coverage here will be limited, but we will highlight the basic architecture for
data splitting and tree construction. Recall that we have the following:

data {xj ∈ Rn, j ∈ Z := {1, 2, . . . ,m}}, (5.41a)
labels {yj ∈ {±1}, j ∈ Z ′ ⊂ Z}. (5.41b)

The basic decision tree algorithm is fairly simple: (i) Scan through each compo-
nent (feature) xk (with k = 1, 2, . . . , n) of the vector xj to identify the value of xj
that gives the best labeling prediction for yj . (ii) Compare the prediction accu-
racy for each split on the feature xj . The feature giving the best segmentation
of the data is selected as the split for the tree. (iii) With the two new branches
of the tree created, this process is repeated on each branch. The algorithm ter-
minates once each individual data point is a unique cluster, known as a leaf, on
a new branch of the tree. This is essentially the inverse of the dendrogram.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

240 CHAPTER 5. CLUSTERING AND CLASSIFICATION

0 2 4 6

0

1

2

3

4 6 8

2

3

4

5

6

setosa
versicolor
virginica

Se
pa

lw
id

th
,x

2
(c

m
)

Sepal length, x1 (cm)Petal length, x3 (cm)

Pe
ta

lw
id

th
,x

4
(c

m
) (a) (b)

split 1

split 2

split 3

Figure 5.24: Illustration of the splitting procedure for decision tree learning per-
formed on the Fisher iris data set. Each variable x1 through x4 is scanned over
to determine the best split of data which retains the best correct classification
of the labeled data in the split. The variable x3 = 2.35 provides the first split in
the data for building a classification tree. This is followed by a second split at
x4 = 1.75 and a third split at x3 = 4.95. Only three splits are shown. The classifi-
cation tree after three splits is shown in Fig. 5.25. Note that, although the setosa
data in the x1 and x2 direction seems to be well separated along a diagonal line,
the decision tree can only split along horizontal and vertical lines.

As a specific example, consider the Fisher iris data set from Fig. 5.1. For
this data, each flower had four features (petal width and length, sepal width
and length), and three labels (setosa, versicolor, and virginica). There were 50
flowers of each variety for a total of 150 data points. Thus for this data the
vector xj has the four components

x1 = sepal length, (5.42a)
x2 = sepal width, (5.42b)
x3 = petal length, (5.42c)
x4 = petal width. (5.42d)

The decision tree algorithm scans over these four features in order to decide
how to best split the data. Figure 5.24 shows the splitting process in the space
of the four variables x1 through x4. Illustrated are two data planes containing
x1 versus x2 (panel (b)) and x3 versus x4 (panel (a)). By visual inspection, one
can see that the x3 (petal length) variable maximally separates the data. In fact,
the decision tree performs the first split of the data at x3 = 2.35. No further
splitting is required to predict setosa, as this first split is sufficient. The variable
x4 then provides the next most promising split at x4 = 1.75. Finally, a third
split is performed at x3 = 4.95. Only three splits are shown. This process shows
that the splitting procedure has an intuitive appeal, as the data splits optimally

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.8. CLASSIFICATION TREES AND RANDOM FOREST 241

setosa

virginica

versicolor virginica

x3 < 2.35

x4 < 1.75

x3 < 4.95

 x3 >= 2.35

 x4 >= 1.75

 x3 >= 4.95

Figure 5.25: Tree structure generated by the MATLAB fitctree command. Note
that only three splits are conducted, creating a classification tree that produces
a class error of 4.67%.

separating the data are clearly visible. Moreover, the splitting does not occur
on the x1 and x2 (sepal width and length) variables as they do not provide a
clear separation of the data. Figure 5.25 shows the tree used for Fig. 5.24.

The following code fits a tree to the Fisher iris data. Note that the fitctree
command allows for many options, including a cross-validation procedure (used
in the code) and parameter tuning (not used in the code).

Code 5.11: [MATLAB] Decision tree classification of Fisher iris data.
load fisheriris;
tree=fitctree(meas,species,’MaxNumSplits’,3,’CrossVal’,’on’)
view(tree.Trained{1},’Mode’,’graph’);
classError = kfoldLoss(tree)

Code 5.11: [Python] Decision tree classification of Fisher iris data.
decision_tree = tree.DecisionTreeClassifier(max_depth=3).fit

(meas,species_label)
tree.export_graphviz(decision_tree, out_file=dot_data,

filled=True, rounded=True,
special_characters=True)

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())

The results of the splitting procedure are demonstrated in Fig. 5.25. The view
command generates an interactive window showing the tree structure. The tree

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

242 CHAPTER 5. CLUSTERING AND CLASSIFICATION

-1

1 -1

x2 < 0.0490372

x4 < 0.0199106

 x2 >= 0.0490372

 x4 >= 0.0199106

Figure 5.26: Tree structure generated by the MATLAB fitctree command for
dog versus cat data. Note that only two splits are conducted, creating a classi-
fication tree that produces a class error of approximately 16%.

can be pruned and other diagnostics are shown in this interactive graphic for-
mat. The class error achieved for the Fisher iris data is 4.67%.

As a second example, we construct a decision tree to classify dogs ver-
sus cats using our previously considered wavelet images. Figure 5.26 shows
the resulting classification tree. Note that the decision tree learning algorithm
identifies the first two splits as occurring along the x2 and x4 variables, respec-
tively. These two variables have been considered previously since their his-
tograms show them to be more distinguishable than the other PCA components
(see Fig. 5.5). For this splitting, which has been cross-validated, the class error
achieved is approximately 16%, which can be compared with the 30% error of
LDA.

As a final example, we consider census data that is included in MATLAB.
The following code shows some important uses of the classification and regres-
sion tree architecture. In particular, the variables included can be used to make
associations between relationships. In this case, the various data is used to pre-
dict the salary data. Thus, salary is the outcome of the classification. Moreover,
the importance of each variable and its relation to salary can be computed, as
shown in Fig. 5.27. The following code highlights some of the functionality of
the tree architecture.

Code 5.12: [MATLAB] Decision tree classification of census data.
load census1994

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.8. CLASSIFICATION TREES AND RANDOM FOREST 243

Predictor Importance Estimates

ag
e

w
or

kC
la
ss

ed
uc

at
io
n_

nu
m

m
ar

ita
l_
st
at

us
ra

ce se
x

ca
pi
ta

l_
ga

in

ca
pi
ta

l_
lo
ss

ho
ur

s_
pe

r_
w
ee

k

Predictors

0

1

2

3

4

5

6

E
s
ti
m

a
te

s

10-5

Figure 5.27: Importance of variables for prediction of salary data for the US
census of 1994. The classification tree architecture allows for sophisticated treat-
ment of data, including understanding how each variable contributes statisti-
cally to predicting a classification outcome.

X = adultdata(:,{’age’,’workClass’,’education_num’,’
marital_status’,’race’,’sex’,’capital_gain’,...
’capital_loss’,’hours_per_week’,’salary’});

Mdl = fitctree(X,’salary’,’PredictorSelection’,’curvature’,’
Surrogate’,’on’);

imp = predictorImportance(Mdl);

bar(imp,’FaceColor’,[.6 .6 .6],’EdgeColor’,’k’);
title(’Predictor Importance Estimates’);
ylabel(’Estimates’); xlabel(’Predictors’); h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;

Code 5.12: [Python] Decision tree classification of census data.
Mdl = tree.DecisionTreeClassifier(max_features=10).fit(

adultdata_input,adultdata_salary)
imp = Mdl.feature_importances_

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

244 CHAPTER 5. CLUSTERING AND CLASSIFICATION

infeatures = [’age’,’workClass’,’education_num’, ’
marital_status’, ’race’, ’sex’, ’capital_gain’,’
capital_loss’,’hours_per_week’]

As with the SVM algorithm, there exists a wide variety of tuning parame-
ters for classification trees, and this is a superficial treatment. Overall, such
trees are one of the most sophisticated machine learning tools in MATLAB and
there are many options that can be executed to tune performance and extract
accuracy/cross-validation metrics.

Random Forest Algorithms

Before closing this section, it is important to mention Breiman’s random forest
[108] innovations for decision learning trees. Random forests, or random deci-
sion forests, are an ensemble learning method for classification and regression.
This is an important innovation, since the decision trees created by splitting are
generally not robust to different samples of the data. Thus one can generate
two significantly different classification trees with two subsamples of the data.
This presents significant challenges for cross-validation. In ensemble learning,
a multitude of decision trees are constructed in the training process. The ran-
dom decision forests correct for a decision trees’ habit of overfitting to their
training set, thus providing a more robust framework for classification.

There are many variants of the random forest architecture, including vari-
ants with boosting and bagging. These will not be considered here except to men-
tion that the MATLAB figctree exploits many of these techniques through its
options. One way to think about ensemble learning is that it allows for robust
classification trees. It often does this by focusing its training efforts on hard-
to-classify data instead of easy-to-classify data. Random forests, bagging, and
boosting are all extensive subjects in their own right, but have already been
incorporated into leading software offerings that build decision learning trees.

5.9 Top 10 Algorithms of Data Mining circa 2008 (Be-
fore the Deep Learning Revolution)

This chapter has illustrated the tremendous diversity of supervised and unsu-
pervised methods available for the analysis of data. Although the algorithms
are now easily accessible through many commercial and open-source software
packages, the difficulty is now evaluating which method(s) should be used on
a given problem. In December 2006, various machine learning experts attend-
ing the IEEE International Conference on Data Mining (ICDM) identified the
top 10 algorithms for data mining [764]. The identified algorithms were the fol-
lowing: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.9. TOP 10 ALGORITHMS OF DATA MINING CIRCA 2008 (BEFORE THE
DEEP LEARNING REVOLUTION) 245

Bayes, and CART. These top 10 algorithms were identified at the time as being
among the most influential data-mining algorithms in the research community.
In the summary article, each algorithm was briefly described, along with its
impact and potential future directions of research. The 10 algorithms covered
classification, clustering, statistical learning, association analysis, and link min-
ing, which are all among the most important topics in data-mining research
and development. Interestingly, deep learning and neural networks, which are
the topic of the next chapter, are not mentioned in the article. The landscape
of data science would change significantly in 2012 with the ImageNet data set,
and deep convolutional neural networks (CNN) began to dominate almost any
meaningful metric for classification and regression accuracy.

In this section, we highlight their identified top 10 algorithms and the ba-
sic mathematical structure of each. Many of them have already been covered
in this chapter. This list is not exhaustive, nor does it rank them beyond their
inclusion in the top 10 list. Our objective is simply to highlight what was con-
sidered by the community as the state-of-the-art data-mining tools in 2008. We
begin with those algorithms already considered previously in this chapter.

k-Means

This is one of the workhorse unsupervised algorithms. As already demon-
strated, the goal of k-means is simply to cluster by proximity to a set of k points.
By updating the locations of the k points according to the mean of the points
closest to them, the algorithm iterates to the k-means. The kmeans command
takes in data X and the number of prescribed clusters k. It returns labels for
each point, labels, along with their location, centers.

EM (Mixture Models)

Mixture models are the second workhorse algorithm for unsupervised learn-
ing. The assumption underlying the mixture models is that the observed data is
produced by a mixture of different probability density functions whose weight-
ings are unknown. Moreover, the parameters must be estimated, thus requiring
the expectation-maximization (EM) algorithm, where fitting produces Gaus-
sian mixtures to the data X in k clusters. The Model output is a structured
variable containing information on the probability distributions (mean, vari-
ance, etc.) along with the goodness-of-fit.

Support Vector Machine (SVM)

One of the most powerful and flexible supervised learning algorithms used for
most of the 1990s and 2000s, the SVM is an exceptional off-the-shelf method for

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

246 CHAPTER 5. CLUSTERING AND CLASSIFICATION

classification and regression. The main idea is to project the data into higher
dimensions and split the data with hyperplanes. Critical to making this work
in practice was the kernel trick for efficiently evaluating inner products of func-
tions in higher-dimensional space, where the algorithm takes in labeled train-
ing data denoted by train and label, and produces a structured output, Model.
The structured output can be used along with the predict command to take
test data, test, and produce labels (test labels). There exist many options and
tuning parameters for fitcsvm, making it one of the best off-the-shelf methods.

CART (Classification and Regression Tree)

This was the subject of the last section and was demonstrated to provide an-
other powerful technique of supervised learning. The underlying idea was to
split the data in a principled and informed way so as to produce an inter-
pretable clustering of the data. The data splitting occurs along a single variable
at a time to produce branches of the tree structure, where the algorithm takes
in labeled training data denoted by train and label, and produces a structured
output, tree. There are many options and tuning parameters for fitctree, mak-
ing it one of the best off-the-shelf methods.

k-Nearest Neighbors (kNN)

This is perhaps the simplest supervised algorithm to understand. It is highly
interpretable and easy to execute. Given a new data point xk which does not
have a label, simply find the k nearest neighbors xj with labels yj . The label of
the new point xk is determined by a majority vote of the k nearest neighbors.
Given a model for the data, the knnsearch uses the Mdl to label the test data,
test.

Naive Bayes

The naive Bayes algorithm provides an intuitive framework for supervised
learning. It is simple to construct and does not require any complicated pa-
rameter estimation, similar to SVM and/or classification trees. It further gives
highly interpretable results that are remarkably good in practice. The method is
based upon Bayes’s theorem and the computation of conditional probabilities.
Thus one can estimate the label of a new data point based on the prior prob-
ability distributions of the labeled data. The fitcNativeBayes command takes
in labeled training data denoted by train and label, and produces a structured
output, Model. The structured output can be used with the predict command
to label test data, test.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.9. TOP 10 ALGORITHMS OF DATA MINING CIRCA 2008 (BEFORE THE
DEEP LEARNING REVOLUTION) 247

AdaBoost (Ensemble Learning and Boosting)

AdaBoost is an example of an ensemble learning algorithm [251]. Broadly speak-
ing, AdaBoost is a form of random forest [108] which takes into account an en-
semble of decision tree models. The way all boosting algorithms work is to first
consider an equal weighting for all training data xj . Boosting re-weights the
importance of the data according to how difficult they are to classify. Thus the
algorithm focuses on harder-to-classify data. A family of weak learners can be
trained to yield a strong learner by boosting the importance of hard-to-classify
data [629]. This concept and its usefulness are based upon a seminal theoretical
contribution by Kearns and Valiant [378]. The fitcensemble command is a gen-
eral ensemble learner that can do many more things than AdaBoost, including
robust boosting and gradient boosting. Gradient boosting is one of the most
powerful techniques [252].

C4.5 (Ensemble Learning of Decision Trees)

This algorithm is another variant of decision tree learning developed by J. R.
Quinlan [579, 580]. At its core, the algorithm splits the data according to an in-
formation entropy score. In its latest versions, it supports boosting as well as
many other well-known functionalities to improve performance. Broadly, we
can think of this as a strong-performing version of CART. The fitcensemble
algorithm highlighted with AdaBoost gives a generic ensemble learning archi-
tecture that can incorporate decision trees, allowing for a C4.5-like algorithm.

Apriori Algorithm

The last two methods highlighted here tend to focus on different aspects of
data mining. In the Apriori algorithm, the goal is to find frequent item sets
from data. Although this may sound trivial, it is not, since data sets tend to be
very large and can easily produce NP-hard computations because of the com-
binatorial nature of the algorithms. The Apriori algorithm provides an efficient
algorithm for finding frequent item sets using a candidate generation architec-
ture [6]. This algorithm can then be used for fast learning of associate rules in
the data.

PageRank

The founding of Google by Sergey Brin and Larry Page revolved around the
PageRank algorithm [114]. PageRank produces a static ranking of variables,
such as web pages, by computing an offline value for each variable that does
not depend on search queries. The PageRank is associated with graph theory,
as it originally interpreted a hyperlink from one page to another as a vote. From

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

248 CHAPTER 5. CLUSTERING AND CLASSIFICATION

this, and various modifications of the original algorithm, one can then compute
an importance score for each variable and provide an ordered rank list. The
number of enhancements for this algorithm is quite large. Producing accurate
orderings of variables (web pages) and their importance remains an active topic
of research.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

5.9. TOP 10 ALGORITHMS OF DATA MINING CIRCA 2008 (BEFORE THE
DEEP LEARNING REVOLUTION) 249

Suggested Reading

Texts

(1) Machine learning: A probabilistic perspective, by K. P. Murphy, 2012 [518].

(2) Pattern recognition and machine learning, by C. M. Bishop, 2006 [91].

(3) Pattern classification, by R. O. Duda, P. E. Hart, and D. G. Stork, 2000 [218].

(4) An introduction to statistical learning, by G. James, D. Witten, T. Hastie,
and R. Tibshirani, 2013 [348].

(5) Learning with kernels: Support vector machines, regularization, optimiza-
tion, and beyond, by B. Schölkopf and A. J. Smola, 2002 [643].

(6) Classification and regression trees, by L. Breiman, J. Friedman, C. J. Stone,
and R. A. Olshen, 1984 [110].

(7) Random forests, by L. Breiman, 2001 [108].

Papers and reviews

(1) Top 10 algorithms in data mining, by X. Wu et al., Knowledge and Informa-
tion Systems, 2008 [764].

(2) The strength of weak learnability, by R. E. Schapire, Machine Learning,
1990 [629].

(3) Greedy function approximation: A gradient boosting machine, by J. H.
Friedman, Annals of Statistics, 2001 [252].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

250 CHAPTER 5. CLUSTERING AND CLASSIFICATION

Homework

Exercise 5-1. Download the MNIST data set (both training and test sets and la-
bels) from http://yann.lecun.com/exdb/mnist/. Perform the following
analysis:

(a) Do an SVD analysis of the digit images. You will need to reshape each
image into a column vector, and each column of your data matrix is a
different image.

(b) What does the singular value spectrum look like, and how many modes
are necessary for good image reconstruction? (That is, what is the rank r
of the digit space?)

(c) What is the interpretation of the U, Σ, and V matrices?

(d) On a 3D plot, project onto three selected V modes (columns) colored by
their digit label, for example, columns 2, 3, and 5.

Once you have performed the above and have your data projected into PCA
space, you will build a classifier to identify individual digits in the training set.

(e) Pick two digits. See if you can build a linear classifier (LDA) that can
reasonable identify them.

(f) Pick three digits. Try to build a linear classifier to identify these three now.

(g) Which two digits in the data set appear to be the most difficult to sepa-
rate? Quantify the accuracy of the separation with LDA on the test data.

(h) Which two digits in the data set are most easy to separate? Quantify the
accuracy of the separation with LDA on the test data.

(i) SVM (support vector machines) and decision tree classifiers were the state
of the art until about 2014. How well do these separate between all 10
digits?

(j) Compare the performance between LDA, SVM, and decision trees on the
hardest and easiest pair of digits to separate (from above).

Make sure to discuss the performance of your classifier on both the training
and test sets.

Exercise 5-2. Download the two data sets (ORIGINAL IMAGE and CROPPED
IMAGES) from Yale Faces B. Your job is to perform an analysis of these data
sets. Start with the cropped images and perform the following analysis.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://yann.lecun.com/exdb/mnist/

5.9. TOP 10 ALGORITHMS OF DATA MINING CIRCA 2008 (BEFORE THE
DEEP LEARNING REVOLUTION) 251

(a) Do an SVD analysis of the images (where each image is reshaped into a
column vector and each column is a new image).

(b) What is the interpretation of the U, Σ, and V matrices?

(c) What does the singular value spectrum look like and how many modes
are necessary for good image reconstructions? (That is, what is the rank r
of the face space?)

(d) Compare the difference between the cropped (and aligned) versus un-
cropped images.

Face identification: see if you can build a classifier to identify individuals in the
training set.

(e) (Test 1) face classification: Consider the various faces and see if you can
build a classifier that can reasonably identify an individual face.

(f) (Test 2) gender classification: Can you build an algorithm capable of rec-
ognizing men from women?

(g) (Test 3) unsupervised algorithms: In an unsupervised way, can you de-
velop algorithms that automatically find patters in the faces that naturally
cluster?

(Note: You can use any (and hopefully all) of the different clustering and clas-
sification methods discussed. Be sure to compare them against each other in
these tasks.)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 6

Neural Networks and Deep Learning

Neural networks (NNs) were inspired by the Nobel Prize winning work of
Hubel and Wiesel on the primary visual cortex of cats [342]. Their seminal
experiments showed that neuronal networks were organized in hierarchical
layers of cells for processing visual stimuli. The first mathematical model of
the NN, termed the Neocognitron in 1980 [260], had many of the character-
istic features of today’s deep convolutional neural networks (DCNNs), includ-
ing a multi-layer structure, convolution, max pooling, and nonlinear dynamical
nodes. The recent success of DCNNs in computer vision has been enabled by
two critical components: (i) the continued growth of computational power, and
(ii) exceptionally large labeled data sets which take advantage of the power of a
deep multi-layer architecture. Indeed, although the theoretical inception of NNs
has an almost four-decade history, the analysis of the ImageNet data set in 2012
[414] provided a watershed moment for NNs and deep learning [432]. Prior to
this data set, there were a number of data sets available with approximately
tens of thousands of labeled images. ImageNet provided over 15 million la-
beled, high-resolution images with over 22 000 categories. DCNNs, which are
only one potential category of NNs, have since transformed the field of com-
puter vision by dominating the performance metrics in almost every meaning-
ful computer vision task intended for classification and identification.

Although ImageNet has been critically enabling for the field, NNs were
textbook material in the early 1990s, with a focus typically on a small number
of layers. Critical machine learning tasks such as principal component analy-
sis (PCA) were shown to be intimately connected with networks that included
backpropagation. Importantly, there were a number of critical innovations which
established multi-layer feedforward networks as a class of universal approxi-
mators [338]. The past decade has seen tremendous advances in NN architec-
tures, many designed and tailored for specific application areas. Innovations
have come from algorithmic modifications that have led to significant per-
formance gains in a variety of fields. These innovations include pre-training,
dropout, inception modules, data augmentation with virtual examples, batch

252

6.1. NEURAL NETWORKS: SINGLE-LAYER NETWORKS 253

normalization, and/or residual learning (see Goodfellow et al. [290] for a de-
tailed exposition of NNs). This is only a partial list of potential algorithmic
innovations, thus highlighting the continuing and rapid pace of progress in the
field. Remarkably, NNs were not even listed as one of the top 10 algorithms of
data mining in 2008 [764]. But a decade later, the undeniable and growing list
of successes of NNs on challenge data sets make them perhaps the most impor-
tant data-mining tool for our emerging generation of scientists and engineers.

As already shown in the last two chapters, all of machine learning revolves
fundamentally around optimization. NNs specifically optimize over a compo-
sitional function

argmin
Aj

(fM(AM , . . . , f2(A2, f1(A1,x)) . . .) + λg(Aj)), (6.1)

which is often solved using stochastic gradient descent and backpropagation
algorithms. Each matrix Ak denotes the weights connecting the neural network
from the kth to the (k + 1)th layer. It is a massively under-determined system
which is regularized by g(Aj). Composition and regularization are critical for
generating expressive representations of the data and preventing overfitting,
respectively. The notation used in (6.1) is motivated from solving linear systems
Ax = b through regression. This will be highlighted in the first few sections of
this chapter. We will then move to a broader framework of mapping input data
X to output data Y using a model f(·). Thus we will represent (6.1) in deep
learning models as

argmin
θ

fθ(x), (6.2)

where θ are the neural network weights and f(·) characterizes the network
(number of layers, structure, regularizers). Thus we will move to this nota-
tion in the second half of this chapter as a generic representation of a neural
net. This general optimization framework is at the center of deep learning al-
gorithms, and its solution will be considered in this chapter. Importantly, NNs
have significant potential for overfitting of data so that cross-validation must
be carefully considered. Recall that: if you do not cross-validate, you is dumb.

6.1 Neural Networks: Single-Layer Networks

The generic architecture of a multi-layer NN is shown in Fig. 6.1. For classifi-
cation tasks, the goal of the NN is to map a set of input data to a classification.
Specifically, we train the NN to accurately map the data xj to their correct la-
bel yj . As shown in Fig. 6.1, the input space has the dimension of the raw data
xj ∈ Rn. The output layer has the dimension of the designed classification
space. Constructing the output layer will be discussed further in the following.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

254 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

In
pu

tl
ay

er
x

O
ut

pu
tl

ay
er

y

x(1) x(2)

A1
A2

A3

Figure 6.1: Illustration of a neural net architecture mapping an input layer x to
an output layer y. The middle (hidden) layers are denoted x(j) where j deter-
mines their sequential ordering. The matrices Aj contain the coefficients that
map each variable from one layer to the next. Although the dimensionality of
the input layer x ∈ Rn is known, there is great flexibility in choosing the di-
mension of the inner layers as well as how to structure the output layer. The
number of layers and how to map between layers is also selected by the user.
This flexible architecture gives great freedom in building a good classifier.

Immediately, one can see that there are a great number of design questions
regarding NNs. How many layers should be used? What should be the dimen-
sion of the layers? How should the output layer be designed? Should one use
all-to-all or sparsified connections between layers? How should the mapping
between layers be performed: a linear mapping or a nonlinear mapping? Much
like the tuning options on SVM and classification trees, NNs have a significant
number of design options that can be tuned to improve performance.

Initially, we consider the mapping between layers of Fig. 6.1. We denote the
various layers between input and output as x(k), where k is the layer number.
For a linear mapping between layers, the following relations hold

x(1) = A1x, (6.3a)

x(2) = A2x
(1), (6.3b)

y = A3x
(2). (6.3c)

This forms a compositional structure so that the mapping between input and

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.1. NEURAL NETWORKS: SINGLE-LAYER NETWORKS 255

output can be represented as

y = A3A2A1x. (6.4)

This basic architecture can scale to M layers, so that a general representation
between input data and the output layer for a linear NN is given by

y = AMAM−1 · · ·A2A1x. (6.5)

This is generally a highly under-determined system that requires some con-
straints on the solution in order to select a unique solution. One constraint is
immediately obvious: the mapping must generateM distinct matrices that give
the best mapping. It should be noted that linear mappings, even with a com-
positional structure, can only produce a limited range of functional responses
due to the limitations of the linearity.

Nonlinear mappings are also possible, and generally used, in constructing
the NN. Indeed, nonlinear activation functions allow for a richer set of func-
tional responses than their linear counterparts. In this case, the connections be-
tween layers are given by

x(1) = f1(A1,x), (6.6a)

x(2) = f2(A2,x
(1)), (6.6b)

y = f3(A3,x
(2)). (6.6c)

Note that we have used different nonlinear functions fj(·) between layers. Of-
ten a single function is used; however, there is no constraint that this is neces-
sary. In terms of mapping the data between input and output over M layers,
the following is derived:

y = fM(AM , . . . , f2(A2, f1(A1,x)) . . .), (6.7)

which can be compared with (6.1) for the general optimization which con-
structs the NN. As a highly under-determined system, constraints should be
imposed in order to extract a desired solution type, as in (6.1). For big data
applications such as ImageNet and computer vision tasks, the optimization
associated with this compositional framework is expensive given the number
of variables that must be determined. However, for moderate-sized networks,
it can be performed on workstation and laptop computers. Modern stochas-
tic gradient descent and backpropagation algorithms enable this optimization,
and both are covered in later sections.

A Single-Layer Network

To gain insight into how an NN might be constructed, we will consider a single-
layer network that is optimized to build a classifier between dogs and cats.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

256 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

Perceptron y ∈ {±1}Input layer x

A

+1 dog
−1 cat

Figure 6.2: Single-layer network for binary classification between dogs and cats.
The output layer for this case is a perceptron with y ∈ {±1}. A linear mapping
between the input image space and output layer can be constructed for training
data by solving A = YX†. This gives a least-squares regression for the matrix
A mapping the images to label space.

The dogs and cats example was considered extensively in the previous chapter.
Recall that we were given images of dogs and cats, or a wavelet version of dogs
and cats. Figure 6.2 shows our construction. To make this as simple as possible,
we consider the simple NN output

y = {dog, cat} = {+1,−1}, (6.8)

which labels each data vector with an output y ∈ {±1}. In this case the output
layer is a single node. As in previous supervised learning algorithms, the goal
is to determine a mapping so that each data vector xj is labeled correctly by yj .

The easiest mapping is a linear mapping between the input images xj ∈ Rn

and the output layer. This gives a linear system AX = Y of the form

AX = Y =⇒

[a1 a2 · · · an]

 x1 x2 · · · xp

 = [+1 +1 · · · −1 −1], (6.9)

where each column of the matrix X is a dog or a cat image and the columns of Y
are its corresponding labels. Since the output layer is a single node, both A and
Y reduce to vectors. In this case, our goal is to determine the matrix (vector) A
with components aj . The simplest solution is to take the pseudo-inverse of the
data matrix X:

A = YX†. (6.10)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.2. MULTI-LAYER NETWORKS AND ACTIVATION FUNCTIONS 257

Thus a single output layer allows us to build a NN using least-squares fitting.
Of course, we could also solve this linear system in a variety of other ways, in-
cluding with sparsity-promoting methods. The following code solves this prob-
lem through both least-squares fitting (pinv) and the LASSO.

Code 6.1: [MATLAB] Single-layer, linear neural network.
test=[dog_wave(:,61:80) cat_wave(:,61:80)];
label=[ones(60,1); -1*ones(60,1)].’;

A=label*pinv(train); test_labels=sign(A*test);
A=lasso(train.’,label.’,’Lambda’,0.1).’;
test_labels=sign(A*test);

Code 6.1: [Python] Single-layer, linear neural network.
train = np.concatenate((dog_wave[:,:60],cat_wave[:,:60]),

axis=1)
test = np.concatenate((dog_wave[:,60:80],cat_wave[:,60:80]),

axis=1)
label = np.repeat(np.array([1,-1]),60)

A = label @ np.linalg.pinv(train)
test_labels = np.sign(A@test)

lasso = linear_model.Lasso().fit(train.T,label)
A_lasso = lasso.coef_
test_labels_lasso = np.sign(A_lasso@test)

Figures 6.3 and 6.4 show the results of this linear single-layer NN with
single-node output layer. Specifically, the four rows of Fig. 6.3 show the output
layer on the withheld test data for both the pseudo-inverse and LASSO meth-
ods along with a bar graph of the 32× 32 (1024 pixels) weightings of the matrix
A. Note that all matrix elements are non-zero in the pseudo-inverse solution,
while the LASSO highlights a small number of pixels that can classify the pic-
tures as well as using all pixels. Figure 6.4 shows the matrix A for the two solu-
tion strategies reshaped into 32× 32 images. Note that, for the pseudo-inverse,
the weightings of the matrix elements A show many features of the cat and dog
faces. For the LASSO method, only a few pixels are required that are clustered
near the eyes and ears. Thus for this single-layer network, interpretable results
are achieved by looking at the weights generated in the matrix A.

6.2 Multi-Layer Networks and Activation Functions

The previous section constructed what is perhaps the simplest NN possible. It
was linear, had a single layer, and a single output layer neuron. The potential

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

258 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

(a)

(b)

(c)

(d)

dogs

cats

dogs

cats

aj

aj

Figure 6.3: Classification of withheld data tested on a trained, single-layer net-
work with linear mapping between inputs (pixel space) and a single output.
Panels (a) and (c) are the bar graphs of the output layer score y ∈ {±1} achieved
for the withheld data using a pseudo-inverse for training and the LASSO for
training, respectively. The results show in both cases that dogs are more often
misclassified than cats are misclassified. Panels (b) and (d) show the coefficients
of the matrix A for the pseudo-inverse and LASSO, respectively. Note that the
LASSO has only a small number of non-zero elements, thus suggesting that the
NN is highly sparse.

generalizations are endless, but we will focus on two simple extensions of the
NN in this section. The first extension concerns the assumption of linearity in
which we assumed that there is a linear transform from the image space to the
output layer: Ax = y in (6.9). We highlight here common nonlinear transfor-
mations from input to output space represented by

y = f(A,x) (6.11)

where f(·) is a specified activation function (transfer function) for our mapping.
The linear mapping used previously, although simple, does not offer the

flexibility and performance that other mappings offer. Some standard activa-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.2. MULTI-LAYER NETWORKS AND ACTIVATION FUNCTIONS 259

Figure 6.4: Weightings of the matrix A reshaped into 32 × 32 arrays. The left
matrix shows the matrix A computed by least-squares regression (the pseudo-
inverse) while the right matrix shows the matrix A computed by LASSO. Both
matrices provide similar classification scores on withheld data. They further
provide interpretability in the sense that the results from the pseudo-inverse
show many of the features of dogs and cats while the LASSO shows that mea-
suring near the eyes and ears alone can give the features required for distin-
guishing between dogs and cats.

tion functions are given by

f(x) = x, linear, (6.12a)

f(x) =

{
0 for x ≤ 0,
1 for x > 0,

binary step, (6.12b)

f(x) =
1

1 + exp(−x)
, logistic (soft step), (6.12c)

f(x) = tanh(x), tanh, (6.12d)

f(x) =

{
0 for x ≤ 0,
x for x > 0,

rectified linear unit (ReLU). (6.12e)

There are other possibilities, but these are perhaps the most commonly consid-
ered in practice and they will serve for our purposes. Importantly, the chosen
function f(x) will be differentiated in order to be used in gradient descent algo-
rithms for optimization. Each of the functions above is either differentiable or
piecewise differentiable. Perhaps the most commonly used activation function
is currently the ReLU, which we denote f(x) = ReLU(x).

With a nonlinear activation function f(x), or if there is more than one layer,
then standard linear optimization routines such as the pseudo-inverse and LASSO
can no longer be used. Although this may not seem immediately significant,
recall that we are optimizing in a high-dimensional space where each entry
of the matrix A needs to be found through optimization. Even moderate to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

260 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

small problems can be computationally expensive to solve without using spe-
cialty optimization methods. Fortunately, the two dominant optimization com-
ponents for training NNs, stochastic gradient descent (SGD) and backpropaga-
tion (backprop), are included with the neural network function calls in MAT-
LAB. As these methods are critically enabling, both of them are considered in
detail in the next two sections of this chapter.

Multiple layers can also be considered as shown in (6.5) and (6.6c). In this
case, the optimization must simultaneously identify multiple connectivity ma-
trices A1, A2, . . . ,AM , in contrast to the linear case, where only a single matrix
is determined, Ā = AM · · ·A2A1. The multiple-layer structure significantly in-
creases the size of the optimization problem, as each matrix element of the M
matrices must be determined. Even for a single-layer structure, an optimiza-
tion routine such as fminsearch will be severely challenged when considering
a nonlinear transfer function, and one needs to move to a gradient descent-
based algorithm.

MATLAB’s neural network toolbox, much like TensorFlow in Python, has
a wide range of features, which makes it exceptionally powerful and conve-
nient for building NNs. In the following code, we will train a NN to classify
between dogs and cats as in the previous example. However, in this case, we
allow the single layer to have a nonlinear transfer function that maps the input
to the output layer. The output layer for this example will be modified to the
following:

y =

[
1
0

]
= {dog} and y =

[
0
1

]
= {cat}. (6.13)

Half of the data is extracted for training, while the other half is used for testing
the results. The following code builds a network using the train command to
classify between our images.

Code 6.2: [MATLAB] Neural network with nonlinear transfer functions.
net = patternnet(2,’trainscg’);
net.layers{1}.transferFcn = ’tansig’;

net = train(net,x,label);

In the code above, the patternnet command builds a classification network
with two outputs (6.13). It also optimizes with the option trainscg which is a
scaled conjugate gradient backpropagation. The net.layers also allows us to spec-
ify the transfer function, in this case hyperbolic tangent functions (6.12ed). The
view(net) command produces a diagnostic tool shown in Fig. 6.5 that summa-
rizes the optimization and NN.

The results of the classification for a cross-validated training set as well as a
withhold set are shown in Fig. 6.6. Specifically, the desired outputs are given by
the vectors (6.13). For both the training and withhold sets, the two components

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.2. MULTI-LAYER NETWORKS AND ACTIVATION FUNCTIONS 261

Figure 6.5: MATLAB neural network visualization tool. The number of itera-
tions along with the performance can all be accessed from the interactive graph-
ical tool. The performance, error histogram, and confusion buttons produce
Figs. 6.7–6.9, respectively.

of the vector are shown for the 80 training images (40 cats and 40 dogs) and the
80 withheld images (40 cats and 40 dogs). The training set produces a perfect
classifier using a single-layer network with a hyperbolic tangent transfer func-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

262 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

0 10 20 30 40 50 60 70 80

0

0.5

1

0 10 20 30 40 50 60 70 80

0

0.5

1

0 10 20 30 40 50 60 70 80

0

0.5

1

0 10 20 30 40 50 60 70 80

0

0.5

1

y1

y2

y1

y2

Tr
ai

ni
ng

W
it

hh
ol

d

dogs cats

Figure 6.6: Comparison of the output vectors y = [y1 y2]T , which are ideally
(6.13) for the dogs and cats considered here. The NN training stage produces a
cross-validated classifier that achieves 100% accuracy in classifying the training
data (top two panels for 40 dogs and 40 cats). When applied to a withheld set,
85% accuracy is achieved (bottom two panels for 40 dogs and 40 cats).

tion (6.12ed). On the withheld data, it incorrectly identifies six of 40 dogs and
cats, yielding an accuracy of ≈85% on new data.

The diagnostic tool shown in Fig. 6.5 allows access to a number of features
critical for evaluating the NN. Figure 6.7 is a summary of the performance
achieved by the NN training tool. In this figure, the training algorithm automat-
ically breaks the data into a training, validation, and test set. The backpropagation-
enabled, stochastic gradient descent optimization algorithm then iterates through
a number of training epochs until the cross-validated error achieves a mini-
mum. In this case, 22 epochs are sufficient to achieve a minimum. The error
on the test set is significantly higher than what is achieved for cross-validation.
For this case, only a limited amount of data is used for training (40 dogs and
40 cats), thus making it difficult to achieve great performance. Regardless, as
already shown, once the algorithm has been trained, it can be used to evaluate
new data as shown in Fig. 6.6.

There are two other features easily available with the NN diagnostic tool of
Fig. 6.5. Figure 6.8 shows an error histogram associated with the trained net-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.3. THE BACKPROPAGATION ALGORITHM 263

0 5 10 15 20 25

28 Epochs

10
-3

10
-2

10
-1

10
0

C
ro

s
s
-E

n
tr

o
p

y

(c

ro
s
s
e
n

tr
o

p
y
)

Best Validation Performance is 0.0041992 at epoch 22

Train

Validation

Test

Best

Figure 6.7: Summary of training of the NN over a number of epochs. The NN
architecture automatically separates the data into training, validation, and test
sets. The training continues (with a maximum of 1000 epochs) until the val-
idation error curve hits a minimum. The training then stops and the trained
algorithm is then used on the test set to evaluate performance. The NN trained
here has only a limited amount of data (40 dogs and 40 cats), thus limiting the
performance. This figure is accessed with the performance button on the NN
interactive tool of Fig. 6.6.

work. As with Fig. 6.7, the data is divided into training, validation, and test
sets. This provides an overall assessment of the classification quality that can
be achieved by the NN training algorithm. Another view of the performance
can be seen in the confusion matrices for the training, validation, and test data.
This is shown in Fig. 6.9. Overall, between Figs. 6.7 to 6.9, high-quality diag-
nostic tools are available to evaluate how well the NN is able to achieve its
classification task. The performance limits are easily seen in these figures.

6.3 The Backpropagation Algorithm

As was shown for the NNs of the last two sections, training data is required to
determine the weights of the network. Specifically, the network weights are
determined so as to best classify dog versus cat images. In the single-layer

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

264 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

0

50

100

150

200

250

300

350
In

s
ta

n
c
e
s

Error Histogram with 20 Bins

-0
.9

4
1

2

-0
.8

4
2

1

-0
.7

4
3

-0
.6

4
3

9

-0
.5

4
4

9

-0
.4

4
5

8

-0
.3

4
6

7

-0
.2

4
7

6

-0
.1

4
8

5

-0
.0

4
9

4
7

0
.0

4
9

6
1

0
.1

4
8

7

0
.2

4
7

8

0
.3

4
6

9

0
.4

4
5

9

0
.5

4
5

0
.6

4
4

1

0
.7

4
3

2

0
.8

4
2

3

0
.9

4
1

3

Errors = Targets - Outputs

Training

Validation

Test

Zero Error

Figure 6.8: Summary of the error performance of the NN architecture for train-
ing, validation, and test sets. This figure is accessed with the errorhistogram
button on the NN interactive tool of Fig. 6.6.

network, this was done using both least-squares regression and LASSO. This
shows that, at its core, an optimization routine and objective function are re-
quired to determine the weights. The objective function should minimize a
measure of the misclassified images. The optimization, however, can be mod-
ified by imposing a regularizer or constraints, such as the `1 penalization in
LASSO.

In practice, the objective function chosen for optimization is not the true
objective function desired, but rather a proxy for it. Proxies are chosen largely
due to the ability to differentiate the objective function in a computationally
tractable manner. There are also many different objective functions for differ-
ent tasks. Instead, one often considers a suitably chosen loss function so as to
approximate the true objective. Ultimately, computational tractability is critical
for training NNs.

The backpropagation algorithm (backprop) exploits the compositional na-
ture of NNs in order to frame an optimization problem for determining the
weights of the network. Specifically, it produces a formulation amenable to
standard gradient descent optimization (see Section 4.2). Specifically, backprop
calculates the gradient of the error, which is then used for gradient descent.
Backprop relies on a simple mathematical principle: the chain rule for differ-
entiation. Moreover, it can be proven that the computational time required to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.3. THE BACKPROPAGATION ALGORITHM 265

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
s

s

Training Confusion Matrix

33

31.7%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

31

29.8%

1

1.0%

96.9%

3.1%

0

0.0%

0

0.0%

39

37.5%

100%

0.0%

100%

0.0%

100%

0.0%

97.5%

2.5%

99.0%

1.0%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
s

s

Validation Confusion Matrix

8

34.8%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

10

43.5%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

5

21.7%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
s

s

Test Confusion Matrix

9

39.1%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

8

34.8%

0

0.0%

100%

0.0%

0

0.0%

1

4.3%

5

21.7%

83.3%

16.7%

100%

0.0%

88.9%

11.1%

100%

0.0%

95.7%

4.3%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
s

s

All Confusion Matrix

50

33.3%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

49

32.7%

1

0.7%

98.0%

2.0%

0

0.0%

1

0.7%

49

32.7%

98.0%

2.0%

100%

0.0%

98.0%

2.0%

98.0%

2.0%

98.7%

1.3%

Figure 6.9: Summary of the error performance through confusion matrices of
the NN architecture for training, validation, and test sets. This figure is accessed
with the confusion button on the NN interactive tool of Fig. 6.6.

evaluate the gradient is within a factor of 5 of the time required for comput-
ing the actual function itself [59]. This is known as the Baur–Strassen theorem.
Figure 6.10 gives the simplest example of backprop and how the gradient de-
scent is to be performed. The input-to-output relationship for this single-node,
one-hidden-layer network is given by

y = g(z, b) = g(f(x, a), b). (6.14)

Thus, given functions f(·) and g(·) with weighting constants a and b, the output
error produced by the network can be computed against the ground truth as

E =
1

2
(y0 − y)2, (6.15)

where y0 is the correct output and y is the NN approximation to the output.
The goal is to find a and b to minimize the error. The minimization requires

∂E

∂a
= −(y0 − y)

dy

dz

dz

da
= 0. (6.16)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

266 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

f(x, a) g(z, b)
x z y

a b
input output

y = g(f(x, a), b)

hidden layer

Figure 6.10: Illustration of the backpropagation algorithm on a one-node, one-
hidden-layer network. The compositional nature of the network gives the
input–output relationship y = g(z, b) = g(f(x, a), b). By minimizing the error
between the output y and its desired output y0, the composition along with the
chain rule produces an explicit formula (6.16) for updating the values of the
weights. Note that the chain rule backpropagates the error all the way through
the network. Thus, by minimizing the output, the chain rule acts on the compo-
sitional function to produce a product of derivative terms that advance back-
ward through the network.

A critical observation is that the compositional nature of the network along
with the chain rule forces the optimization to backpropagate error through the
network. In particular, the terms (dy/dz)(dz/da) show how this backprop oc-
curs. Given functions f(·) and g(·), the chain rule can be explicitly computed.

Backprop results in an iterative, gradient descent update rule:

ak+1 = ak − δ
∂E

∂ak
, (6.17a)

bk+1 = bk − δ
∂E

∂bk
, (6.17b)

where δ is the so-called learning rate and ∂E/∂a along with ∂E/∂b can be
explicitly computed using (6.16). The iteration algorithm is executed to con-
vergence. As with all iterative optimization, a good initial guess is critical to
achieve a good solution in a reasonable amount of computational time.

Backprop proceeds as follows: (i) A NN is specified along with a labeled
training set. (ii) The initial weights of the network are set to random values.
Importantly, one must not initialize the weights to zero, similar to what may
be done in other machine learning algorithms. If weights are initialized to zero,
after each update, the outgoing weights of each neuron will be identical, be-
cause the gradients will be identical. Moreover, NNs often get stuck at local
optima where the gradient is zero but that are not global minima, so random
weight initialization allows one to have a chance of circumventing this by start-
ing at many different random values. (iii) The training data is run through the
network to produce an output y, whose ideal ground-truth output is y0. The
derivatives with respect to each network weight are then computed using back-
prop formulas (6.16). (iv) For a given learning rate δ, the network weights are

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.3. THE BACKPROPAGATION ALGORITHM 267

updated as in (6.17). (v) We return to step (iii) and continue iterating until a
maximum number of iterations is reached or convergence is achieved.

As a simple example, consider the linear activation function

f(ξ, α) = g(ξ, α) = αξ. (6.18)

In this case we have in Fig. 6.10:

z = ax, (6.19a)
y = bz. (6.19b)

We can now explicitly compute the gradients such as (6.16). This gives

∂E

∂a
= −(y0 − y)

dy

dz

dz

da
= −(y0 − y) · b · x, (6.20a)

∂E

∂b
= −(y0 − y)

dy

db
= −(y0 − y)z = −(y0 − y) · a · x. (6.20b)

Thus, with the current values of a and b, along with the input–output pair x
and y and target truth y0, each derivative can be evaluated. This provides the
required information to perform the update (6.17).

The backprop for a deeper net follows in a similar fashion. Consider a net-
work with M hidden layers labeled z1 to zm, with the first connection weight a
between x and z1. The generalization of Fig. 6.10 and (6.16) is given by

∂E

∂a
= −(y0 − y)

dy

dzm

dzm
dzm−1

· · · dz2

dz1

dz1

da
. (6.21)

The cascade of derivatives induced by the composition and chain rule high-
lights the backpropagation of errors that occurs when minimizing the classifi-
cation error.

A full generalization of backprop involves multiple layers as well multiple
nodes per layer. The general situation is illustrated in Fig. 6.1. The objective is to
determine the matrix elements of each matrix Aj . Thus a significant number of
network parameters need to be updated in gradient descent. Indeed, training a
network can often be computationally infeasible even though the update rules
for individual weights are not difficult. NNs can thus suffer from the curse of
dimensionality, as each matrix from one layer to another requires updating n2

coefficients for an n-dimensional input, assuming the two connected layers are
both n-dimensional.

Denoting all the weights to be updated by the vector w, where w contains
all the elements of the matrices Aj illustrated in Fig. 6.1, then

wk+1 = wk − δ∇E, (6.22)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

268 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

where the gradient of the error ∇E, through the composition and chain rule,
produces the backpropagation algorithm for updating the weights and reduc-
ing the error. Expressed in a component-by-component way:

wjk+1 = wjk − δ
∂E

∂wjk
, (6.23)

where this equation holds for the jth component of the vector w. The term
∂E/∂wj produces the backpropagation through the chain rule, i.e., it produces
the sequential set of functions to evaluate as in (6.21). Methods for solving
this optimization more quickly, or even simply enabling the computation to
be tractable, remain of active research interest. Perhaps the most important
method is stochastic gradient descent, which is considered in the next section.

6.4 The Stochastic Gradient Descent Algorithm

Training neural networks is computationally expensive due to the size of the
NNs being trained. Even NNs of modest size can become prohibitively expen-
sive if the optimization routines used for training are not well informed. Two al-
gorithms have been especially critical for enabling the training of NNs: stochas-
tic gradient descent (SGD) and backprop. Backprop allows for an efficient com-
putation of the objective function’s gradient, while SGD provides a more rapid
evaluation of the optimal network weights. Although alternative optimization
methods for training NNs continue to provide computational improvements,
backprop and SGD are both considered here in detail so as to give the reader
an idea of the core architecture for building NNs.

Gradient descent was considered in Section 4.2. Recall that this algorithm
was developed for nonlinear regression where the data fit takes the general
form

f(x) = f(x,θ), (6.24)

where θ are fitting coefficients used to minimize the error. In NNs, the param-
eters θ are the network weights; thus we can rewrite this in the form

f(x) = f(x,A1,A2, . . . ,AM), (6.25)

where the Aj are the connectivity matrices from one layer to the next in the NN.
Thus A1 connects the first and second layers, and there are M hidden layers.

The goal of training the NN is to minimize the error between the network
and the data. The standard root-mean-square error for this case is defined as

argmin
Aj

E(A1,A2, . . . ,AM) = argmin
Aj

n∑

k=1

(f(xk,A1,A2, . . . ,AM)− yk)
2, (6.26)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.4. THE STOCHASTIC GRADIENT DESCENT ALGORITHM 269

which can be minimized by setting the partial derivative with respect to each
matrix component to zero, i.e., we require ∂E/∂(aij)k = 0, where (aij)k is the
ith row and jth column of the kth matrix (k = 1, 2, . . .M). Recall that the zero
derivative is a minimum, since there is no maximum error. This gives the gra-
dient ∇f(x) of the function with respect to the NN parameters. Note further
that f(·) is the function evaluated at each of the n data points.

As was shown in Section 4.2, this leads to a Newton–Raphson iteration
scheme for finding the minima,

xj+1(δ) = xj − δ∇f(xj), (6.27)

where δ is a parameter determining how far a step should be taken along the
gradient direction. In NNs, this parameter is called the learning rate. Unlike
standard gradient descent, it can be computationally prohibitive to compute
an optimal learning rate.

Although the optimization formulation is easily constructed, evaluating (6.26)
is often computationally intractable for NNs. This is due to two reasons: (i) the
number of matrix weighting parameters for each Aj is quite large, and (ii) the
number of data points n is generally also large.

To render the computation (6.26) potentially tractable, SGD does not esti-
mate the gradient in (6.27) using all n data points. Rather, a single, randomly
chosen data point, or a subset for batch gradient descent, is used to approximate
the gradient at each step of the iteration. In this case, we can reformulate the
least-squares fitting of (6.26) so that

E(A1,A2, . . . ,AM) =
n∑

k=1

Ek(A1,A2, . . . ,AM) (6.28)

and
Ek(A1,A2, . . . ,AM) = (fk(xk,A1,A2, . . . ,AM)− yk)

2, (6.29)

where fk(·) is now the fitting function for each data point, and the entries of the
matrices Aj are determined from the optimization process.

The gradient descent iteration algorithm (6.27) is now updated as follows:

wj+1(δ) = wj − δ∇Ek(wj), (6.30)

where wj is the vector of all the network weights from Aj (j = 1, 2, . . . ,M) at
the jth iteration, and the gradient is computed using only the kth data point
and fk(·). Thus, instead of computing the gradient with all n points, only a sin-
gle data point is randomly selected and used. At the next iteration, another ran-
domly selected point is used to compute the gradient and update the solution.
The algorithm may require multiple passes through all the data to converge,
but each step is now easy to evaluate versus the expensive computation of the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

270 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

x

y

f(x, y)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

x

y

Figure 6.11: Stochastic gradient descent applied to the function featured in
Fig. 4.3(b). The convergence can be compared to a full gradient descent al-
gorithm as shown in Fig. 4.6. Each step of the stochastic (batch) gradient de-
scent selects 100 data points for approximating the gradient, instead of the
104 data points of the data. Three initial conditions are shown: (x0, y0) =
{(0, 4), (−5, 0), (2,−5)}. The first of these (red circles) gets stuck in a local mini-
mum, while the other two initial conditions (blue and magenta) find the global
minimum. Interpolation of the gradient functions of Fig. 4.5 is used to update
the solutions.

Jacobian that is required for the gradient. If, instead of a single point, a subset
of points is used, then we have the following batch gradient descent algorithm:

wj+1(δ) = wj − δ∇EK(wj), (6.31)

where K ∈ [k1, k2, . . . , kp] denotes the p randomly selected data points kj used
to approximate the gradient.

Code from Section 4.2 can be modified for the stochastic gradient descent.
The modification here involves taking a significant subsampling of the data to
approximate the gradient. Specifically, a batch gradient descent is illustrated
with a fixed learning rate of δ = 2. Ten points are used to approximate the
gradient of the function at each step.

Figure 6.11 shows the convergence of SGD for three initial conditions. As
with gradient descent, the algorithm can get stuck in local minima. However,
the SGD now approximates the gradient with only 100 points instead of the full
104 points, thus allowing for a computation that is three orders of magnitude
smaller. Importantly, the SGD is a scalable algorithm, allowing for significant
computational savings even as the data grows to be high-dimensional. For this
reason, SGD has become a critically enabling part of NN training. Note that
the learning rate, batch size, and data sampling play an important role in the
convergence of the method.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.5. DEEP CONVOLUTIONAL NEURAL NETWORKS 271

6.5 Deep Convolutional Neural Networks

With the basics of the NN architecture in hand, along with an understanding
of how to formulate an optimization framework powered by SGD and back-
prop, we are ready to construct deep convolution neural nets (DCNNs), which are
the fundamental building blocks of deep learning methods. Indeed, today when
practitioners generally talk about NNs for practical use, they are typically talk-
ing about DCNNs. Of course, natural language processing (NLP) is another im-
portant class powered by recurrent neural networks (RNNs). But as much as we
would like to have a principled approach to building DCNNs, there remains a
great deal of artistry and expert intuition for producing the highest-performing
networks. Moreover, DCNNs are especially prone to overtraining, thus requir-
ing special care to cross-validate the results. The recent textbook on deep learn-
ing by Goodfellow et al. [290] provides a detailed and extensive account of the
state of the art in DCNNs. It is especially useful for highlighting many rules of
thumb and tricks for training effective DCNNs.

Like SVM and random forest algorithms, the MATLAB package for building
NNs has a tremendous number of features and tuning parameters. This flexibil-
ity is both advantageous and overwhelming at the same time. As was pointed
out at the beginning of this chapter, it is immediately evident that there are a
great number of design questions regarding NNs. How many layers should be
used? What should be the dimension of the layers? How should the output
layer be designed? Should one use all-to-all or sparsified connections between
layers? How should the mapping between layers be performed: a linear map-
ping or a nonlinear mapping?

The prototypical structure of a DCNN is illustrated in Fig. 6.12. Included
in the visualization is a number of commonly used convolutional and pooling
layers. Also illustrated is the fact that each layer can be used to build multiple
downstream layers, or feature spaces, which can be engineered by the choice
of activation functions and/or network parameterizations. All of these layers
are ultimately combined into the output layer. The number of connections that
require updating through backprop and SGD can be extraordinarily high; thus
even modest networks and training data may require significant computational
resources. A typical DCNN is constructed of a number of layers, with DCNNs
typically having 7–10 layers. More recent efforts have considered the advan-
tages of a truly deep network with approximately 100 layers, but the merits
of such architectures are still not fully known. The following paragraphs high-
light some of the more prominent elements that comprise DCNNs, including
convolutional layers, pooling layers, fully connected layers, and dropout.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

272 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

input

convolution

pooling

convolution
pooling

ou
tp

ut

(a) (b)

(c)

−→ −→
f(·) max

convolution pooling

Figure 6.12: Prototypical DCNN architecture which includes commonly used
convolutional and pooling layers. The dark gray boxes show the convolutional
sampling from layer to layer. Note that, for each layer, many functional trans-
formations can be used to produce a variety of feature spaces. The network
ultimately integrates all this information into the output layer.

Convolutional Layers

Convolutional layers are similar to windowed (Gabor) Fourier transforms or
wavelets from Chapter 2, in that a small selection of the full high-dimensional
input space is extracted and used for feature engineering. Figure 6.12 shows the
convolutional windows (dark gray boxes) that are slid across the entire layer
(light gray boxes). Each convolutional window transforms the data into a new
node through a given activation function, as shown in Fig. 6.12(a). The feature
spaces are thus built from the smaller patches of the data. Convolutional layers
are especially useful for images, as they can extract important features such as
edges. Wavelets are also known to efficiently extract such features, and there
are deep mathematical connections between wavelets and DCNNs, as shown
by Mallat and co-workers [18, 476]. Note that in Fig. 6.12 the input layer can be
used to construct many layers by simply manipulating the activation function
f(·) to the next layer as well the size of the convolutional window.

Pooling Layers

It is common to periodically insert a pooling layer between successive convo-
lutional layers in a DCNN architecture. Its function is to progressively reduce
the spatial size of the representation in order to reduce the number of param-
eters and computation in the network. This is an effective strategy (i) to help
control overfitting and (ii) to fit the computation in memory. Pooling layers op-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.5. DEEP CONVOLUTIONAL NEURAL NETWORKS 273

erate independently on every depth slice of the input and resize them spatially.
Using the max operation, i.e., the maximum value for all the nodes in its convo-
lutional window, is called max pooling. In image processing, the most common
form of max pooling is a pooling layer with filters of size 2 × 2 applied with
a stride of two downsamples every depth slice in the input by two along both
width and height, discarding 75% of the activations. Every max pooling oper-
ation would in this case be taking a max over four numbers (a 2 × 2 region in
some depth slice). The depth dimension remains unchanged. An example max
pooling operation is shown in Fig. 6.12(b), where a 3 × 3 convolutional cell is
transformed to a single number that is the maximum of the nine numbers.

Fully Connected Layers

Occasionally, fully connected layers are inserted into the DCNN so that differ-
ent regions can be connected. The pooling and convolutional layers are local
connections only, while the fully connected layer restores global connectivity.
This is another commonly used layer in the DCNN architecture, providing a
potentially important feature space to improve performance.

Dropout

Overfitting is a serious problem in DCNNs. Indeed, overfitting is at the core
of why DCNNs often fail to demonstrate good generalizability properties (see
Chapter 4 on regression). Large DCNNs are also slow to use, making it dif-
ficult to deal with overfitting by combining the predictions of many differ-
ent large neural nets for online implementation. Dropout is a technique which
helps address this problem. The key idea is to randomly drop nodes in the net-
work (along with their connections) from the DCNN during training, i.e., dur-
ing SGD/backprop updates of the network weights. This prevents units from
co-adapting too much. During training, dropout samples form an exponential
number of different “thinned” networks. This idea is similar to the ensemble
methods for building random forests. At test time, it is easy to approximate
the effect of averaging the predictions of all these thinned networks by simply
using a single unthinned network that has smaller weights. This significantly
reduces overfitting and has been shown to give major improvements over other
regularization methods [672].

There are many other techniques that have been devised for training DCNNs,
but the above methods highlight some of the most commonly used. The most
successful applications of these techniques tend to be in computer vision tasks
where DCNNs offer unparalleled performance in comparison to other machine
learning methods. Importantly, the ImageNet data set is what allowed these

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

274 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

Figure 6.13: Representative images of the alphabet characters A, B, and C. There
are a total of 1500 28×28 grayscale images (XTrain) of the letters that are labeled
(TTrain).

DCNN layers to be maximally leveraged for human-level recognition perfor-
mance.

To illustrate how to train and execute a DCNN, we use data from MATLAB.
Specifically, we use a data set that has a training and test set with the alphabet
characters A, B, and C (see Fig. 6.13). The training data, XTrain, contains 1500
28× 28 grayscale images of the letters A, B, and C in a four-dimensional array.
There are equal numbers of each letter in the data set. The variable TTrain con-
tains the categorical array of the letter labels, i.e., the truth labels. The following
code constructs and trains a DCNN.

Code 6.3: [MATLAB] Train a DCNN.
layers = [imageInputLayer([28 28 1]);

convolution2dLayer(5,16);
reluLayer();
maxPooling2dLayer(2,’Stride’,2);
fullyConnectedLayer(3);
softmaxLayer();
classificationLayer()];

options = trainingOptions(’sgdm’);
rng(’default’) % For reproducibility
net = trainNetwork(XTrain,TTrain,layers,options);

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.6. NEURAL NETWORKS FOR DYNAMICAL SYSTEMS 275

Code 6.3: [Python] Train a DCNN.
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=5, activation=’relu

’, input_shape=(28,28,1)))
model.add(MaxPool2D(pool_size=2, strides=2))
model.add(Flatten())
model.add(Dense(len(classes), activation=’softmax’))

sgd_optimizer = optimizers.SGD(momentum=0.9)
model.compile(optimizer=sgd_optimizer, loss=’

categorical_crossentropy’)
model.fit(XTrain, y_train, epochs=30)

Note the simplicity in how diverse network layers are easily put together.
In addition, a ReLU activation layer is specified along with the training method
of stochastic gradient descent (sgdm). The trainNetwork command integrates
the options and layer specifications to build the best classifier possible. The
resulting trained network can now be used on a test data set.

Code 6.4: [MATLAB] Test the DCNN performance.
YTest = classify(net,XTest);

Code 6.4: [Python] Test the DCNN performance.
YPredict = np.argmax(model.predict(XTest),axis=1)

The resulting classification performance is approximately 93%. One can see
by this code structure that modifying the network architecture and specifica-
tions is trivial. Indeed, one can probably easily engineer a network to outper-
form the illustrated DCNN. As already mentioned, artistry and expert intuition
are critical for producing the highest-performing networks.

6.6 Neural Networks for Dynamical Systems

Neural networks offer an amazingly flexible architecture for performing a di-
verse set of mathematical tasks. To return to Mallat et al.: Supervised learning is
a high-dimensional interpolation problem [476]. Thus, if sufficiently rich data can
be acquired, NNs offer the ability to interrogate the data for a variety of tasks
centered on classification and prediction. To this point, the tasks demonstrated
have primarily been concerned with computer vision. However, NNs can also
be used for future state predictions of dynamical systems (see Chapter 7).

To demonstrate the usefulness of NNs for applications in dynamical sys-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

276 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

tems, we will consider the Lorenz system of differential equations [460]

ẋ = σ(y − x), (6.32a)
ẏ = x(ρ− z)− y, (6.32b)
ż = xy − βz, (6.32c)

where the state of the system is given by x = [x y z]T with the parameters
σ = 10, ρ = 28, and β = 8/3. This system will be considered in further detail
in the next chapter. For the present, we will simulate this nonlinear system and
use it as a demonstration of how NNs can be trained to characterize dynamical
systems. Specifically, the goal of this section is to demonstrate that we can train
a NN to learn an update rule which advances the state space from xk to xk+1,
where k denotes the state of the system at time tk. Accurately advancing the
solution in time requires a nonlinear transfer function, since the Lorenz system
itself is nonlinear.

The training data required for the NN is constructed from high-accuracy
simulations of the Lorenz system. The following code generates a diverse set
of initial conditions. One hundred initial conditions are considered in order to
generate 100 trajectories. The sampling time is fixed at ∆t = 0.01. Note that
the sampling time is not the same as the time-steps taken by the fourth-order
Runge–Kutta method [420]. The time-steps are adaptively chosen to meet the
stringent tolerances of accuracy chosen for this example.

Code 6.5: [MATLAB] Create training data of Lorenz trajectories.
dt=0.01; T=8; t=0:dt:T;
b=8/3; sig=10; r=28;

Lorenz = @(t,x)([sig * (x(2) - x(1)) ; ...
r * x(1)-x(1) * x(3) - x(2) ; ...
x(1) * x(2) - b*x(3)]);

ode_options = odeset(’RelTol’,1e-10, ’AbsTol’,1e-11);

input=[]; output=[];
for j=1:100 % training trajectories

x0=30*(rand(3,1)-0.5);
[t,y] = ode45(Lorenz,t,x0);
input=[input; y(1:end-1,:)];
output=[output; y(2:end,:)];

end

Code 6.5: [Python] Create training data of Lorenz trajectories.
dt = 0.01; T = 8; t = np.arange(0,T+dt,dt)
beta = 8/3; sigma = 10; rho = 28

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.6. NEURAL NETWORKS FOR DYNAMICAL SYSTEMS 277

nn_input = np.zeros((100*(len(t)-1),3))
nn_output = np.zeros_like(nn_input)
def lorenz_deriv(x_y_z,t0,sigma=sigma,beta=beta,rho=rho):

x, y, z = x_y_z
return [sigma*(y-x), x*(rho-z)-y, x*y-beta*z]

x0 = -15 + 30 * np.random.random((100, 3))
x_t = np.asarray([integrate.odeint(lorenz_deriv, x0_j, t)

for x0_j in x0])

for j in range(100):
nn_input[j*(len(t)-1):(j+1)*(len(t)-1),:] = x_t[j,:-1,:]
nn_output[j*(len(t)-1):(j+1)*(len(t)-1),:] = x_t[j,1:,:]

The simulation of the Lorenz system produces two key matrices: input and
output. The former is a matrix of the system at xk, while the latter is the corre-
sponding state of the system xk+1 advanced ∆t = 0.01.

The NN must learn the nonlinear mapping from xk to xk+1. Figure 6.14
shows the various trajectories used to train the NN. Note the diversity of initial
conditions and the underlying attractor of the Lorenz system.

We now build a NN trained on trajectories of Fig. 6.14 to advance the solu-
tion ∆t = 0.01 into the future for an arbitrary initial condition. Here, a three-
layer network is constructed with 10 nodes in each layer and a different acti-
vation unit for each layer. The choice of activation types, nodes in the layer,
and number of layers are arbitrary. It is trivial to make the network deeper and
wider and enforce different activation units. The performance of the NN for
the arbitrary choices made is quite remarkable and does not require additional
tuning. The NN is built with the following few lines of code.

Code 6.6: [MATLAB] Build a neural network for Lorenz system.
net = feedforwardnet([10 10 10]);
net.layers{1}.transferFcn = ’logsig’;
net.layers{2}.transferFcn = ’radbas’;
net.layers{3}.transferFcn = ’purelin’;
net = train(net,input.’,output.’);

Code 6.6: [Python] Build a neural network for Lorenz system.
net = keras.models.Sequential()
net.add(layers.Dense(10, input_dim=3, activation=’sigmoid’))
net.add(layers.Dense(10, activation=’relu’))
net.add(layers.Dense(3, activation=’linear’))
net.compile(loss=’mse’, optimizer=’adam’)
History = net.fit(nn_input, nn_output, epochs=1000)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

278 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

-20

-10

0

50

10

20

30

40

50

60

70

0

30
20

10
0

-10
-20-50

-30 x(t)

y(t)

z(t)

Figure 6.14: Evolution of the Lorenz dynamical equations for 100 randomly
chosen initial conditions (red circles). For the parameters σ = 10, ρ = 28, and
β = 8/3, all trajectories collapse to an attractor. These trajectories, generated
from a diverse set of initial data, are used to train a neural network to learn the
nonlinear mapping from xk to xk+1.

The code produces a function net which can be used with a new set of data to
produce predictions of the future. Specifically, the function net gives the non-
linear mapping from xk to xk+1. Figure 6.15 shows the structure of the network
along with the performance of the training over 1000 epochs of training. The re-
sults of the cross-validation are also demonstrated. The NN converges steadily
to a network that produces accuracies on the order of 10−5.

Once the NN is trained on the trajectory data, the nonlinear model map-
ping xk to xk+1 can be used to predict the future state of the system from an
initial condition. In the following code, the trained function net is used to take
an initial condition and advance the solution ∆t. The output can be reinserted
into the net function to estimate the solution 2∆t into the future. This itera-
tive mapping can produce a prediction for the future state as far into the future
as desired. In what follows, the mapping is used to predict the Lorenz solu-
tions eight time units into the future from a given initial condition. This can
then be compared against the ground-truth simulation of the evolution using
a fourth-order Runge–Kutta method. The following iteration scheme gives the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.6. NEURAL NETWORKS FOR DYNAMICAL SYSTEMS 279

(a)

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

10
-6

10
-4

10
-2

10
0

10
2

10
4

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

Best Validation Performance is 5.9072e-06 at epoch 1000

Train

Validation

Test

Best(b)

Figure 6.15: (a) Network architecture used to train the NN on the trajectory
data of Fig. 6.14. A three-layer network is constructed with 10 nodes in each
layer and a different activation unit for each layer. (b) Performance summary
of the NN optimization algorithm. Over 1000 epochs of training, accuracies on
the order of 10−5 are produced. The NN is also cross-validated in the process.

NN approximation to the dynamics.

Code 6.7: [MATLAB] Neural network for prediction.
ynn(1,:)=x0;
for jj=2:length(t)

y0=net(x0);
ynn(jj,:)=y0.’; x0=y0;

end

Code 6.7: [Python] Neural network for prediction.
ynn = np.zeros((num_traj, len(t), 3))
ynn[:, 0, :] = -15 + 30 * np.random.random((num_traj, 3))
for jj, tval in enumerate(t[:-1]):

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

280 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

20

10

0
0

5

-10

10

15

20

30

25

20

30

35

10

40

45

0

50

-20-10 -20 -30x

y

z

Figure 6.16: Comparison of the time evolution of the Lorenz system (solid line)
with the NN prediction (dotted line) for two randomly chosen initial conditions
(red dots). The NN prediction stays close to the dynamical trajectory of the
Lorenz model. A more detailed comparison is given in Fig. 6.17.

ynn[:, jj+1, :] = net.predict(ynn[:, jj, :])

Figure 6.16 shows the evolution of two randomly drawn trajectories (solid
lines) compared against the NN prediction of the trajectories (dotted lines). The
NN prediction is remarkably accurate in producing an approximation to the
high-accuracy simulations. This shows that the data used for training is capable
of producing a high-quality nonlinear model mapping xk to xk+1. The quality
of the approximation is more clearly seen in Fig. 6.17 where the time evolution
of the individual components of x are shown against the NN predictions. See
Section 7.5 for further details.

In conclusion, the NN can be trained to learn dynamics. More precisely, the
NN seems to learn an algorithm which is approximately equivalent to a fourth-
order Runge–Kutta scheme for advancing the solution a time-step ∆t. Indeed,
NNs have been used to model dynamical systems [289] and other physical
processes [502] for decades. However, great strides have been made recently
in using DNNs to learn Koopman embeddings, resulting in several excellent
papers [440, 485, 540, 692, 747, 766]. For example, the VAMPnet architecture
[485, 747] uses a time-lagged autoencoder and a custom variational score to
identify Koopman coordinates on an impressive protein folding example. In an

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.7. RECURRENT NEURAL NETWORKS 281

0 2 4 6 8

-20

0

20

0 2 4 6 8

-50

0

50

0 2 4 6 8

0

50

0 2 4 6 8

-20

0

20

0 2 4 6 8

-50

0

50

0 2 4 6 8

0

50

Lorenz

NN

x(t)

y(t)

z(t)

x(t)

y(t)

z(t)

t t

Simulation 1 Simulation 2

Figure 6.17: Comparison of the time evolution of the Lorenz system for two
randomly chosen initial conditions (also shown in Fig. 6.16). The left column
shows that the evolution of the Lorenz differential equations and the NN map-
ping give identical results until t ≈ 5.5, at which point they diverge. In contrast,
the NN prediction stays on the trajectory of the second initial condition for the
entire time window.

alternative formulation, variational autoencoders can build low-rank models
that are efficient and compact representations of the Koopman operator from
data [465]. By construction, the resulting network is both parsimonious and
interpretable, retaining the flexibility of neural networks and the physical in-
terpretation of Koopman theory. In all of these recent studies, DNN represen-
tations have been shown to be more flexible and exhibit higher accuracy than
other leading methods on challenging problems.

6.7 Recurrent Neural Networks

Recurrent neural networks (RNNs) are an important class of neural network ar-
chitectures that leverage sequential data streams. Sequential data is prevalent
in speech recognition, as sentences and phrases have specific temporal struc-
tures in order to produce output that is meaningful. RNNs are trained by re-
specting the time history of a given sequence. Thus, unlike the standard feed-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

282 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

Input Sequence xk

Output Sequence yk

x1 x2 x3 x4 xp

y1 y2 y3 y4 yp

latent space
h1 h2 h3 h4 hp

fθfθ
hk

Figure 6.18: Recurrent neural network structure which trains on sequences of
input data xk = x(tk) and output data yk = y(tk). Unlike a feedforward neural
network, the time history of the sequence, or memory, is used to train the neu-
ral network. Thus the output of the neural network is fed back into the latent
layer fθ. The left representation of the RNN shows the recurrent structure that
is achieved from feeding the output back into the neural network. The right
representation is the unfolding of the graph, which shows a neural network fθ
that shares weights across different time points.

forward neural networks of the last section, the time history of the sequences,
or memory, is explicitly accounted for. Figure 6.18 shows the neural network
architecture of a generic RNN, where a sequence with m snapshots of temporal
history is trained to learn a representation of the sequence.

RNNs are structured around key ideas in dynamical systems. Specifically,
we often think of dynamics in terms of a flow map

xk+1 = f(xk,θ), (6.33)

which advances a solution forward in time from xk = x(tk) to xk+1 = x(tk+1).
In the last section, we constructed a feedforward neural network to model the
flow map

xk+1 = fθ(xk), (6.34)

where θ are the network weights. An RNN trains over a sequence of temporal

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.7. RECURRENT NEURAL NETWORKS 283

snapshots, which have an associated output yk, so that

xk+m = fθ(fθ(· · · fθ(xk) · · ·)). (6.35)

This expression is a flow map over m steps from xk = x(tk) to xk+m = x(tk+m).
This is the unfolding of the recursive graph in Fig. 6.18.

It is also often the case that, instead of mapping a sequence in the original
input variable xk, the latent space is used for building a map of the recurrence
and to the output sequence yk. If hk = h(tk) is the latent representation, then
the model becomes

hk+1 = fθ(hk,xk+1), (6.36)

where the neural network is now dependent on the input variable. In either
case, a neural network fθ is trained to advance the solution in time by training
on trajectories from time t1 to tm. Thus the big difference between the feed-
forward neural networks of the last chapter and RNNs is that: RNNs train on
trajectories from t1 to tm using the entire sequence of time points, whereas feed-
forward NNs train from tk to tk+1 (or tk to tk+m as in Section 12.6). Training over
trajectories allows for the history (memory) of the solution to shape the neural
network model.

The history of RNNs begins in the 1980s with the foundational work of
Rumelhart et al. [614] and Hopfield [337]. RNNs in the form of long short-term
memory (LSTM) networks [331] became especially transformative in speech recog-
nition applications since an LSTM, through its filtering architecture, regular-
ize RNNs to avoid the vanishing gradient problem that is typically encoun-
tered in training. Other RNN architectures that have been constructed in order
to avoid the vanishing or exploding gradients problem include gated recurrent
units (GRU) and echo state networks (ESN). Thus LSTM, GRU, and ESN, along
with their variants, are commonly used with time-series data.

Training on the Lorenz dynamical system model of the last section is sim-
ilar to building the feedforward network already considered. In this case, an
LSTM model is built from portions of the trajectory data. The trained model is
compared against the evolution dynamics in Fig. 6.19. The LSTM generates a
behavior that mimics the dynamics of Lorenz equations using trajectories of 40
data points. A simple RNN can be constructed instead of an LSTM by uncom-
menting from the code below.

Code 6.8: [Python] LSTM model for dynamics.
sequence_size = 40; train_size = 80; test_size = 20

rnn_input = np.zeros((train_size*(len(t)-sequence_size-1),
sequence_size, 3))

rnn_output = np.zeros((train_size*(len(t)-sequence_size-1),
3))

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

284 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

10 5 0 5
14
12
10
8
6
4
2

20

25

30

35

40

x(t)

y(t)

z(t)

Figure 6.19: Trajectories of the Lorenz dynamical system (black dotted line) ver-
sus the trajectories learned by an LSTM (solid red line). The fit can be improved
by hyperparameter tuning of the sequence size and training time. The specific
training trajectory length selected here was a sequence of 40 time points.

for j in range(train_size):
for k in range(len(t)-sequence_size-1):

rnn_input[j*(len(t)-sequence_size-1) + k,:] = x_t[j,k:k+
sequence_size,:]

rnn_output[j*(len(t)-sequence_size-1) + k,:] = x_t[j,k+
sequence_size,:]

model = Sequential()
model.add(LSTM(16, input_shape=(None, 3)))
model.add(SimpleRNN(16, input_shape=(None, 3)))
model.add(Dense(3))

sgd = SGD(0.01)
model.compile(optimizer=sgd, loss=’mean_squared_error’)
model.fit(rnn_input, rnn_output, epochs=20)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.8. AUTOENCODERS 285

6.8 Autoencoders

Autoencoder neural networks are a flexible and advantageous structure for
exploiting low-dimensional features in high-dimensional data. They are fea-
tured here since many scientific and engineering applications leverage low-
dimensional coordinate systems for building parsimonious models character-
izing a physical process. The autoencoder generalizes the linear subspace em-
bedding of SVD/PCA to a nonlinear manifold embedding, often of a lower
dimension. Specifically, the autoencoder maps the original high-dimensional
input vectors xj ∈ Rn to a low-dimensional latent variable zj ∈ Rr and then
back to the high-dimensional space x̃, which is technically the output y. The
goal of the autoencoder is to map the output back to itself, i.e., ‖x̃ − x‖2 ≈ 0.
Typically r � n for autoencoding and mathematically

Z = φ(X), (6.37)

where Z is the latent space data and X is the input high-dimensional data.
Note that the columns of Z are zj and the columns of X are xj . Decoding is
represented as

X̃ = ψ(Z), (6.38)

where the neural network weights are optimized so that the output X̃ is as close
as possible to the input,

argmin
θ
‖X− X̃‖2

2 = argmin
θ
‖X− fθ(X)‖2

2, (6.39)

where θ are the weights of the autoencoder network fθ(x) = ψ(φ(x)). The di-
mension of the latent space r is often determined by hyperparameter tuning.
Thus r is made as small as possible until the autoencoder performance starts to
fail. This is often informative, as it can discover the intrinsic dimensionality of
the data.

From a more mathematically abstract point of view, the autoencoder pro-
vides a mapping, as illustrated in Fig. 6.20, so that

φ : X → Z, (6.40a)
ψ : Z → X , (6.40b)

where the input x ∈ X ⊆ Rn and output z ∈ Z ⊆ Rr are defined in high- and
low-dimensional spaces, respectively. The resulting neural network optimiza-
tion is formulated around the loss function

argmin
φ,ψ

‖X− (ψ ◦ φ)X‖. (6.41)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

286 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

Input

x

(latent space)
z

Reconstruction

x̃
φ ψ

Encoder network Decoder network

Figure 6.20: Autoencoder network structure which maps the input state space
x to a latent space z. For applications considered here, the latent space if where
the dynamical evolution is modeled. The encoder is denoted by φ and the de-
coder by ψ. The autoencoder is trained by minimizing the loss ‖x − x̃‖2

2 along
with any other regularization that may be applied.

More generally, the autoencoder is often used with a diversity of regulariza-
tions in the optimization process, so that a more general formulation is given
by

argmin
φ,ψ

‖X− (ψ ◦ φ)X‖+
P∑

j=1

λjgj(X, φ, ψ), (6.42)

where gj(·) represents a regularizer, weighted by λj , and there are total of P
additional loss functions added to the optimization. For instance, an elastic net
penalty can be added where two additional loss functions would penalize the
`2- and `1-norm of the network weights. This often can help produce better
results in the network. The `1-norm, for instance, can help deal with outliers
and corrupt data.

To demonstrate the ability of the autoencoder to construct a low-dimensional
representation of high-dimensional data, the fluid flow around a cylinder is
considered. The data is generated from snapshots of the numerical simulation
of the incompressible Navier–Stokes equation:

∂u

∂t
+ u · ∇u +∇p− 1

Re
∇2u = 0, (6.43)

with the incompressibility constraints ∇ · u = 0. Here u(x, y, t) represents the
2D velocity, and p(x, y, t) the corresponding pressure field. The boundary con-
ditions dictate a constant flow of u = (1, 0)T at x = −15, i.e., the entry of the
domain. There is also a constant pressure of p = 0 at x = 25, i.e., the end of the
domain, and Neumann boundary conditions, i.e., ∂u/∂n = 0, on the boundary
of the domain and the cylinder (centered at (x, y) = (0, 0) and of radius unity).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.8. AUTOENCODERS 287

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

Figure 6.21: First six most dominant modes (top left to bottom right) learned
by the autoencoder for the flow around a cylinder. These modes are the latent
representation of the flow physics.

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

Figure 6.22: First six most dominant modes (top left to bottom right) learned by
the autoencoder for the flow around a cylinder using a linear reduction, which
is equivalent to φ → U∗ and ψ → U. These modes are the SVD (PCA or POD)
representation of the flow physics.

The autoencoder is created using the keras package with tensorflow. The
following code creates an autoencoder/decoder structure, whereby the input
layer is recursively made half the size of the layers before it. Three layers are
constructed on the way to the latent dimension of r = 10.

Code 6.9: [Python] Autoencoder structure.
class Autoencoder(tf.keras.Model):

def __init__(self, latent_dim, input_dim, activation=’
sigmoid’):
super(Autoencoder, self).__init__()
self.latent_dim = latent_dim
self.input_dim = input_dim

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

288 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

self.activation = activation

self.encoder = tf.keras.Sequential([
tf.keras.layers.Dense(int(self.input_dim/2),

activation=self.activation),
tf.keras.layers.Dense(int(self.input_dim/4),

activation=self.activation),
tf.keras.layers.Dense(int(self.input_dim/8),

activation=self.activation),
tf.keras.layers.Dense(self.latent_dim,

activation=’linear’),
])
self.decoder = tf.keras.Sequential([

tf.keras.layers.Dense(int(self.input_dim/8),
activation=self.activation),

tf.keras.layers.Dense(int(self.input_dim/4),
activation=self.activation),

tf.keras.layers.Dense(int(self.input_dim/2),
activation=self.activation),

tf.keras.layers.Dense(self.input_dim, activation
=’linear’),

])

def call(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded

To train the autoencoder model, the following code is used:

Code 6.10: [Python] Autoencoder training.
latent_dim = 10 # number of modes
activation = ’elu’
input_dim = x_train.shape[1]

optimizer = ’adam’; epochs = 50
A = Autoencoder(latent_dim, input_dim, activation)
A.compile(optimizer=optimizer, loss=tf.keras.losses.

MeanSquaredError())

The encoding generates a low-dimensional representation of the flow field
in the latent space. The first six modes of this nonlinear encoder are highlighted
in Fig. 6.21. This should be compared to a linear encoding/decoding, which
is achieved using PCA so that the encoder/decoder pair (φ, ψ) are given by
the first r modes of the SVD (U∗,U). The linear modes are shown in Fig. 6.22.
Note that the linear modes alternate between symmetric and antisymmetric

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.9. GENERATIVE ADVERSARIAL NETWORKS (GANS) 289

0 4 82

0

2

0 4 82

0

2

0 4 82

0

2

Figure 6.23: Error of the autoencoder representation. The left panel is the orig-
inal state space u to be encoded. The middle panel is the reconstructed state
space ũ. And finally the right panel is the error between the original state space
and its reconstruction u− ũ.

structure whereas the nonlinear encoder produces modes that don’t have any
clear symmetry. Thus linear and nonlinear encoding can produce quite differ-
ent patterns. It is shown later in Section 13.7 that there are many advantages
to the nonlinear decoder in handling noise. Figure 6.23 compares a snapshot
of the flow x along with its reconstruction ũ through the autoencoder/decoder
network. The reconstruction error u− ũ is also shown.

6.9 Generative Adversarial Networks (GANs)

Deep learning has also produced success in the generation of synthetic data that
is indistinguishable from real data. Generative adversarial networks (GANs) learn
how to produce synthetic data through an adversarial structure whereby two
neural networks are trained simultaneously. One neural network, the discrim-
inator, classifies sample data as real or fake. A second neural network, the gen-
erator, produces synthetic data from a latent representation that is run through
the discriminator to produce a classification of real or fake. The two neural net-
works are trained simultaneously so that the generator can produce synthetic
data, or fake data, that is indistinguishable from real data.

Goodfellow et al. [291] developed the basic architecture of the GAN as illus-
trated in Fig. 6.24. Mathematically, the architecture considers a set of real data
X ∈ Rn×m. Each data sample xk ∈ Rn is used as input to a neural network that

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

290 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

Data
X ∈ Rn×m

xk ∈ Rn – data sample

x̃k ∈ Rn – fake (generative) sample

Generator

f̃θ2

fθ1

Discriminator

Latent input
zk ∈ Rp

Loss
Lf̃θ2

Loss
Lfθ1

Figure 6.24: Generic GAN architecture that requires the training of two neural
networks. Individual samples of data xk ∈ Rn are used to train a neural net-
work fθ1 that maps the input data to a classification label (real or fake) yk ∈ Rn.
The generative network f̃θ2 maps a random latent space zk ∈ Rp to model of
the data x̃k ∈ Rn. The generative data is classified by fθ1 as real or fake data
by ỹk ∈ Rn. Backprop is used to update the neural network weights in both
networks so that the generator network produces a model of the data x̃k ∈ Rn

that is indistinguishable from real data xk ∈ Rn.

maps it to a classification yk of real or fake:

yk = fθ1(xk). (6.44)

Note that the output, for instance, could be given by yk = [1 0]T (real) and
yk = [0 1]T (fake). Without a generative model, this task is trivial, as all the
data is, of course, real, so that the label will always be real. A second network is
trained to generate synthetic data samples x̃k. Specifically, the goal is to make
data x̃k indistinguishable from real data xk. This is done by constructing an
input latent space zk for the second neural network that generates the synthetic
data

x̃k = f̃θ2(zk). (6.45)

The latent space zk is typically a random vector. By training the network, the
random vector then produces fake data x̃k. The fake data is also then used as

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.10. THE DIVERSITY OF NEURAL NETWORKS 291

an input to the discrimination network

ỹk = fθ1(x̃k). (6.46)

The output classification vector labels each synthetic data sample as real or
fake. Initially, these vectors are largely labeled as fakes. However, by training
f̃θ2 and fθ1 jointly, the generator network can learn to produce a model that min-
imizes the number of generated models x̃k that are labeled as fake. Two loss
functions are simultaneously considered: (i) Lfθ1

, which maximizes the proba-
bility of assigning the correct label to both training examples xk and samples
from the generator x̃k; and (ii) Lf̃θ2

, which minimizes the number of synthetic
data labeled as fakes. Thus the second loss function must compute

ỹk = fθ1(x̃k) = fθ1 (̃fθ2(zk)) (6.47)

in order to produce the labels ỹk, which are all desired to be considered real.
A highly successful outcome would mean that the true data yk and synthetic
labels ỹk are all classified as real labels.

GANs gained significant popularity due to their ability to generate deep fakes
(images, video, and speech) that are difficult to distinguish from reality. It is one
of the more controversial neural network architectures to have been developed
to date. However, it also has advantages when applied to various disciplines
in science and engineering. To highlight one of the uses of GAN for scientific
purposes, we consider the use of GANs for the super-resolution of turbulent
flow physics [202] (see Fig.6.25). In the application of super-resolution, the la-
tent space no longer consists of random inputs. Rather, the latent space zk is
the low-resolution flow field. Thus the generator network is trained to pro-
duce high-resolution flow physics x̃k that is indistinguishable from real data
xk. The generator (̃fθ2) and discriminator (fθ1) neural networks are quite so-
phisticated, being composed of convolutional layers (CONV), parametric ReLU
(PReLU), batch normalization (BN), and leaky ReLU (LReLU) layers. Deng et
al. [202] show that the GAN is capable of producing high-dimensional recon-
structions using low-resolution measurements, thus showing the effectiveness
of the method. More broadly, one can imagine using GANs to generate syn-
thetic data that can be useful in various scientific and engineering applications
where high-resolution fields are expensive.

6.10 The Diversity of Neural Networks

There are a wide variety of NN architectures, with only a few of the most dom-
inant architectures considered thus far. This chapter (and book) does not at-
tempt to give a comprehensive assessment of the state of the art in neural net-
works. Rather, our focus is on illustrating some of the key concepts and en-
abling mathematical architectures that have led NNs to a dominant position in

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

292 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

Figure 6.25: Architecture for the super-resolution reconstruction of turbulent
velocity fields. In this case, the latent variable space zk of Fig. 6.24 is the low-
resolution (LR) version of the flow field. The network is trained so that the LR
flow field can produce a synthetic version of the high-resolution (HR) flow field
x̃k that is indistinguishable from the real data. The generator (̃fθ2) and discrim-
inator (fθ1) neural network architectures are composed of convolutional lay-
ers (CONV), parametric ReLU (PReLU), batch normalization (BN), and leaky
ReLU (LReLU). (From Deng et al. [202]).

modern data science. For a more in-depth review, please see Goodfellow et al.
[290]. However, to conclude this chapter, we would like to highlight some of
the NN architectures that are used in practice for various data science tasks.
This overview is inspired by the neural network zoo as highlighted by Fjodor
van Veen of the Asimov Institute (www.asimovinstitute.org).

The neural network zoo highlights some of the different architectural struc-
tures around NNs. Some of the networks highlighted are commonly used across
industry, while others serve niche roles for specific applications. Regardless,
this demonstrates the tremendous variability and research effort focused on
NNs as a core data science tool. Figure 6.26 highlights the prototype structures
to be discussed in what follows. Note that the bottom panel has a key to the dif-
ferent type of nodes in the network, including input cells, output cells, and hid-
den cells. Additionally, the hidden layer NN cells can have memory effects, ker-
nel structures, and/or convolution/pooling. For each NN architecture, a brief

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

www.asimovinstitute.org

6.10. THE DIVERSITY OF NEURAL NETWORKS 293

description is given along with the original paper proposing the technique.

Perceptron

The first mathematical model of NNs by Fukushima was termed the Neocogni-
tron in 1980 [260]. His model had a single layer with a single output cell called
the perceptron, which made a categorial decision based on the sign of the out-
put. Figure 6.2 shows this architecture to classify between dogs and cats. The
perceptron is an algorithm for supervised learning of binary classifiers.

Feedforward (FF)

Feedforward networks connect the input layer to the output layer by form-
ing connections between the units so that they do not form a cycle. Figure 6.1
has already shown a version of this architecture where the information simply
propagates from left to right in the network. It is often the workhorse of su-
pervised learning where the weights are trained so as to best classify a given
set of data. A feedforward network was used in Figs. 6.5 and 6.15 for train-
ing a classifier for dogs versus cats and for predicting time-steps of the Lorenz
attractor, respectively. An important subclass of feedforward networks is deep
feedforward (DFF) NNs. DFFs simply put together a larger number of hidden
layers, typically 7–10 layers, to form the NN. A second important class of FF
is the radial basis network, which uses radial basis functions as the activation
units [121]. Like any FF network, radial basis function networks have many
uses, including function approximation, time-series prediction, classification,
and control.

Recurrent Neural Network (RNN)

Illustrated in Fig. 6.26(a), RNNs are characterized by connections between units
that form a directed graph along a sequence. This allows an RNN to exhibit dy-
namic temporal behavior for a time sequence [230]. Unlike feedforward neural
networks, RNNs can use their internal state (memory) to process sequences of
inputs. The prototypical architecture in Fig. 6.26(a) shows that each cell feeds
back on itself. This self-interaction, which is not part of the FF architecture, al-
lows for a variety of innovations. Specifically, it allows for time delays and/or
feedback loops. Such controlled states are referred to as gated state or gated
memory, and are part of two key innovations: long short-term memory (LSTM)
networks [331] and gated recurrent units (GRU) [177]. LSTM is of particular im-
portance, as it revolutionized speech recognition, setting a variety of perfor-
mance records and outperforming traditional models in a variety of speech
applications. GRUs are a variation of LSTMs that have been demonstrated to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

294 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

(LSTM/GRU)
(a) RNN (b) AE (c) VAE/DAE (d) SAE (e) RBM

(f) MC (g) HN (h) BM (i) DBN

(j) DCNN (k) DN (l) DCIGN

(m) GAN (n) LSM/ELM (o) ESN

(p) DRN (q) KN (r) NTM

Input cell
Output cell
Hidden cell

Memory cell
Convolution/pooling cell
Kernel cell

Figure 6.26: Neural network architectures commonly considered in the litera-
ture. The NNs comprise input nodes, output nodes, and hidden nodes. Ad-
ditionally, the nodes can have memory, perform convolution and/or pooling,
and perform a kernel transformation. Each network and their acronym are ex-
plained in the text.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.10. THE DIVERSITY OF NEURAL NETWORKS 295

exhibit better performance on smaller data sets.

Autoencoder (AE)

The aim of an autoencoder, represented in Fig. 6.26(b), is to learn a represen-
tation (encoding) for a set of data, typically for the purpose of dimensionality
reduction. For AEs, the input and output cells are matched so that the AE is
essentially constructed to be a nonlinear transform into and out of a new rep-
resentation, acting as an approximate identity map on the data. Thus AEs can
be thought of as a generalization of linear dimensionality reduction techniques
such as PCA. AEs can potentially produce nonlinear PCA representations of
the data, or nonlinear manifolds on which the data should be embedded [99].
Since most data lives in nonlinear subspaces, AEs are an important class of NN
for data science, with many innovations and modifications. Three important
modifications of the standard AE are commonly used. The variational autoen-
coder (VAE) [387] (shown in Fig. 6.26(c)) is a popular approach to unsupervised
learning of complicated distributions. By making strong assumptions concern-
ing the distribution of latent variables, it can be trained using standard gradient
descent in order to provide a good assessment of data in an unsupervised fash-
ion. The de-noising autoencoder (DAE) [734] (shown in Fig. 6.26(c)) takes a par-
tially corrupted input during training to recover the original undistorted input.
Thus noise is intentionally added to the input in order to learn the nonlinear
embedding. Finally, the sparse autoencoder (SAE) [585] (shown in Fig. 6.26(d))
imposes sparsity on the hidden units during training, while having a larger
number of hidden units than inputs, so that an autoencoder can learn useful
structures in the input data. Sparsity is typically imposed by thresholding all
but the few strongest hidden unit activations.

Markov Chain (MC)

A Markov chain is a stochastic model describing a sequence of possible events
in which the probability of each event depends only on the state attained in
the previous event. So, although not formally a NN, it shares many common
features with RNNs. Markov chains are standard even in undergraduate prob-
ability and statistics courses. Figure 6.26(f) shows the basic architecture where
each cell is connected to the other cells by a probability model for a transition.

Hopfield Network (HN)

A Hopfield network is a form of RNN which was popularized by John Hop-
field in 1982 for understanding human memory [337]. Figure 6.26(g) shows the
basic architecture of an all-to-all connected network where each node can act as

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

296 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

an input cell. The network serves as a trainable content-addressable associative
memory system with binary threshold nodes. Given an input, it is iterated on
the network with a guarantee to converge to a local minimum. Sometimes it
converges to a false pattern, or memory (wrong local minimum), rather than
the stored pattern (expected local minimum).

Boltzmann Machine (BM)

The Boltzmann machine, sometimes called a stochastic Hopfield network with
hidden units, is a stochastic, generative counterpart of the Hopfield network.
They were one of the first neural networks capable of learning internal rep-
resentations, and are able to represent and (given sufficient time) solve dif-
ficult combinatoric problems [327]. Figure 6.26(h) shows the structure of the
BM. Note that, unlike Markov chains (which have no input units) or Hopfield
networks (where all cells are inputs), the BM is a hybrid which has a mixture
of input cells and hidden units. Boltzmann machines are intuitively appealing
due to their resemblance to the dynamics of simple physical processes. They
are named after the Boltzmann distribution in statistical mechanics, which is
used in their sampling function.

Restricted Boltzmann Machine (RBM)

Introduced under the name Harmonium by Paul Smolensky in 1986 [666], RBMs
have been proposed for dimensionality reduction, classification, collaborative
filtering, feature learning, and topic modeling. They can be trained for either
supervised or unsupervised tasks. G. Hinton helped bring them to prominence
by developing fast algorithms for evaluating them [519]. RBMs are a subset of
BMs where restrictions are imposed on the NN such that nodes in the NN must
form a bipartite graph (see Fig. 6.26(e)). Thus a pair of nodes from each of the
two groups of units (commonly referred to as the “visible” and “hidden” units,
respectively) may have a symmetric connection between them; there are no
connections between nodes within a group. RBMs can be used in deep learn-
ing networks and deep belief networks by stacking RBMs and optionally fine-
tuning the resulting deep network with gradient descent and backpropagation.

Deep Belief Network (DBN)

DBNs are a generative graphical model that are composed of multiple layers of
latent hidden variables, with connections between the layers but not between
units within each layer [73]. Figure 6.26(i) shows the architecture of the DBN.
The training of the DBNs can be done stack by stack from AE or RBM layers.
Thus each of these layers only has to learn to encode the previous network,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.10. THE DIVERSITY OF NEURAL NETWORKS 297

which is effectively a greedy training algorithm for finding locally optimal so-
lutions. Thus DBNs can be viewed as a composition of simple, unsupervised
networks such as RBMs and AEs where each sub-network’s hidden layer serves
as the visible layer for the next.

Deep Convolutional Neural Network (DCNN)

DCNNs are the workhorse of computer vision and have already been consid-
ered in this chapter. They are abstractly represented in Fig. 6.26(j), and in a
more specific fashion in Fig. 6.12. Their impact and influence on computer vi-
sion cannot be overestimated. They were originally developed for document
recognition [433].

Deconvolutional Network (DN)

Deconvolutional networks, shown in Fig. 6.26(k), are essentially a reverse of
DCNNs [770]. The mathematical structure of DNs permits the unsupervised
construction of hierarchical image representations. These representations can
be used for both low-level tasks such as de-noising, as well as providing fea-
tures for object recognition. Each level of the hierarchy groups information
from the level beneath to form more complex features that exist over a larger
scale in the image. As with DCNNs, it is well suited for computer vision tasks.

Deep Convolutional Inverse Graphics Network (DCIGN)

The DCIGN is a form of VAE that uses DCNNs for the encoding and decod-
ing [417]. As with the AE/VAE/SAE structures, the output layer shown in
Fig. 6.26(l) is constrained to match the input layer. DCIGNs combine the power
of DCNNs with VAEs, which provides a formative mathematical architecture
for computer vision and image processing.

Generative Adversarial Network (GAN)

In an innovative modification of NNs, the GAN architecture of Fig. 6.26(m)
trains two networks simultaneously [291]. The networks, which are often a
combination of DCNNs and/or FFs, train by one of the networks generating
content which the other attempts to judge. Specifically, one network generates
candidates and the other evaluates them. Typically, the generative network
learns to map from a latent space to a particular data distribution of inter-
est, while the discriminative network discriminates between instances from the
true data distribution and candidates produced by the generator. The genera-
tive network’s training objective is to increase the error rate of the discrimina-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

298 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

tive network (i.e., “fool” the discriminator network by producing novel syn-
thesized instances that appear to have come from the true data distribution).
The GAN architecture has produced interesting results in computer vision for
producing synthetic data, such as images and movies.

Liquid State Machine (LSM)

The LSM shown in Fig. 6.26(n) is a particular kind of spiking neural network
[469]. An LSM consists of a large collection of nodes, each of which receives
time-varying input from external sources (the inputs) as well as from other
nodes. Nodes are randomly connected to each other. The recurrent nature of
the connections turns the time-varying input into a spatio-temporal pattern of
activations in the network nodes. The spatio-temporal patterns of activation are
read out by linear discriminant units. This architecture is motivated by spiking
neurons in the brain, thus helping understand how information processing and
discrimination might happen using spiking neurons.

Extreme Learning Machine (ELM)

With the same underlying architecture of an LSM shown in Fig. 6.26(n), the
ELM is a FF network for classification, regression, clustering, sparse approxi-
mation, compression, and feature learning with a single layer or multiple layers
of hidden nodes, where the parameters of hidden nodes (not just the weights
connecting inputs to hidden nodes) need not be tuned. These hidden nodes can
be randomly assigned and never updated, or can be inherited from their ances-
tors without being changed. In most cases, the output weights of hidden nodes
are usually learned in a single step, which essentially amounts to learning a
linear model [150].

Echo State Network (ESN)

ESNs are RNNs with a sparsely connected hidden layer (with typically 1% con-
nectivity). The connectivity and weights of hidden neurons have memory and
are fixed and randomly assigned (see Fig. 6.26(o)). Thus, like LSMs and ELMs,
they are not fixed into a well-ordered layered structure. The weights of out-
put neurons can be learned so that the network can generate specific temporal
patterns [347].

Deep Residual Network (DRN)

DRNs took the deep learning world by storm when Microsoft Research re-
leased Deep Residual Learning for Image Recognition [317]. These networks

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.10. THE DIVERSITY OF NEURAL NETWORKS 299

led to first-place-winning entries in all five main tracks of the ImageNet and
COCO 2015 competitions, which covered image classification, object detection,
and semantic segmentation. The robustness of residual networks (ResNets) has
since been proven by various visual recognition tasks and by non-visual tasks
involving speech and language. DRNs are very deep FF networks where there
are extra connections that pass from one layer to a layer two to five layers
downstream. This then carries input from an earlier stage to a future stage.
These networks can be 150 layers deep, which is only abstractly represented in
Fig. 6.26(p).

Kohonen Network (KN)

Kohonen networks are also known as self-organizing feature maps [400]. KNs
use competitive learning to classify data without supervision. Input is pre-
sented to the KN as in Fig. 6.26(q), after which the network assesses which
of the neurons closely match that input. These self-organizing maps differ from
other NNs, as they apply competitive learning as opposed to error-correction
learning (such as backpropagation with gradient descent), and in the sense that
they use a neighborhood function to preserve the topological properties of the
input space. This makes KNs useful for low-dimensional visualization of high-
dimensional data.

Neural Turing Machine (NTM)

The NTM architecture implements a neural network controller coupled to an
external memory resource (see Fig. 6.26(r)), which it interacts with through at-
tentional mechanisms [294]. The memory interactions are differentiable end-
to-end, making it possible to optimize them using gradient descent. Pairing the
NTM with an LSTM controller can infer simple algorithms such as copying,
sorting, and associative recall from input and output examples.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

300 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

Suggested Reading

Texts

(1) Deep learning, by I. Goodfellow, Y. Bengio, and A. Courville, 2016 [290].

(2) Neural networks for pattern recognition, by C. M. Bishop, 1995 [90].

Papers and reviews

(1) Deep learning, by Y. LeCun, Y. Bengio, and G. Hinton, Nature, 2015 [432].

(2) Understanding deep convolutional networks, by S. Mallat, Philosophical
Transactions of the Royal Society of London A, 2016 [476].

(3) Deep learning: Mathematics and neuroscience, by T. Poggio, Views & Re-
views, McGovern Center for Brains, Minds and Machines, 2016 [566].

(4) ImageNet classification with deep convolutional neural, by A. Krizhevsky,
I. Sutskever, and G. Hinton, Advances in Neural Information Processing Sys-
tems, 2012 [414].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

6.10. THE DIVERSITY OF NEURAL NETWORKS 301

Homework

Exercise 6-1. Download the code base for solving (i) a reaction–diffusion system
of equations, and (ii) the Kuramoto–Sivashinsky (KS) equation.

(a) Train a NN that can advance the solution from t to t + ∆t for the KS
equation.

(b) Compare your evolution trajectories for your NN against using the ODE
time-stepper provided with different initial conditions.

(c) For the reaction–diffusion system, first project to a low-dimensional sub-
space via the SVD and see how forecasting works in the low-rank vari-
ables.

For the Lorenz equations, consider the following.

(d) Train an NN to advance the solution from t to t+∆t for ρ = 10, 28, and 40.
Now see how well your NN works for future state prediction for ρ = 17
and ρ = 35.

(e) See if you can train your NN to identify (for ρ = 28) when a transition
from one lobe to another is imminent. Determine how far in advance you
can make this prediction. (Note: You will have to label the transitions in a
test set in order to do this task.)

Exercise 6-2. Consider time-series data acquired from power grid loads, specif-
ically: T. V. Jensen and P. Pinson. Re-Europe, a large-scale data set for modeling
a highly renewable European electricity system. Scientific Data, 4:170175, 2017.
Compare the forecasting capabilities of the following neural networks on the
power grid data: (i) a feedforward neural network; (ii) an LSTM; (iii) an RNN;
and (iv) an echo state network. Consider the performance of each under cross-
validation for forecasting ranges of ∆t into the future and N∆t into the future
(where N � 1).

Exercise 6-3. Download the flow around the cylinder data. Using the first P%
of the temporal snapshots, forecast the remaining (100−P)% future state data.
Do this by training a neural network on the high-dimensional data and using:
(i) a feedforward neural network; (ii) an LSTM; (iii) an RNN; and (iv) an echo
state network. Determine the performance of the algorithms as a function of
decreasing data P .

Redo the forecasting calculations by training a model in the reduced subspace
U from the singular value decomposition. Evaluate the forecasting performance

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

302 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

as a function of the percentage of the training data P and the rank of the re-
duced space r.

Exercise 6-4. Generate simulation data for the Kuramoto–Sivashinsky (KS) equa-
tion in three distinct parameter regimes where non-trivial spatio-temporal dy-
namics occurs. Using a convolutional neural network, map the high-dimensional
snapshots of the system to a classification of the system into one of the three pa-
rameter regimes. Evaluate the performance of the classification scheme on test
data as a function of different convolutional window sizes and stride lengths.
For the best performance, what is the convolutional window size and what
spatial length scale is extracted to make the classification decision?

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Part III

Dynamics and Control

303

Chapter 7

Data-Driven Dynamical Systems

Dynamical systems provide a mathematical framework to describe the world
around us, modeling the rich interactions between quantities that co-evolve in
time. Formally, dynamical systems concern the analysis, prediction, and un-
derstanding of the behavior of systems of differential equations or iterative
mappings that describe the evolution of the state of a system. This formula-
tion is general enough to encompass a staggering range of phenomena, includ-
ing those observed in classical mechanical systems, electrical circuits, turbulent
fluids, climate science, finance, ecology, social systems, neuroscience, epidemi-
ology, and nearly every other system that evolves in time.

Modern dynamical systems began with the seminal work of Poincaré on
the chaotic motion of planets. It is rooted in classical mechanics, and may be
viewed as the culmination of hundreds of years of mathematical modeling, be-
ginning with Newton and Leibniz. The full history of dynamical systems is
too rich for these few pages, having captured the interest and attention of the
greatest minds for centuries, and having been applied to countless fields and
challenging problems. Dynamical systems provide one of the most complete
and well-connected fields of mathematics, bridging diverse topics from linear
algebra and differential equations, to topology, numerical analysis, and geom-
etry. Dynamical systems have become central in the modeling and analysis of
systems in nearly every field of the engineering, physical, and life sciences.

Modern dynamical systems are currently undergoing a renaissance, with
analytical derivations and first-principles models giving way to data-driven
approaches. The confluence of big data and machine learning is driving a para-
digm shift in the analysis and understanding of dynamical systems in science
and engineering. Data are abundant, while physical laws or governing equa-
tions remain elusive, as is true for problems in climate science, finance, epi-
demiology, and neuroscience. Even in classical fields, such as optics and turbu-
lence, where governing equations do exist, researchers are increasingly turning
toward data-driven analysis. Many critical data-driven problems, such as pre-
dicting climate change, understanding cognition from neural recordings, pre-

305

306 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

dicting and suppressing the spread of disease, or controlling turbulence for
energy-efficient power production and transportation, are primed to take ad-
vantage of progress in the data-driven discovery of dynamics.

In addition, the classical geometric and statistical perspectives on dynam-
ical systems are being complemented by a third operator-theoretic perspective,
based on the evolution of measurements of the system. This so-called Koopman
operator theory is poised to capitalize on the increasing availability of measure-
ment data from complex systems. Moreover, Koopman theory provides a path
to identify intrinsic coordinate systems to represent nonlinear dynamics in a
linear framework. Obtaining linear representations of strongly nonlinear sys-
tems has the potential to revolutionize our ability to predict and control these
systems.

This chapter presents a modern perspective on dynamical systems in the
context of current goals and open challenges. Data-driven dynamical systems
is a rapidly evolving field, and therefore we focus on a mix of established and
emerging methods that are driving current developments. In particular, we will
focus on the key challenges of discovering dynamics from data and finding
data-driven representations that make nonlinear systems amenable to linear
analysis.

7.1 Overview, Motivations, and Challenges

Before summarizing recent developments in data-driven dynamical systems, it
is important to first provide a mathematical introduction to the notation and
summarize key motivations and open challenges in dynamical systems.

Dynamical Systems

Throughout this chapter, we will consider dynamical systems of the form
d

dt
x(t) = f(x(t), t;β), (7.1)

where x is the state of the system and f is a vector field that possibly depends
on the state x, time t, and a set of parameters β.

For example, consider the Lorenz equations [460]

ẋ = σ(y − x), (7.2a)
ẏ = x(ρ− z)− y, (7.2b)
ż = xy − βz, (7.2c)

with parameters σ = 10, ρ = 28, and β = 8/3. A trajectory of the Lorenz system
is shown in Fig. 7.1. In this case, the state vector is x =

[
x y z

]T and the
parameter vector is β =

[
σ ρ β

]T .

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.1. OVERVIEW, MOTIVATIONS, AND CHALLENGES 307

x

y

z

Figure 7.1: Chaotic trajectory of the Lorenz system from (7.2).

The Lorenz system is among the simplest and most well-studied dynamical
systems that exhibit chaos, which is characterized as a sensitive dependence on
initial conditions. Two trajectories with nearby initial conditions will rapidly
diverge in behavior, and, after long times, only statistical statements can be
made.

It is simple to simulate dynamical systems, such as the Lorenz system. First,
the vector field f(x, t;β) is defined in the function lorenz in Code 7.1.

Code 7.1: [MATLAB] Define Lorenz vector field.
function dx = lorenz(t,x,Beta)
dx = [
Beta(1)*(x(2)-x(1));
x(1)*(Beta(2)-x(3))-x(2);
x(1)*x(2)-Beta(3)*x(3);
];

Code 7.1: [Python] Define Lorenz vector field.
def lorenz(x_y_z, t0, sigma=sigma, beta=beta, rho=rho):

x, y, z = x_y_z
return [sigma*(y-x), x*(rho-z)-y, x*y-beta*z]

In Code 7.2, we define the system parameters β, initial condition x0, and times-
pan, and simulate the equations with a fourth-order Runge–Kutta integration
scheme with adaptive time-step; in MATLAB we use the ode45 command and
in Python we use the integrate.odeint command.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

308 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Code 7.2: [MATLAB] Define Lorenz system parameters and simulate with
Runge–Kutta integrator.

Beta = [10; 28; 8/3]; % Lorenz’s parameters (chaotic)
x0=[0; 1; 20]; % Initial condition
dt = 0.001;
tspan=dt:dt:50;
options = odeset(’RelTol’,1e-12,’AbsTol’,1e-12*ones(1,3));

[t,x]=ode45(@(t,x) lorenz(t,x,Beta),tspan,x0,options);
plot3(x(:,1),x(:,2),x(:,3));

Code 7.2: [Python] Define Lorenz system parameters and simulate with Runge–
Kutta integrator.

beta = 8/3
sigma = 10
rho = 28
x0 = (0,1,20)
dt = 0.001
t = np.arange(0,50+dt,dt)

x_t = integrate.odeint(lorenz, x0, t,rtol=10**(-12),atol
=10**(-12)*np.ones_like(x0))

x, y, z = x_t.T
plt.plot(x, y, z,linewidth=1)

We will often consider the simpler case of an autonomous system without
time dependence or parameters:

d

dt
x(t) = f(x(t)). (7.3)

In general, x(t) ∈ M is an n-dimensional state that lives on a smooth mani-
fold M, and f is an element of the tangent bundle TM of M so that f(x(t)) ∈
Tx(t)M. However, we will typically consider the simpler case where x is a vec-
tor, M = Rn, and f is a Lipschitz continuous function, guaranteeing existence
and uniqueness of solutions to (7.3). For the more general formulation, see [4].

Discrete-Time Systems

We will also consider the discrete-time dynamical system

xk+1 = F(xk). (7.4)

Also known as a map, the discrete-time dynamics are more general than the
continuous-time formulation in (7.3), encompassing discontinuous and hybrid
systems as well.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.1. OVERVIEW, MOTIVATIONS, AND CHALLENGES 309

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

x

r

x

β

0 0.2 0.4 0.6 0.8 1

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

x

r

x

β

Figure 7.2: Attracting sets of the logistic map for varying parameter β.

For example, consider the logistic map:

xk+1 = βxk(1− xk). (7.5)

As the parameter β is increased, the attracting set becomes increasingly com-
plex, as shown in Fig. 7.2. A series of period-doubling bifurcations occur until
the attracting set becomes fractal.

Discrete-time dynamics may be induced from continuous-time dynamics,
where xk is obtained by sampling the trajectory in (7.3) discretely in time, so
that xk = x(k∆t). The discrete-time propagator F∆t is now parameterized by
the time-step ∆t. For an arbitrary time t, the flow map Ft is defined as

Ft(x(t0)) = x(t0) +

∫ t0+t

t0

f(x(τ)) dτ . (7.6)

The discrete-time perspective is often more natural when considering experi-
mental data and digital control.

Linear Dynamics and Spectral Decomposition

Whenever possible, it is desirable to work with linear dynamics of the form

d

dt
x = Ax. (7.7)

Linear dynamical systems admit closed-form solutions, and there are a wealth
of techniques for the analysis, prediction, numerical simulation, estimation,
and control of such systems. The solution of (7.7) is given by

x(t0 + t) = eAtx(t0). (7.8)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

310 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

The dynamics are entirely characterized by the eigenvalues and eigenvectors
of the matrix A, given by the spectral decomposition (eigendecomposition) of A:

AT = TΛ. (7.9)

When A has n distinct eigenvalues, then Λ is a diagonal matrix containing the
eigenvalues λj and T is a matrix whose columns are the linearly independent
eigenvectors ξj associated with eigenvalues λj . In this case, it is possible to
write A = TΛT−1, and the solution in (7.8) becomes

x(t0 + t) = TeΛtT−1x(t0). (7.10)

More generally, in the case of repeated eigenvalues, the matrix Λ will consist
of Jordan blocks [562]. See Section 8.2 for a detailed derivation of the above
arguments for control systems. Note that the continuous-time system gives rise
to a discrete-time dynamical system, with Ft given by the solution map exp(At)
in (7.8). In this case, the discrete-time eigenvalues are given by eλt.

The matrix T−1 defines a transformation, z = T−1x, into intrinsic eigen-
vector coordinates, z, where the dynamics become decoupled:

d

dt
z = Λz. (7.11)

In other words, each coordinate, zj , only depends on itself, with simple dynam-
ics given by

d

dt
zj = λjzj. (7.12)

Thus, it is highly desirable to work with linear systems, since it is possible to
easily transform the system into eigenvector coordinates where the dynamics
become decoupled. No such closed-form solution or simple linear change of
coordinates exist in general for nonlinear systems, motivating many of the di-
rections described in this chapter.

Goals and Challenges in Modern Dynamical Systems

As we generally use dynamical systems to model real-world phenomena, there
are a number of high-priority goals associated with the analysis of dynamical
systems:

(a) Future state prediction. In many cases, such as meteorology and clima-
tology, we seek predictions of the future state of a system. Long-time pre-
dictions may still be challenging.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.1. OVERVIEW, MOTIVATIONS, AND CHALLENGES 311

(b) Design and optimization. We may seek to tune the parameters of a sys-
tem for improved performance or stability, for example through the place-
ment of fins on a rocket.

(c) Estimation and control. It is often possible to actively control a dynam-
ical system through feedback, using measurements of the system to in-
form actuation to modify the behavior. In this case, it is often necessary to
estimate the full state of the system from limited measurements.

(d) Interpretability and physical understanding. Perhaps a more fundamen-
tal goal of dynamical systems is to provide physical insight and inter-
pretability into a system’s behavior through analyzing trajectories and
solutions to the governing equations of motion.

Real-world systems are generally nonlinear and exhibit multi-scale behav-
ior in both space and time. It must also be assumed that there is uncertainty
in the equations of motion, in the specification of parameters, and in the mea-
surements of the system. Some systems are more sensitive to this uncertainty
than others, and probabilistic approaches must be used. Increasingly, it is also
the case that the basic equations of motion are not specified and they might be
intractable to derive from first principles.

This chapter will cover recent data-driven techniques to identify and ana-
lyze dynamical systems. The majority of this chapter addresses two primary
challenges of modern dynamical systems:

1. Nonlinearity. Nonlinearity remains a primary challenge in analyzing and
controlling dynamical systems, giving rise to complex global dynamics.
We saw above that linear systems may be completely characterized in
terms of the spectral decomposition (i.e., eigenvalues and eigenvectors)
of the matrix A, leading to general procedures for prediction, estima-
tion, and control. No such overarching framework exists for nonlinear
systems, and developing this general framework is a mathematical grand
challenge of the twenty-first century.

The leading perspective on nonlinear dynamical systems considers the
geometry of subspaces of local linearizations around fixed points and pe-
riodic orbits, global heteroclinic and homoclinic orbits connecting these
structures, and more general attractors [334]. This geometric theory, orig-
inating with Poincaré, has transformed how we model complex systems,
and its success can be largely attributed to theoretical results, such as the
Hartman–Grobman theorem, which establish when and where it is pos-
sible to approximate a nonlinear system with linear dynamics. Thus, it is
often possible to apply the wealth of linear analysis techniques in a small
neighborhood of a fixed point or periodic orbit. Although the geometric

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

312 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

perspective provides quantitative locally linear models, global analysis
has remained largely qualitative and computational, limiting the theory
of nonlinear prediction, estimation, and control away from fixed points
and periodic orbits.

2. Unknown dynamics. Perhaps an even more central challenge arises from
the lack of known governing equations for many modern systems of in-
terest. Increasingly, researchers are tackling more complex and realistic
systems, such as are found in neuroscience, epidemiology, and ecology.
In these fields, there is a basic lack of known physical laws that provide
first principles from which it is possible to derive equations of motion.
Even in systems where we do know the governing equations, such as tur-
bulence, protein folding, and combustion, we struggle to find patterns
in these high-dimensional systems to uncover intrinsic coordinates and
coarse-grained variables along which the dominant behavior evolves.

Traditionally, physical systems were analyzed by making ideal approxi-
mations and then deriving simple differential equation models via New-
ton’s second law. Dramatic simplifications could often be made by ex-
ploiting symmetries and clever coordinate systems, as highlighted by the
success of Lagrangian and Hamiltonian dynamics [3, 486]. With increas-
ingly complex systems, the paradigm is shifting from this classical ap-
proach to data-driven methods to discover governing equations.

All models are approximations, and, with increasing complexity, these
approximations often become suspect. Determining what is the correct
model is becoming more subjective, and there is a growing need for au-
tomated model discovery techniques that illuminate underlying physical
mechanisms. There are also often latent variables that are relevant to the
dynamics but may go unmeasured. Uncovering these hidden effects is a
major challenge for data-driven methods.

Identifying unknown dynamics from data and learning intrinsic coordi-
nates that enable the linear representation of nonlinear systems are two of
the most pressing goals of modern dynamical systems. Overcoming the chal-
lenges of unknown dynamics and nonlinearity has the promise of transforming
our understanding of complex systems, with tremendous potential benefit to
nearly all fields of science and engineering.

Throughout this chapter we will explore these issues in further detail and
describe a number of the emerging techniques to address these challenges. In
particular, there are two key approaches that are defining modern data-driven
dynamical systems:

(a) Operator-theoretic representations. To address the issue of nonlinear-
ity, operator-theoretic approaches to dynamical systems are becoming in-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 313

creasingly used. As we will show, it is possible to represent nonlinear
dynamical systems in terms of infinite-dimensional but linear operators,
such as the Koopman operator from Section 7.4 that advances measure-
ment functions, and the Perron–Frobenius operator that advances proba-
bility densities and ensembles through the dynamics.

(b) Data-driven regression and machine learning. As data becomes increas-
ingly abundant, and we continue to investigate systems that are not amenable
to first-principles analysis, regression and machine learning are becom-
ing vital tools to discover dynamical systems from data. This is the basis
of many of the techniques described in this chapter, including the dy-
namic mode decomposition (DMD) in Section 7.2, the sparse identifica-
tion of nonlinear dynamics (SINDy) in Section 7.3, the data-driven Koop-
man methods in Section 7.5, as well as the use of genetic programming to
identify dynamics from data [95, 640].

It is important to note that many of the methods and perspectives described
in this chapter are interrelated, and continuing to strengthen and uncover these
relationships is the subject of ongoing research. It is also worth mentioning that
a third major challenge is the high dimensionality associated with many mod-
ern dynamical systems, such as are found in population dynamics, brain simu-
lations, and high-fidelity numerical discretizations of partial differential equa-
tions. High dimensionality is addressed extensively in the subsequent chapters
on reduced-order models (ROMs).

Finally, several open-source software libraries are being developed for data-
driven dynamical systems, including

• PyDMD (https://github.com/mathLab/PyDMD);

• PySINDy (https://github.com/dynamicslab/pysindy);

• PyKoopman (https://github.com/dynamicslab/pykoopman);

• Data-driven dynamical systems toolbox (https://github.com/sklus/
d3s);

• Deeptime (https://github.com/deeptime-ml/deeptime).

7.2 Dynamic Mode Decomposition (DMD)

Dynamic mode decomposition was developed by Schmid [635, 636] in the fluid
dynamics community to identify spatio-temporal coherent structures from high-
dimensional data. DMD is based on proper orthogonal decomposition (POD),
which utilizes the computationally efficient singular value decomposition (SVD),

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/mathLab/PyDMD
https://github.com/dynamicslab/pysindy
https://github.com/dynamicslab/pykoopman
https://github.com/sklus/d3s
https://github.com/sklus/d3s
https://github.com/deeptime-ml/deeptime

314 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

so that it scales well to provide effective dimensionality reduction in high-
dimensional systems. In contrast to SVD/POD, which results in a hierarchy of
modes based entirely on spatial correlation and energy content, while largely
ignoring temporal information, DMD provides a modal decomposition where
each mode consists of spatially correlated structures that have the same linear
behavior in time (e.g., oscillations at a given frequency with growth or decay).
Thus, DMD provides not only dimensionality reduction in terms of a reduced
set of modes, but also a model for how these modes evolve in time.

Soon after the development of the original DMD algorithm [635, 636], Row-
ley, Mezić, and collaborators established an important connection between DMD
and Koopman theory [611] (see Section 7.4). DMD may be formulated as an
algorithm to identify the best-fit linear dynamical system that advances high-
dimensional measurements forward in time [727]. In this way, DMD approx-
imates the Koopman operator restricted to the set of direct measurements of
the state of a high-dimensional system. This connection between the computa-
tionally straightforward and linear DMD framework and nonlinear dynamical
systems has generated considerable interest in these methods [422].

Within a short amount of time, DMD has become a workhorse algorithm for
the data-driven characterization of high-dimensional systems. DMD is equally
valid for experimental and numerical data, as it is not based on knowledge
of the governing equations, but is instead based purely on measurement data.
The DMD algorithm may also be seen as connecting the favorable aspects of
the SVD (see Chapter 1) for spatial dimensionality reduction and the FFT (see
Chapter 2) for temporal frequency identification [173, 422]. Thus, each DMD
mode is associated with a particular eigenvalue λ = a + ib, with a particular
frequency of oscillation b and growth or decay rate a.

There are many variants of DMD and it is connected to existing techniques
from system identification and modal extraction. DMD has become especially
popular in recent years, in large part due to its simple numerical implemen-
tation and strong connections to nonlinear dynamical systems via Koopman
spectral theory. Finally, DMD is an extremely flexible platform, both mathemat-
ically and numerically, facilitating innovations related to compressed sensing,
control theory, and multi-resolution techniques. These connections and exten-
sions will be discussed at the end of this section.

The DMD Algorithm

Several algorithms have been proposed for DMD, although here we present
the exact DMD framework developed by Tu et al. [727]. Whereas earlier formu-
lations required uniform sampling of the dynamics in time, the approach pre-
sented here works with irregularly sampled data and with concatenated data
from several different experiments or numerical simulations. Moreover, the ex-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 315

act formulation of Tu et al. provides a precise mathematical definition of DMD
that allows for rigorous theoretical results. Finally, exact DMD is based on the
efficient and numerically well-conditioned singular value decomposition, as is
the original formulation by Schmid [635].

DMD is inherently data-driven, and the first step is to collect a number of
pairs of snapshots of the state of a system as it evolves in time. These snap-
shot pairs may be denoted by {(x(tk),x(t′k))}mk=1, where t′k = tk + ∆t, and the
time-step ∆t is sufficiently small to resolve the highest frequencies in the dy-
namics. As before, a snapshot may be the state of a system, such as a three-
dimensional fluid velocity field sampled at a number of discretized locations,
which is reshaped into a high-dimensional column vector. These snapshots are
then arranged into two data matrices, X and X′:

X =

x(t1) x(t2) · · · x(tm)

 , (7.13a)

X′ =

x(t′1) x(t′2) · · · x(t′m)

 . (7.13b)

The original formulations of Schmid [635] and Rowley et al. [611] assumed
uniform sampling in time, so that tk = k∆t and t′k = tk + ∆t = tk+1. If we
assume uniform sampling in time, we will adopt the notation xk = x(k∆t).

The DMD algorithm seeks the leading spectral decomposition (i.e., eigen-
values and eigenvectors) of the best-fit linear operator A that relates the two
snapshot matrices in time:

X′ ≈ AX. (7.14)

The best-fit operator A then establishes a linear dynamical system that best
advances snapshot measurements forward in time. If we assume uniform sam-
pling in time, this becomes

xk+1 ≈ Axk. (7.15)

Mathematically, the best-fit operator A is defined as

A = argmin
A
‖X′ −AX‖F = X′X†, (7.16)

where ‖ · ‖F is the Frobenius norm and † denotes the pseudo-inverse. The opti-
mized DMD algorithm generalizes the optimization framework of exact DMD
to perform a regression to exponential-time dynamics, thus providing an im-
proved computation of the DMD modes and their eigenvalues [27].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

316 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

It is worth noting at this point that the matrix A in (7.15) closely resembles
the Koopman operator in Section 7.4 (see equation (7.63)), if we choose direct
linear measurements of the state, so that g(x) = x. This connection was orig-
inally established by Rowley, Mezić, and collaborators [611], and has sparked
considerable interest in both DMD and Koopman theory. These connections
will be explored in more depth below. Because A is an approximate represen-
tation of the Koopman operator restricted to a finite-dimensional subspace of
linear measurements, we are often interested in the eigenvectors Φ and eigen-
values Λ of A:

AΦ = ΦΛ. (7.17)

However, for a high-dimensional state vector x ∈ Rn, the matrix A has n2 ele-
ments, and representing this operator, let alone computing its spectral decom-
position, may be intractable. Instead, the DMD algorithm leverages dimension-
ality reduction to compute the dominant eigenvalues and eigenvectors of A
without requiring any explicit computations using A directly. In particular, the
pseudo-inverse X† in (7.16) is computed via the singular value decomposition
of the matrix X. Since this matrix typically has far fewer columns than rows,
i.e., m � n, there are at most m non-zero singular values and corresponding
singular vectors, and hence the matrix A will have at most rank m. Instead of
computing A directly, we compute the projection of A onto these leading singu-
lar vectors, resulting in a small matrix Ã of size at most m×m. A major contri-
bution of Schmid [635] was a procedure to approximate the high-dimensional
DMD modes (eigenvectors of A) from the reduced matrix Ã and the data ma-
trix X without ever resorting to computations on the full A. Tu et al. [727] later
proved that these approximate modes are in fact exact eigenvectors of the full
A matrix under certain conditions. Thus, the exact DMD algorithm of Tu et al.
[727] is given by the following steps:

Step 1. Compute the singular value decomposition of X (see Chapter 1):

X ≈ ŨΣ̃Ṽ
∗
, (7.18)

where Ũ ∈ Cn×r, Σ̃ ∈ Cr×r, and Ṽ ∈ Cm×r, and r ≤ m denotes either the
exact or the approximate rank of the data matrix X. In practice, choosing
the approximate rank r is one of the most important and subjective steps
in DMD, and in dimensionality reduction in general. We advocate the
principled hard-thresholding algorithm of Gavish and Donoho [267] to
determine r from noisy data (see Section 1.7). The columns of the matrix
Ũ are also known as POD modes, and they satisfy Ũ

∗
Ũ = I. Similarly, the

columns of Ṽ are orthonormal and satisfy Ṽ
∗
Ṽ = I.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 317

Step 2. According to (7.16), the full matrix A may be obtained by comput-
ing the pseudo-inverse of X:

A = X′ṼΣ̃
−1

Ũ
∗
. (7.19)

However, we are only interested in the leading r eigenvalues and eigen-
vectors of A, and we may thus project A onto the POD modes in U:

Ã = Ũ
∗
AŨ = Ũ

∗
X′ṼΣ̃

−1
. (7.20)

The key observation here is that the reduced matrix Ã has the same non-
zero eigenvalues as the full matrix A. Thus, we need only compute the
reduced Ã directly, without ever working with the high-dimensional A

matrix. The reduced-order matrix Ã defines a linear model for the dy-
namics of the vector of POD coefficients x̃:

x̃k+1 = Ãx̃k. (7.21)

Note that the matrix Ũ provides a map to reconstruct the full state x from
the reduced state x̃, i.e., x = Ũx̃.

Step 3. The spectral decomposition of Ã is computed:

ÃW = WΛ. (7.22)

The entries of the diagonal matrix Λ are the DMD eigenvalues, which
also correspond to eigenvalues of the full A matrix. The columns of W

are eigenvectors of Ã, and provide a coordinate transformation that diag-
onalizes the matrix. These columns may be thought of as linear combina-
tions of POD mode amplitudes that behave linearly with a single tempo-
ral pattern given by λ.

Step 4. The high-dimensional DMD modes Φ are reconstructed using the
eigenvectors W of the reduced system and the time-shifted snapshot ma-
trix X′ according to

Φ = X′ṼΣ̃
−1

W. (7.23)

Remarkably, these DMD modes are eigenvectors of the high-dimensional
A matrix corresponding to the eigenvalues in Λ, as shown in Tu et al.
[727]:

AΦ = (X′ṼΣ̃
−1

Ũ
∗
)(X′ṼΣ̃

−1

︸ ︷︷ ︸
Ã

W)

= X′ṼΣ̃
−1

ÃW

= X′ṼΣ̃
−1

WΛ

= ΦΛ.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

318 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

In the original paper by Schmid [635], DMD modes are computed using
Φ = ŨW, which are known as projected modes; however, these modes are not
guaranteed to be exact eigenvectors of A. Because A is defined as A = X′X†,
eigenvectors of A should be in the column space of X′, as in the exact DMD
definition, instead of the column space of X in the original DMD algorithm. In
practice, the column spaces of X and X′ will tend to be nearly identical for dy-
namical systems with low-rank structure, so that the projected and exact DMD
modes often converge.

To find a DMD mode corresponding to a zero eigenvalue, λ = 0, it is possi-
ble to use the exact formulation if φ = X′ṼΣ̃

−1
w 6= 0. However, if this expres-

sion is null, then the projected mode φ = Ũw should be used.

Historical Perspective

In the original formulation, the snapshot matrices X and X′ were formed with
a collection of sequential snapshots, evenly spaced in time:

X =

x1 x2 · · · xm

 , (7.24a)

X′ =

x2 x3 · · · xm+1

 . (7.24b)

Thus, the matrix X can be written in terms of iterations of the matrix A as

X ≈

x1 Ax1 · · · Am−1x1

 . (7.25)

Thus, the columns of the matrix X belong to a Krylov subspace generated by
the propagator A and the initial condition x1. In addition, the matrix X′ may
be related to X through the shift operator as

X′ = XS, (7.26)

where S is defined as

S =

0 0 0 · · · 0 a1

1 0 0 · · · 0 a2

0 1 0 · · · 0 a3
...

...
...

...
0 0 0 · · · 1 am

. (7.27)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 319

Thus, the first m − 1 columns of X′ are obtained directly by shifting the corre-
sponding columns of X, and the last column is obtained as a best-fit combina-
tion of the m columns of X that minimizes the residual. In this way, the DMD
algorithm resembles an Arnoldi algorithm used to find the dominant eigenval-
ues and eigenvectors of a matrix A through iteration. The matrix S will share
eigenvalues with the high-dimensional A matrix, so that decomposition of S
may be used to obtain dynamic modes and eigenvalues. However, computa-
tions based on S is not as numerically stable as the exact algorithm above.

Spectral Decomposition and DMD Expansion

One of the most important aspects of the DMD is the ability to expand the
system state in terms of a data-driven spectral decomposition:

xk =
r∑

j=1

φjλ
k−1
j bj = ΦΛk−1b =

 φ1 · · · φr

λ1

. . .
λr

b1
...
br

,

(7.28)

where φj are DMD modes (eigenvectors of the A matrix), λj are DMD eigen-
values (eigenvalues of the A matrix), and bj is the mode amplitude. The DMD
expansion above has a direct connection to the Koopman mode decomposition
in Section 7.4 (see equation (7.79)). The DMD expansion may be written equiv-
alently as

xk =

 φ1 · · · φr

b1

. . .
br

λ1
...
λr

, (7.29)

which makes it possible to express the data matrix X as

X =

 φ1 · · · φr

b1

. . .
br

λ1 · · · λm−1

1
...
λr · · · λm−1

r

 . (7.30)

The vector b of mode amplitudes is generally computed as

b = Φ†x1, (7.31)

using the first snapshot to determine the mixture of DMD mode amplitudes.
However, computing the mode amplitudes is generally quite expensive, even

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

320 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

using the straightforward definition in (7.31). Instead, it is possible to compute
these amplitudes using POD projected data:

x1 = Φb (7.32a)

=⇒ Ũx̃1 = X′ṼΣ̃
−1

Wb (7.32b)

=⇒ x̃1 = Ũ
∗
X′ṼΣ̃

−1
Wb (7.32c)

=⇒ x̃1 = ÃWb (7.32d)
=⇒ x̃1 = WΛb (7.32e)
=⇒ b = (WΛ)−1x̃1. (7.32f)

The matrices W and Λ are both size r × r, as opposed to the large Φ matrix,
which is n × r. Alternative approaches to compute b [27, 173, 356] will be dis-
cussed in the next subsection.

The spectral expansion above may also be written in continuous time by
introducing the continuous eigenvalues ω = log(λ)/∆t:

x(t) =
r∑

j=1

φje
ωjtbj = Φ exp(Ωt)b, (7.33)

where Ω is a diagonal matrix containing the continuous-time eigenvalues ωj .
Thus, the data matrix X may be represented as

X ≈

 φ1 · · · φr

b1

. . .
br

eω1t1 · · · eω1tm

...
eωrt1 · · · eωrtm

 = Φ diag(b)T(ω).

(7.34)

Alternative Optimizations to De-Noise and Robustify DMD

The DMD algorithm is purely data-driven, and is thus equally applicable to
experimental and numerical data. When characterizing experimental data with
DMD, the effects of sensor noise and stochastic disturbances must be accounted
for. Bagheri [37] showed that DMD is particularly sensitive to the effects of
noisy data, and it has been shown that significant and systematic biases are in-
troduced to the eigenvalue distribution [36, 195, 221, 321]. Although increased
sampling decreases the variance of the eigenvalue distribution, it does not re-
move the bias [321]. This noise sensitivity has motivated several alternative
optimization algorithms for DMD to improve the quality and performance of
DMD over the standard optimization in (7.16), which is a least-squares fitting
procedure involving the Frobenius norm. These algorithms include the total

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 321

least-squares DMD [321], forward–backward DMD [195], variable projection
[27], and robust principal component analysis [631].

One of the simplest ways to remove the systematic bias of the DMD algo-
rithm is by computing it both forward and backward in time and averaging the
equivalent matrices, as proposed by Dawson et al. [195]. Thus the two follow-
ing approximations are considered:

X′ ≈ A1X and X ≈ A2X
′, (7.35)

where A−1
2 ≈ A1 for noise-free data. Thus the matrix A2 is the inverse, or

backward time-step, mapping the snapshots from tk+1 to tk. The forward- and
backward-time matrices are then averaged, removing the systematic bias from
the measurement noise:

A = 1
2
(A1 + A−1

2), (7.36)

where the optimization (7.16) can be used to compute both the forward and
backward mappings A1 and A2. This optimization can be formulated as

A = argmin
A

1
2
(‖X′ −AX‖F + ‖X−A−1X′‖F), (7.37)

which is highly nonlinear and non-convex due to the inverse A−1. An improved
optimization framework was developed by Azencot et al. [32], which proposes

A = argmin
A1,A2

1
2
(‖X′−A1X‖F +‖X−A2X

′‖F) s.t. A1A2 = I, A2A1 = I (7.38)

to circumvent some of the difficulties of the optimization in (7.37).
Hemati et al. [321] formulate another DMD algorithm, replacing the origi-

nal least-squares regression with a total least-squares regression to account for
the possibility of noisy measurements and disturbances to the state. This work
also provides an excellent discussion on the sources of noise and a comparison
of various de-noising algorithms. The subspace DMD algorithm of Takeishi
et al. [693] compensates for measurement noise by computing an orthogonal
projection of future snapshots onto the space of previous snapshots and then
constructing a linear model. Extensions that combine DMD with Bayesian ap-
proaches have also been developed [691].

Good approximations for the mode amplitudes b in (7.34) have also proven
to be difficult to achieve, with and without noise. Jovanović et al. [356] de-
veloped the first algorithm to improve the estimate of the modal amplitudes
by promoting sparsity. In this case, the underlying optimization algorithm is
framed around improving the approximation (7.34) using the formulation

argmin
b

(‖X−Φ diag(b)T(ω)‖F + γ‖b‖1), (7.39)

where ‖ · ‖1 denotes the `1-norm penalization which promotes sparsity of b.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

322 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

The subspace DMD algorithm of Takeishi et al. [693] also compensates for
measurement noise by computing an orthogonal projection of future snapshots
onto the space of previous snapshots and then constructing a linear model. A
Bayesian DMD approach has also been developed [691]. More recently, Askham
and Kutz [27] introduced the optimized DMD algorithm, which uses a vari-
able projection method for nonlinear least-squares to compute the DMD for
unevenly timed samples, significantly mitigating the bias due to noise. The op-
timized DMD algorithm solves the exponential fitting problem directly:

argmin
ω,Φb

‖X−ΦbT(ω)‖F . (7.40)

This has been shown to suppress bias, although one must solve a nonlinear
optimization problem. However, using statistical bagging methods, optimized
DMD can be stabilized and the boosted optimized DMD (BOP-DMD) method can
not only improve performance of the decomposition, but also provide uncer-
tainty estimates for the DMD eigenvalues and DMD eigenmodes [622].

DMD is able to accurately identify an approximate linear model for dynam-
ics that are linear, periodic, or quasi-periodic. However, DMD is unable to cap-
ture a linear dynamical system model with essential nonlinear features, such as
multiple fixed points, unstable periodic orbits, or chaos [127]. As an example,
DMD will fail to yield a reasonable linear model for the chaotic Lorenz sys-
tem, and it also will not capture important features of the linear portion of the
Lorenz model. The sparse identification of nonlinear dynamics (SINDy) [132],
discussed in Section 7.3, is a related algorithm that identifies fully nonlinear dy-
namical systems models from data. However, SINDy often faces scaling issues
for high-dimensional systems that do not admit a low-dimensional subspace or
submanifold. In this case, the recent linear and nonlinear disambiguation opti-
mization (LANDO) algorithm [34] leverages kernel methods to identify an im-
plicit model for the full nonlinear dynamics, where it is then possible to extract
a low-rank DMD approximation for the linear portion linearized about some
specified operating condition. In this way, the LANDO algorithm robustly ex-
tracts the linear DMD dynamics even from strongly nonlinear systems. This
work is part of a much larger effort to use kernels for learning dynamical sys-
tems and Koopman representations [34, 143, 191, 257, 391, 393, 758].

Example and Code

Code 7.3 provides a basic DMD implementation. This DMD code is demon-
strated in Fig. 7.3 for the fluid flow past a circular cylinder at Reynolds num-
ber 100, based on the cylinder diameter. The DMD eigenvalues are shown in
Fig. 7.4 for clean data and for data corrupted with Gaussian white noise. The
two-dimensional Navier–Stokes equations are simulated using the immersed

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 323

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

2

1

0

1

22

1

0

1

2

X0=

2
4x2 x3 · · · xm

3
5

X=

2
4x1 x2 · · · xm�1

3
5

Experiment Collect Data DMD

Data Regression

A=X0X†

. .
.

a) Diagnostics

b) Future state prediction

D
yn

am
ic

 m
od

es

Tim
e dynam

ics

past future

xk+1=Axk

t

x1

x2

xm

t1 m

x3

Figure 7.3: Overview of DMD illustrated on the fluid flow past a circular cylin-
der at Reynolds number 100. Reproduced from [422].

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1

Clean

Noisy

Re(λ) Re(ω)

Im
(λ

)

Im
(ω

)

Figure 7.4: DMD eigenvalues for the fluid flow past a circular cylinder at
Reynolds number 100. When trained on clean data without noise, the discrete-
time DMD eigenvalues are on the unit circle, and the continuous-time DMD
eigenvalues are on the imaginary axis, indicating purely oscillatory dynamics.
However, when noise is added to the training data, the eigenvalues exhibit
spurious damping, as predicted by Bagheri [37].

boundary projection method (IBPM) solver1 based on the fast multi-domain
method of Taira and Colonius [181, 688]. The data required for this example
may be downloaded without running the IBPM code at http://DMDbook.
com.

1The IBPM code is publicly available at: https://github.com/cwrowley/ibpm.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://DMDbook.com
http://DMDbook.com
https://github.com/cwrowley/ibpm

324 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Code 7.3: [MATLAB] DMD implementation.
function [Phi, Lambda, b] = DMD(X,Xprime,r)

[U,Sigma,V] = svd(X,’econ’); % Step 1
Ur = U(:,1:r);
Sigmar = Sigma(1:r,1:r);
Vr = V(:,1:r);

Atilde = Ur’*Xprime*Vr/Sigmar; % Step 2
[W,Lambda] = eig(Atilde); % Step 3

Phi = Xprime*(Vr/Sigmar)*W; % Step 4
alpha1 = Sigmar*Vr(1,:)’;
b = (W*Lambda)\alpha1;

Code 7.3: [Python] DMD implementation.
def DMD(X,Xprime,r):

U,Sigma,VT = np.linalg.svd(X,full_matrices=0) # Step 1
Ur = U[:,:r]
Sigmar = np.diag(Sigma[:r])
VTr = VT[:r,:]
Atilde = np.linalg.solve(Sigmar.T,(Ur.T @ Xprime @ VTr.T

).T).T # Step 2
Lambda, W = np.linalg.eig(Atilde) # Step 3
Lambda = np.diag(Lambda)
Step 4
Phi = Xprime @ np.linalg.solve(Sigmar.T,VTr).T @ W
alpha1 = Sigmar @ VTr[:,0]
b = np.linalg.solve(W @ Lambda,alpha1)
return Phi, Lambda, b

With this data, it is simple to compute the dynamic mode decomposition.
In MATLAB, the following code is used:

% VORTALL contains flow fields reshaped into column vectors
X = VORTALL;
[Phi, Lambda, b] = DMD(X(:,1:end-1),X(:,2:end),21);

In Python, the following code is used:

vortall_mat = io.loadmat(os.path.join(’..’,’DATA’,’VORTALL.
mat’))

X = vortall_mat[’VORTALL’]
Phi, Lambda, b = DMD(X[:,:-1],X[:,1:],21)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 325

Extensions, Applications, and Limitations

One of the major advantages of dynamic mode decomposition is its simple
framing in terms of linear regression. DMD does not require knowledge of gov-
erning equations. For this reason, DMD has been rapidly extended to include
several methodological innovations and has been widely applied beyond fluid
dynamics [422], where it originated. Here, we present a number of the lead-
ing algorithmic extensions and promising domain applications, and we also
present current limitations of the DMD theory that must be addressed in future
research.

Methodological Extensions

Compression and Randomized Linear Algebra. DMD was originally designed
for high-dimensional data sets in fluid dynamics, such as a fluid velocity or
vorticity field, which may contain millions of degrees of freedom. However,
the fact that DMD often uncovers low-dimensional structure in these high-
dimensional data implies that there may be more efficient measurement and
computational strategies based on principles of sparsity (see Chapter 3). There
have been several independent and highly successful extensions and modifica-
tions of DMD to exploit low-rank structure and sparsity.

In 2014, Jovanović et al. [356] used sparsity-promoting optimization to iden-
tify the fewest DMD modes required to describe a data set, essentially identify-
ing a few dominant DMD mode amplitudes in b. The alternative approach, of
testing and comparing all subsets of DMD modes, represents a computation-
ally intractable brute-force search.

Another line of work is based on the fact that DMD modes generally ad-
mit a sparse representation in Fourier or wavelet bases. Moreover, the time
dynamics of each mode are simple pure tone harmonics, which are the defini-
tion of sparse in a Fourier basis. This sparsity has facilitated several efficient
measurement strategies that reduce the number of measurements required in
time [726] and space [134, 232, 303], based on compressed sensing. This has
the broad potential to enable high-resolution characterization of systems from
under-resolved measurements.

Related to the use of compressed sensing, randomized linear algebra has re-
cently been used to accelerate DMD computations when full-state data is avail-
able. Instead of collecting subsampled measurements and using compressed
sensing to infer high-dimensional structures, randomized methods start with
full data and then randomly project into a lower-dimensional subspace, where
computations may be performed more efficiently. Bistrian and Navon [93] have
successfully accelerated DMD using a randomized singular value decomposi-
tion, and Erichson et al. [234] demonstrate how all of the expensive DMD com-
putations may be performed in a projected subspace.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

326 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Finally, libraries of DMD modes have also been used to identify dynam-
ical regimes [411], based on the sparse representation for classification [762]
(see Section 3.6), which was used earlier to identify dynamical regimes using
libraries of POD modes [112, 136].

Inputs and Control. A major strength of DMD is the ability to describe com-
plex and high-dimensional dynamical systems in terms of a small number of
dominant modes, which represent spatio-temporal coherent structures. Reduc-
ing the dimensionality of the system from n (often millions or billions) to r
(tens or hundreds) enables faster and lower-latency prediction and estimation.
Lower-latency predictions generally translate directly into controllers with higher
performance and robustness. Thus, compact and efficient representations of
complex systems such as fluid flows have been long sought, resulting in the
field of reduced-order modeling. However, the original DMD algorithm was
designed to characterize naturally evolving systems, without accounting for
the effect of actuation and control.

Shortly after the original DMD algorithm, Proctor et al. [570] extended the
algorithm to disambiguate between the natural unforced dynamics and the ef-
fect of actuation. This essentially amounts to a generalized evolution equation

xk+1 ≈ Axk + Buk, (7.41)

which results in another linear regression problem (see Section 10.2).
The original motivation for DMD with control (DMDc) was the use of DMD

to characterize epidemiological systems (e.g., malaria spreading across a conti-
nent), where it is not possible to stop intervention efforts, such as vaccinations
and bed nets, in order to characterize the unforced dynamics [569].

Since the original DMDc algorithm, the compressed sensing DMD and DMDc
algorithms have been combined, resulting in a new framework for compressive
system identification [41]. In this framework, it is possible to collect undersam-
pled measurements of an actuated system and identify an accurate and efficient
low-order model, related to DMD and the eigensystem realization algorithm
(ERA; see Section 9.3) [358].

DMDc models, based on linear and nonlinear measurements of the system,
have recently been used with model predictive control (MPC) for enhanced
control of nonlinear systems by Korda and Mezić [404]. Model predictive con-
trol using DMDc models was subsequently used as a benchmark comparison
for MPC based on fully nonlinear models in the work of Kaiser et al. [366], and
the DMDc models performed surprisingly well, even for strongly nonlinear
systems.

Nonlinear Measurements. Much of the excitement around DMD is due to
the strong connection to nonlinear dynamics via the Koopman operator [611].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 327

Indeed, DMD is able to accurately characterize periodic and quasi-periodic be-
havior, even in nonlinear systems, as long as a sufficient amount of data is
collected. However, the basic DMD algorithm uses linear measurements of
the system, which are generally not rich enough to characterize truly non-
linear phenomena, such as transients, intermittent phenomena, or broadband
frequency cross-talk. In Williams et al. [757], DMD measurements were aug-
mented to include nonlinear measurements of the system, enriching the basis
used to represent the Koopman operator. The so-called extended DMD (eDMD)
algorithm then seeks to obtain a linear model AY advancing nonlinear mea-
surements y = g(x):

yk+1 ≈ AYyk. (7.42)

For high-dimensional systems, this augmented state y may be intractably large,
motivating the use of kernel methods to approximate the evolution operator
AY [758]. This kernel DMD has since been extended to include dictionary learn-
ing techniques [440].

It has recently been shown that eDMD is equivalent to the variational ap-
proach of conformation dynamics (VAC) [528, 534, 535], first derived by Noé
and Nüske in 2013 to simulate molecular dynamics with a broad separation of
timescales. Further connections between eDMD and VAC and between DMD
and the time-lagged independent component analysis (TICA) are explored in a
recent review [392]. A key contribution of VAC is a variational score enabling
the objective assessment of Koopman models via cross-validation.

Following the extended DMD, it was shown that there are relatively restric-
tive conditions for obtaining a linear regression model that includes the origi-
nal state of the system [127]. For nonlinear systems with multiple fixed points,
periodic orbits, and other attracting structures, there is no finite-dimensional
linear system including the state x that is topologically conjugate to the nonlin-
ear system. Instead, it is important to identify Koopman-invariant subspaces,
spanned by eigenfunctions of the Koopman operator; in general, it will not be
possible to directly write the state x in the span of these eigenvectors, although
it may be possible to identify x through a unique inverse. A practical algorithm
for identifying eigenfunctions is provided by Kaiser et al. [365].

Multi-Resolution. DMD is often applied to complex, high-dimensional dy-
namical systems, such as fluid turbulence or epidemiological systems, that ex-
hibit multi-scale dynamics in both space and time. Many multi-scale systems
exhibit transient or intermittent phenomena, such as the El Niño observed in
global climate data. These transient dynamics are not captured accurately by
DMD, which seeks spatio-temporal modes that are globally coherent across
the entire time series of data. To address this challenge, the multi-resolution
DMD (mrDMD) algorithm was introduced [423], which effectively decomposes

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

328 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

the dynamics into different timescales, isolating transient and intermittent pat-
terns. Multi-resolution DMD modes were recently shown to be advantageous
for sparse sensor placement by Manohar et al. [483].

Delay Measurements. Although DMD was developed for high-dimensional
data where it is assumed that one has access to the full state of a system, it
is often desirable to characterize spatio-temporal coherent structures for sys-
tems with incomplete measurements. As an extreme example, consider a single
measurement that oscillates as a sinusoid, x(t) = sin(ωt). Although this would
appear to be a perfect candidate for DMD, the algorithm incorrectly identifies
a real eigenvalue because the data does not have sufficient rank to extract a
complex conjugate pair of eigenvalues ±iω. This paradox was first explored
by Tu et al. [727], where it was discovered that a solution is to stack delayed
measurements into a larger matrix to augment the rank of the data matrix and
extract phase information. Delay coordinates have been used effectively to ex-
tract coherent patterns in neural recordings [123]. The connections between de-
lay DMD and Koopman [25, 126, 190] will be discussed more in Section 7.5.

Streaming and Parallelized Codes. Because of the computational burden of
computing the DMD on high-resolution data, several advances have been made
to accelerate DMD in streaming applications and with parallelized algorithms.
DMD is often used in a streaming setting, where a moving window of snap-
shots are processed continuously, resulting in redundant computations when
new data becomes available. Several algorithms exist for streaming DMD, based
on the incremental SVD [322], a streaming method of snapshots SVD [559], and
rank-one updates to the DMD matrix [772]. The DMD algorithm is also readily
parallelized, as it is based on the SVD. Several parallelized codes are available,
based on the QR [623] and SVD [234, 233, 236].

Tensor Formulations. Most data used to compute DMD has additional spa-
tial structure that is discarded when the data is reshaped into column vec-
tors. The tensor DMD extension of Klus et al. [390] performs DMD on a ten-
sorial, rather than vectorized, representation of the data, retaining this addi-
tional structure. In addition, this approach reduces the memory requirements
and computational complexity for large-scale systems. Extensions to this ap-
proach have been introduced based on reproducing kernel Hilbert spaces [257]
and the extended DMD [533], and additional connections have recently been
made between the Koopman mode decomposition and tensor factorizations
[594]. Tensor approaches to related methods, such as the sparse identification
of nonlinear dynamics [132], have also been developed recently [273].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.2. DYNAMIC MODE DECOMPOSITION (DMD) 329

Resolvent Analysis. DMD and Koopman operator theory have also been con-
nected to the resolvent analysis from fluid mechanics [324, 655]. Resolvent anal-
ysis seeks to find the most receptive states of a dynamical system that will be
most amplified by forcing, along with the corresponding most responsive forc-
ings [354, 355, 495, 712]. Sharma, Mezić, and McKeon [655] established several
important connections between DMD, Koopman theory, and the resolvent op-
erator, including a generalization of DMD to enforce symmetries and traveling
wave structures. They also showed that the resolvent modes provide an opti-
mal basis for the Koopman mode decomposition. Typically, resolvent analysis
is performed by linearizing the governing equations about a base state, often a
turbulent mean flow. However, this approach is invasive, requiring a working
Navier–Stokes solver. Herrmann et al. [324] have recently developed a purely
data-driven resolvent algorithm, based on DMD, that bypasses knowledge of
the governing equations. DMD and resolvent analysis are also both closely re-
lated to the spectral POD [642, 690, 708], which is related to the classical POD
of Lumley and provides time-harmonic modes at a set of discrete frequencies.

Applications

Fluid Dynamics. DMD originated in the fluid dynamics community [635],
and has since been applied to a wide range of flow geometries (jets, cavity
flow, wakes, channel flow, boundary layers, etc.) to study mixing, acoustics,
and combustion, among other phenomena. In the original papers of Schmid
[635, 636], both a cavity flow and a jet were considered. In the original paper
of Rowley et al. [611], a jet in cross-flow was investigated. It is no surprise that
DMD has subsequently been used widely in both cavity flows [56, 57, 466, 635,
647] and jets [68, 637, 638, 649].

DMD has also been applied to wake flows, including to investigate fre-
quency lock-on [725], the wake past a gurney flap [543], the cylinder wake
[36], and dynamic stall [223]. Boundary layers have also been extensively stud-
ied with DMD [505, 539, 624]. In acoustics, DMD has been used to capture the
near-field and far-field acoustics that result from instabilities observed in shear
flows [668]. In combustion, DMD has been used to understand the coherent
heat release in turbulent swirl flames [507] and to analyze a rocket combus-
tor [341]. DMD has also been used to analyze non-normal growth mechanisms
in thermoacoustic interactions in a Rijke tube. DMD has been compared with
POD for reacting flows [612]. DMD has also been used to analyze more ex-
otic flows, including a simulated model of a high-speed train [514]. Shock–
turbulent boundary layer interaction (STBLI) has also been investigated, and
DMD was used to identify a pulsating separation bubble that is accompanied
by shockwave motion [297]. DMD has also been used to study self-excited fluc-
tuations in detonation waves [490]. Other problems include identifying hairpin

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

330 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

vortices [695], decomposing the flow past a surface-mounted cube [515], mod-
eling shallow-water equations [92], studying nanofluids past a square cylin-
der [620], fluid–structure interaction [292], and measuring the growth rate of
instabilities in annular liquid sheets [220]. A modified recursive DMD algo-
rithm was also formulated by Noack et al. [527] to provide an orthogonal ba-
sis for empirical Galerkin models in fluids. The use of DMD in fluids fits into
a broader effort to leverage machine learning for improved models and con-
trollers [52, 111, 131, 399, 441, 617], especially for turbulence closure modeling
[64, 65, 224, 421, 448, 492].

Epidemiology. DMD has recently been applied to investigate epidemiologi-
cal systems by Proctor and Eckhoff [568]. This is a particularly interpretable ap-
plication, as modal frequencies often correspond to yearly or seasonal fluctua-
tions. Moreover, the phase of DMD modes gives insight into how disease fronts
propagate spatially, potentially informing future intervention efforts. The ap-
plication of DMD to disease systems also motivated the DMD with control
[570], since it is infeasible to stop vaccinations in order to identify the unforced
dynamics.

Neuroscience. Complex signals from neural recordings are increasingly high-
fidelity and high-dimensional, with advances in hardware pushing the fron-
tiers of data collection. DMD has the potential to transform the analysis of
such neural recordings, as evidenced in a recent study that identified dynami-
cally relevant features in electrocorticography (ECOG) data of sleeping patients
[123]. Since then, several works have applied DMD to neural recordings or sug-
gested possible implementation in hardware [5, 117, 704].

Video Processing. Separating foreground and background objects in video is
a common task in surveillance applications. Real-time separation is a challenge
that is only exacerbated by ever-increasing video resolutions. DMD provides a
flexible platform for video separation, as the background may be approximated
by a DMD mode with zero eigenvalue [232, 298, 559].

Other Applications. DMD has been applied to an increasingly diverse array
of problems, including robotics [78], finance [480], and plasma physics [697]. It
is expected that this trend will increase.

Challenges

Traveling Waves. DMD is based on the SVD of a data matrix X = UΣV∗

whose columns are spatial measurements evolving in time. In this case, the
SVD is a space–time separation of variables into spatial modes, given by the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.3. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 331

columns of U, and time dynamics, given by the columns of V. As in POD,
DMD thus has limitations for problems that exhibit traveling waves, where
separation of variables is known to fail.

Transients. Many systems of interest are characterized by transients and in-
termittent phenomena. Several methods have been proposed to identify these
events, such as the multi-resolution DMD and the use of delay coordinates.
However, it is still necessary to formalize the choice of relevant timescales and
the window size to compute DMD.

Continuous Spectrum. Related to the above, many systems are characterized
by broadband frequency content, as opposed to a few distinct and discrete fre-
quencies. This broadband frequency content is also known as a continuous spec-
trum, where every frequency in a continuous range is observed. For example,
the simple pendulum exhibits a continuous spectrum, as the system has a nat-
ural frequency for small deflections, and this frequency continuously deforms
and slows as energy is added to the pendulum. Other systems include nonlin-
ear optics and broadband turbulence. These systems pose a serious challenge
for DMD, as they result in a large number of modes, even though the dynamics
are likely generated by the nonlinear interactions of a few dominant modes.

Several data-driven approaches have been recently proposed to handle sys-
tems with continuous spectra. Applying DMD to a vector of delayed measure-
ments of a system, the so-called HAVOK analysis in Section 7.5, has been shown
to approximate the dynamics of chaotic systems, such as the Lorenz system,
which exhibits a continuous spectrum. In addition, Lusch et al. [465] showed
that it is possible to design a deep learning architecture with an auxiliary net-
work to parameterize the continuous frequency.

Strong Nonlinearity and Choice of Measurements. Although significant progress
has been made connecting DMD to nonlinear systems [758], choosing nonlin-
ear measurements to augment the DMD regression is still not an exact science.
Identifying measurement subspaces that remain closed under the Koopman
operator is an ongoing challenge [127]. Recent progress in deep learning has
the potential to enable the representation of extremely complex eigenfunctions
from data [465, 485, 540, 692, 747, 766].

7.3 Sparse Identification of Nonlinear Dynamics (SINDy)

Discovering dynamical systems models from data is a central challenge in math-
ematical physics, with a rich history going back at least as far as the time of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

332 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Kepler and Newton and the discovery of the laws of planetary motion. His-
torically, this process relied on a combination of high-quality measurements
and expert intuition. With vast quantities of data and increasing computational
power, the automated discovery of governing equations and dynamical systems
is a new and exciting scientific paradigm.

Typically, either the form of a candidate model is constrained via prior
knowledge of the governing equations, as in Galerkin projection [44, 160, 161,
524, 526, 610, 633, 744] (see Chapter 13), or a handful of heuristic models are
tested and parameters are optimized to fit data. Alternatively, best-fit linear
models may be obtained using DMD or ERA. Simultaneously identifying the
nonlinear structure and parameters of a model from data is considerably more
challenging, as there are combinatorially many possible model structures.

The sparse identification of nonlinear dynamics (SINDy) algorithm [132]
bypasses the intractable combinatorial search through all possible model struc-
tures, leveraging the fact that many dynamical systems

d

dt
x = f(x) (7.43)

have dynamics f with only a few active terms in the space of possible right-
hand side functions; for example, the Lorenz equations in (7.2) only have a few
linear and quadratic interaction terms per equation.

We then seek to approximate f by a generalized linear model

f(x) ≈
p∑

k=1

θk(x)ξk = Θ(x)ξ, (7.44)

with the fewest non-zero terms in ξ as possible. It is then possible to solve
for the relevant terms that are active in the dynamics using sparse regression
[315, 348, 702, 777] that penalizes the number of terms in the dynamics and
scales well to large problems.

First, time-series data is collected from (7.43) and formed into a data matrix:

X =
[
x(t1) x(t2) · · · x(tm)

]T
. (7.45)

A similar matrix of derivatives is formed:

Ẋ =
[
ẋ(t1) ẋ(t2) · · · ẋ(tm)

]T
. (7.46)

In practice, this may be computed directly from the data in X; for noisy data,
the total-variation regularized derivative tends to provide numerically robust
derivatives [169]. Alternatively, it is possible to formulate the SINDy algorithm
for discrete-time systems xk+1 = F(xk), as in the DMD algorithm, and avoid
derivatives entirely.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.3. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 333

A library of candidate nonlinear functions Θ(X) may be constructed from
the data in X:

Θ(X) =
[
1 X X2 · · · Xd · · · sin(X) · · ·

]
. (7.47)

Here, the matrix Xd denotes a matrix with column vectors given by all possible
time series of dth-degree polynomials in the state x. In general, this library of
candidate functions is only limited by one’s imagination.

The dynamical system in (7.43) may now be represented in terms of the data
matrices in (7.46) and (7.47) as

Ẋ = Θ(X)Ξ. (7.48)

Each column ξk in Ξ is a vector of coefficients determining the active terms in
the kth row in (7.43). A parsimonious model will provide an accurate model
fit in (7.48) with as few terms as possible in Ξ. Such a model may be identified
using a convex `1-regularized sparse regression:

ξk = argmin
ξ′k

‖Ẋk −Θ(X)ξ′k‖2 + λ‖ξ′k‖1. (7.49)

Here, Ẋk is the kth column of Ẋ, and λ is a sparsity-promoting knob. Sparse
regression, such as the LASSO [702] or the sequential thresholded least-squares
(STLS) algorithm used in SINDy [132], improves the numerical robustness of
this identification for noisy over-determined problems, in contrast to earlier
methods [743] that used compressed sensing [53, 151, 153, 156, 157, 204, 717].
We advocate the STLS (Code 7.4) to select active terms.

Code 7.4: [MATLAB] Sequentially thresholded least-squares.
function Xi = sparsifyDynamics(Theta,dXdt,lambda,n)
% Compute Sparse regression: sequential least squares
Xi = Theta\dXdt; % Initial guess: Least-squares

% Lambda is our sparsification knob.
for k=1:10

smallinds = (abs(Xi)<lambda); % Find small coefficients
Xi(smallinds)=0; % and threshold
for ind = 1:n % n is state dimension

biginds = ˜smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi

Xi(biginds,ind) = Theta(:,biginds)\dXdt(:,ind);
end

end

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

334 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Figure 7.5: Schematic of the sparse identification of nonlinear dynamics
(SINDy) algorithm [132]. Parsimonious models are selected from a library of
candidate nonlinear terms using sparse regression. This library Θ(X) may be
constructed purely from measurement data. Modified from Brunton et al. [132].

Code 7.4: [Python] Sequentially thresholded least-squares.
def sparsifyDynamics(Theta,dXdt,lamb,n):

Initial guess: Least-squares
Xi = np.linalg.lstsq(Theta,dXdt,rcond=None)[0]

for k in range(10):
smallinds = np.abs(Xi) < lamb # Find small coeffs.
Xi[smallinds] = 0 # and threshold
for ind in range(n): # n is state dimension

biginds = smallinds[:,ind] == 0
Regress onto remaining terms to find sparse Xi
Xi[biginds,ind] = np.linalg.lstsq(Theta[:,

biginds],dXdt[:,ind],rcond=None)[0]

return Xi

The sparse vectors ξk may be synthesized into a dynamical system:

ẋk = Θ(x)ξk. (7.50)

Note that ẋk is the kth element of ẋ and Θ(x) is a row vector of symbolic func-
tions of x, as opposed to the data matrix Θ(X). Figure 7.5 shows how SINDy
may be used to discover the Lorenz equations from data. Code 7.5 performs
the SINDy regression for the Lorenz system based on the data generated in
Code 7.2.

Code 7.5: [MATLAB] SINDy regression to identify the Lorenz system from

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.3. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 335

data.
%% Compute derivatives by evaluating lorenz on trajectory x
for i=1:length(x)

dx(i,:) = lorenz(0,x(i,:),Beta);
end

%% Build library and compute sparse regression
Theta = poolData(x,n,3); % up to third order polynomials
lambda = 0.025; % lambda is our sparsification knob.
Xi = sparsifyDynamics(Theta,dx,lambda,n)

Code 7.5: [Python] SINDy regression to identify the Lorenz system from data.
Compute Derivative
dx = np.zeros_like(x)
for j in range(len(t)):

dx[j,:] = lorenz_deriv(x[j,:],0,sigma,beta,rho)

Theta = poolData(x,n,3) # Up to third order polynomials
lamb = 0.025 # sparsification knob lambda
Xi = sparsifyDynamics(Theta,dx,lamb,n)

This code also relies on a function poolData that generates the library Θ.
In this case, polynomials up to third order are used. This code is available on-
line. For more in-depth applications, we strongly recommend using the open-
source Python software package PySINDy [199] at https://github.com/
dynamicslab/pysindy.

The output of the SINDy algorithm is a sparse matrix of coefficients Ξ:

’’ ’xdot’ ’ydot’ ’zdot’
’1’ [0] [0] [0]
’x’ [-10.0000] [28.0000] [0]
’y’ [10.0000] [-1.0000] [0]
’z’ [0] [0] [-2.6667]
’xx’ [0] [0] [0]
’xy’ [0] [0] [1.0000]
’xz’ [0] [-1.0000] [0]
’yy’ [0] [0] [0]
’yz’ [0] [0] [0]
’zz’ [0] [0] [0]
’xxx’ [0] [0] [0]
’xxy’ [0] [0] [0]
’xxz’ [0] [0] [0]
’xyy’ [0] [0] [0]
’xyz’ [0] [0] [0]
’xzz’ [0] [0] [0]

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/dynamicslab/pysindy
https://github.com/dynamicslab/pysindy

336 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Figure 7.6: Schematic overview of nonlinear model identification from high-
dimensional data using the sparse identification of nonlinear dynamics
(SINDy) [132]. This procedure is modular, so that different techniques can be
used for the feature extraction and regression steps. In this example of flow
past a cylinder, SINDy discovers the model of Noack et al. [524]. Modified from
Brunton et al. [132].

’yyy’ [0] [0] [0]
’yyz’ [0] [0] [0]
’yzz’ [0] [0] [0]
’zzz’ [0] [0] [0]

The result of the SINDy regression is a parsimonious model that includes
only the most important terms required to explain the observed behavior. The
sparse regression procedure used to identify the most parsimonious nonlinear
model is a convex procedure. The alternative approach, which involves regres-
sion onto every possible sparse nonlinear structure, constitutes an intractable
brute-force search through the combinatorially many candidate model forms.
SINDy bypasses this combinatorial search with modern convex optimization
and machine learning. It is interesting to note that, for discrete-time dynamics,
if Θ(X) consists only of linear terms, and if we remove the sparsity-promoting
term by setting λ = 0, then this algorithm reduces to the dynamic mode decom-
position [422, 611, 635, 727]. If a least-squares regression is used, as in DMD,
then even a small amount of measurement error or numerical round-off will
lead to every term in the library being active in the dynamics, which is non-
physical. A major benefit of the SINDy architecture is the ability to identify
parsimonious models that contain only the required nonlinear terms, resulting
in interpretable models that avoid overfitting.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.3. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 337

Applications, Extensions, and Historical Context

The SINDy algorithm has recently been applied to identify high-dimensional
dynamical systems, such as fluid flows, based on POD coefficients [132, 455,
456]. Figure 7.6 illustrates the application of SINDy to the flow past a cylin-
der, where the generalized mean-field model of Noack et al. [524] was dis-
covered from data. Since its introduction, SINDy has been applied to a wide
range of systems, including for reduced-order models of fluid dynamics [145,
148, 201, 301, 454, 455, 456] and plasma dynamics [187, 373], turbulence clo-
sures [64, 65, 634], nonlinear optics [670], numerical integration schemes [701],
discrepancy modeling [198, 363], boundary value problems [656], identifying
dynamics on Poincaré maps [104, 105], tensor formulations [273], and systems
with stochastic dynamics [96, 146]. The integral formulation of SINDy [627] has
also proven to be powerful, enabling the identification of governing equations
in a weak form that averages over control volumes; this approach has recently
been used to discover a hierarchy of fluid and plasma models [12, 305, 597, 598].
The open-source software package, PySINDy,2 has been developed in Python
to integrate the various extensions of SINDy [199], such as promoting global
boundedness [372] by incorporating the Schlegel and Noack constraint [632] in
the optimization.

Because SINDy is formulated in terms of linear regression in a nonlinear
library, it is highly extensible. The SINDy framework has been recently gener-
alized by Loiseau and Brunton [455] to incorporate known physical constraints
and symmetries in the equations by implementing a constrained sequentially
thresholded least-squares optimization. In particular, energy-preserving con-
straints on the quadratic nonlinearities in the Navier–Stokes equations were
imposed to identify fluid systems [455], where it is known that these constraints
promote stability [44, 160, 472]. This work also showed that polynomial li-
braries are particularly useful for building models of fluid flows in terms of
POD coefficients, yielding interpretable models that are related to classical Galerkin
projection [132, 455]. Loiseau et al. [456] also demonstrated the ability of SINDy
to identify dynamical systems models of high-dimensional systems, such as
fluid flows, from a few physical sensor measurements, such as lift and drag
measurements on the cylinder in Fig. 7.6. For actuated systems, SINDy has been
generalized to include inputs and control [133], and these models are highly ef-
fective for model predictive control [366]. It is also possible to extend the SINDy
algorithm to identify dynamics with rational function nonlinearities [364, 478],
integral terms [627], and based on highly corrupt and incomplete data [709].
SINDy was also recently extended to incorporate information criteria for objec-
tive model selection [479], and to identify models with hidden variables using
delay coordinates [126]. Champion et al. [168] combined SINDy with a deep

2https://github.com/dynamicslab/pysindy.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/dynamicslab/pysindy

338 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

autoencoder neural network to simultaneously learn coordinates and dynam-
ics, which will be discussed in Chapter 14. Finally, the SINDy framework was
generalized to include partial derivatives, enabling the identification of partial
differential equation models [613, 626]. Several of these recent innovations will
be explored in more detail below.

More generally, the use of sparsity-promoting methods in dynamics is quite
recent [40, 42, 122, 136, 470, 481, 482, 542, 569, 628, 743]. Other techniques for
dynamical system discovery include methods to discover equations from time
series [186], equation-free modeling [383], empirical dynamic modeling [677,
765], modeling emergent behavior [603], the nonlinear autoregressive model
with exogenous inputs (NARMAX) [86, 281, 650, 774], and automated infer-
ence of dynamics [188, 189, 641]. Broadly speaking, these techniques may be
classified as system identification, where methods from statistics and machine
learning are used to identify dynamical systems from data. Nearly all methods
of system identification involve some form of regression of data onto dynamics,
and the main distinction between the various techniques is the degree to which
this regression is constrained. For example, the dynamic mode decomposition
generates best-fit linear models. Recent nonlinear regression techniques have
produced nonlinear dynamic models that preserve physical constraints, such as
conservation of energy. A major breakthrough in automated nonlinear system
identification was made by Bongard and Lipson [95] and Schmidt and Lipson
[640], where they used genetic programming to identify the structure of non-
linear dynamics. These methods are highly flexible and impose very few con-
straints on the form of the dynamics identified. In addition, SINDy is closely
related to NARMAX [86], which identifies the structure of models from time-
series data through an orthogonal least-squares procedure.

Discovering Partial Differential Equations

A major extension of the SINDy modeling framework generalized the library
to include partial derivatives, enabling the identification of partial differen-
tial equations [613, 626]. The resulting algorithm, called the partial differential
equation functional identification of nonlinear dynamics (PDE-FIND), has been
demonstrated to successfully identify several canonical PDEs from classical
physics, purely from noisy data. These PDEs include Navier–Stokes, Kuramoto–
Sivashinsky, Schrödinger, reaction–diffusion, Burgers, Korteweg–de Vries, and
the diffusion equation for Brownian motion [613].

PDE-FIND is similar to SINDy, in that it is based on sparse regression in a
library constructed from measurement data. The sparse regression and discov-
ery method is shown in Fig. 7.7. PDE-FIND is outlined below for PDEs in a sin-
gle variable, although the theory is readily generalized to higher-dimensional
PDEs. The spatial time-series data is arranged into a single column vector Υ ∈

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.3. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 339

1b. Build Nonlinear
Library of Data and

Derivatives

1c. Solve Sparse
Regression

2c. Solve Compressed
Sparse Regression

Sampling

2

1

0

1

2

d. Identified Dynamics

t

1a. Data Collection
2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

…

2a. Subsample Data 2b. Compressed library!t = ⇥(!, u, v)⇠

=

!t + 0.9931u!x + 0.9910v!y

= 0.0099!xx + 0.0099!yy

!t + 0.9931u!x + 0.9910v!y

= 0.0099!xx + 0.0099!yy

!t + (u · r)! =
1

Re
r2!

!t + (u · r)! =
1

100
r2!

!t + (u · r)! =
1

100
r2!

Compare to True
Navier Stokes (Re = 100)

=

C!t = C⇥(!, u, v)⇠

= C⇥

Fu
ll

D
at

a
C

om
pr

es
se

d
 D

at
a

!t = ⇥(!, u, v)⇠

C

(!, u, v)1

(!, u, v)2

(!, u, v)3

!
t

! !
x

1 u v !
y

u
v
!

y
y

u
v
!

x
y

⇠

arg min
⇠

k⇥⇠ � !tk2
2 + �k⇠k0

arg min
⇠

kC⇥⇠ � C!tk2
2 + �k⇠k0

Figure 7.7: Steps in the PDE-FIND algorithm, applied to infer the Navier–Stokes
equations from data. 1a. Data is collected as snapshots of a solution to a PDE.
1b. Numerical derivatives are taken and data is compiled into a large matrix
Θ, incorporating candidate terms for the PDE. 1c. Sparse regression is used
to identify active terms in the PDE. 2a. For large data sets, sparse sampling
may be used to reduce the size of the problem. 2b. Subsampling the data set is
equivalent to taking a subset of rows from the linear system in (7.52). 2c. An
identical sparse regression problem is formed but with fewer rows. d. Active
terms in ξ are synthesized into a PDE. Reproduced from Rudy et al. [613].

Cmn, representing data collected over m time points and n spatial locations.
Additional inputs, such as a known potential for the Schrödinger equation, or
the magnitude of complex data, are arranged into a column vector Q ∈ Cmn.
Next, a library Θ(Υ,Q) ∈ Cmn×D of D candidate linear and nonlinear terms
and partial derivatives for the PDE is constructed. Derivatives are taken either
using finite differences for clean data, or, when noise is added, with polynomial
interpolation. The candidate linear and nonlinear terms and partial derivatives
are then combined into a matrix Θ(Υ,Q) which takes the form

Θ(Υ,Q) =
[
1 Υ Υ2 · · · Q · · · Υx ΥΥx · · ·

]
. (7.51)

Each column of Θ contains all of the values of a particular candidate function
across all of the mn space–time grid points on which data is collected. The time
derivative Υt is also computed and reshaped into a column vector. Figure 7.7
demonstrates the data collection and processing. As an example, a column of
Θ(Υ,Q) may be qu2

x.
The PDE evolution can be expressed in this library as follows:

Υt = Θ(Υ,Q)ξ. (7.52)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

340 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Each entry in ξ is a coefficient corresponding to a term in the PDE, and, for
canonical PDEs, the vector ξ is sparse, meaning that only a few terms are active.

If the library Θ has a sufficiently rich column space that the dynamics are
in its span, then the PDE should be well represented by (7.52) with a sparse
vector of coefficients ξ. To identify the few active terms in the dynamics, a
sparsity-promoting regression is employed, as in SINDy. Importantly, the re-
gression problem in (7.52) may be poorly conditioned. Error in computing the
derivatives will be magnified by numerical errors when inverting Θ. Thus a
least-squares regression radically changes the qualitative nature of the inferred
dynamics.

In general, we seek the sparsest vector ξ that satisfies (7.52) with a small
residual. Instead of an intractable combinatorial search through all possible
sparse vector structures, a common technique is to relax the problem to a con-
vex `1-regularized least-squares [702]; however, this tends to perform poorly
with highly correlated data. Instead, we use ridge regression with hard thresh-
olding, which we call sequential threshold ridge regression (STRidge in Algo-
rithm 1, reproduced from Rudy et al. [613]). For a given tolerance and threshold
λ, this gives a sparse approximation to ξ. We iteratively refine the tolerance of
Algorithm 1 to find the best predictor based on the selection criteria,

ξ̂ = argminξ‖Θ(Υ,Q)ξ −Υt‖2
2 + εκ(Θ(Υ,Q))‖ξ‖0, (7.53)

where κ(Θ) is the condition number of the matrix Θ, providing stronger reg-
ularization for ill-posed problems. Penalizing ‖ξ‖0 discourages overfitting by
selecting from the optimal position in a Pareto front.

Algorithm 1: STRidge(Θ,Υt, λ, tol, iters) [613].

ξ̂ = arg minξ‖Θξ −Υt‖2
2 + λ‖ξ‖2

2 % ridge regression
bigcoeffs = {j : |ξ̂j| ≥ tol} % select large coefficients
ξ̂[∼ bigcoeffs] = 0 % apply hard threshold
ξ̂[bigcoeffs] = STRidge(Θ[:, bigcoeffs],Υt, tol, iters− 1)

% recursive call with fewer coefficients
return ξ̂

As in the SINDy algorithm, it is important to provide sufficiently rich train-
ing data to disambiguate between several different models. For example, Fig. 7.8
illustrates the use of the PDE-FIND algorithm identifying the Korteweg–de
Vries (KdV) equation. If only a single traveling wave is analyzed, the method
incorrectly identifies the standard linear advection equation, as this is the sim-
plest equation that describes a single traveling wave. However, if two traveling
waves of different amplitudes are analyzed, the KdV equation is correctly iden-
tified, as it describes the different amplitude-dependent wave speeds.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.3. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 341

ut = cux ut = 6uux + uxxx

(a)

(b) (c)

x

t

u

x

Figure 7.8: Inferring nonlinearity via observing solutions at multiple ampli-
tudes. (a) An example two-soliton solution to the KdV equation. (b) Applying
our method to a single-soliton solution determines that it solves the standard
advection equation. (c) Looking at two completely separate solutions reveals
nonlinearity. Reproduced from Rudy et al. [613].

The PDE-FIND algorithm can also be used to identify PDEs based on La-
grangian measurements that follow the path of individual particles. For exam-
ple, Fig. 7.9 illustrates the identification of the diffusion equation describing
Brownian motion of a particle based on a single long time-series measurement
of the particle position. In this example, the time series is broken up into several
short sequences, and the evolution of the distribution of these positions is used
to identify the diffusion equation.

Extension of SINDy for Rational Function Nonlinearities

Many dynamical systems, such as metabolic and regulatory networks in biol-
ogy, contain rational function nonlinearities in the dynamics. Often, these ra-
tional function nonlinearities arise because of a separation of timescales. Al-
though the original SINDy algorithm is highly flexible in terms of the choice of
the library of nonlinearities, it is not straightforward to identify rational func-
tions, since general rational functions are not sparse linear combinations of a
few basis functions. Instead, it is necessary to reformulate the dynamics in an
implicit ordinary differential equation and modify the optimization procedure
accordingly, as in Mangan et al. [478] and Kaheman et al. [364].

We consider dynamical systems with rational nonlinearities:

ẋk =
fN(x)

fD(x)
, (7.54)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

342 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

(b) (c)

(a)

Time

D
is

pl
ac

em
en

t

t

x
ut = cuxx

Length of Series
Er

ro
r

Figure 7.9: Inferring the diffusion equation from a single Brownian motion.
(a) The time series is broken into many short random walks that are used to
construct histograms of the displacement. (b) The Brownian motion trajectory,
following the diffusion equation. (c) Parameter error (‖ξ∗ − ξ̂‖1) versus length
of known time series. Blue symbols correspond to correct identification of the
structure of the diffusion model, ut = cuxx. Reproduced from Rudy et al. [613].

where xk is the kth variable, and fN(x) and fD(x) represent numerator and
denominator polynomials in the state variable x. For each index k, it is possible
to multiply both sides by the denominator fD, resulting in the equation:

fN(x)− fD(x)ẋk = 0. (7.55)

The implicit form of (7.55) motivates a generalization of the function library
Θ in (7.47) in terms of the state x and the derivative ẋk:

Θ(X, ẋk(t)) =
[
ΘN(X) diag(ẋk(t))ΘD(X)

]
. (7.56)

The first term, ΘN(X), is the library of numerator monomials in x, as in (7.47).
The second term, diag(ẋk(t))ΘD(X), is obtained by multiplying each column
of the library of denominator polynomials ΘD(X) with the vector ẋk(t) in an
element-wise fashion. For a single variable xk, this would give the following:

diag(ẋk(t))Θ(X) =
[
ẋk(t) (ẋkxk)(t) (ẋkx

2
k)(t) · · ·

]
. (7.57)

In most cases, we will use the same polynomial degree for both the numer-
ator and denominator library, so that ΘN(X) = ΘD(X). Thus, the augmented
library in (7.56) is only twice the size of the original library in (7.47).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.3. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY) 343

We may now write the dynamics in (7.55) in terms of the augmented library
in (7.56):

Θ(X, ẋk(t))ξk = 0. (7.58)

The sparse vector of coefficients ξk will have non-zero entries for the active
terms in the dynamics. However, it is not possible to use the same sparse re-
gression procedure as in SINDy, since the sparsest vector ξk that satisfies (7.58)
is the trivial zero vector.

Instead, the sparsest non-zero vector ξk that satisfies (7.58) is identified as
the sparsest vector in the null space of Θ. This is generally a non-convex prob-
lem, although there are recent algorithms developed by Qu et al. [576], based
on the alternating directions method (ADM), to identify the sparsest vector in
a subspace. Unlike the original SINDy algorithm, this procedure is quite sensi-
tive to noise, as the null space is numerically approximated as the span of the
singular vectors corresponding to small singular value. When noise is added to
the data matrix X, and hence to Θ, the noise floor of the singular value decom-
position goes up, increasing the rank of the numerical null space.

A recent technique by Kaheman et al. [364] circumvents this ill-conditioned
search through the null space of Θ. Instead, this approach picks a candidate
term from the library and moves it to the right-hand side, so that the regression
problem no longer involves a null space. Candidate terms are tested until one
is found that is actually in the model, after which it is possible to find a sparse
model that is also accurate.

General Formulation for Implicit ODEs

The optimization procedure above may be generalized to include a larger class
of implicit ordinary differential equations, in addition to those containing ra-
tional function nonlinearities. The library Θ(X, ẋk(t)) contains a subset of the
columns of the library Θ(

[
X Ẋ

]
), which is obtained by building nonlinear

functions of the state x and derivative ẋ. Identifying the sparsest vector in
the null space of Θ(

[
X Ẋ

]
) provides more flexibility in identifying nonlin-

ear equations with mixed terms containing various powers of any combination
of derivatives and states. For example, the system given by

ẋ2x2 − ẋx− x2 = 0 (7.59)

may be represented as a sparse vector in the null space of Θ(
[
X Ẋ

]
). This

formulation may be extended to include higher-order derivatives in the library
Θ, for example to identify second-order implicit differential equations:

Θ(
[
X Ẋ Ẍ

]
). (7.60)

The generality of this approach enables the identification of many systems of
interest, including those systems with rational function nonlinearities.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

344 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Number of terms, k

Er
ro

r

A
IC

0

ẋ = 0

parsimony

overfit

Figure 7.10: Illustration of model selection using SINDy and information crite-
ria, as in Mangan et al. [479]. The most parsimonious model on the Pareto front
is chosen to minimize the AIC score (blue circle), preventing overfitting.

Information Criteria for Model Selection

When performing the sparse regression in the SINDy algorithm, the sparsity-
promoting parameter λ is a free variable. In practice, different values of λ will
result in different models with various levels of sparsity, ranging from the triv-
ial model ẋ = 0 for very large λ to the simple least-squares solution for λ = 0.
Thus, by varying λ, it is possible to sweep out a Pareto front, balancing error
versus complexity, as in Fig. 7.10. To identify the most parsimonious model,
with low error and a reasonable complexity, it is possible to leverage informa-
tion criteria for model selection, as described in Mangan et al. [479]. In particu-
lar, if we compute the Akaike information criterion (AIC) [8, 9], which penalizes
the number of terms in the model, then the most parsimonious model mini-
mizes the AIC. This procedure has been applied to several sparse identification
problems, and in every case the true model was correctly identified [479].

7.4 Koopman Operator Theory

Koopman operator theory has recently emerged as an alternative perspective
for dynamical systems in terms of the evolution of measurements g(x). In 1931,
Bernard O. Koopman demonstrated that it is possible to represent a nonlinear
dynamical system in terms of an infinite-dimensional linear operator acting
on a Hilbert space of measurement functions of the state of the system. This

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.4. KOOPMAN OPERATOR THEORY 345

so-called Koopman operator is linear, and its spectral decomposition completely
characterizes the behavior of a nonlinear system, analogous to (7.7). However, it
is also infinite-dimensional, as there are infinitely many degrees of freedom re-
quired to describe the space of all possible measurement functions g of the state.
This poses new challenges. Obtaining finite-dimensional, matrix approxima-
tions of the Koopman operator is the focus of intense research efforts and holds
the promise of enabling globally linear representations of nonlinear dynami-
cal systems. Expressing nonlinear dynamics in a linear framework is appealing
because of the wealth of optimal estimation and control techniques available
for linear systems (see Chapter 8) and the ability to analytically predict the fu-
ture state of the system. Obtaining a finite-dimensional approximation of the
Koopman operator has been challenging in practice, as it involves identifying
a subspace spanned by a subset of eigenfunctions of the Koopman operator.
For a more complete discussion of modern Koopman theory and data-driven
approximations, see [128].

Mathematical Formulation of Koopman Theory

The Koopman operator advances measurement functions of the state with the
flow of the dynamics. We consider real-valued measurement functions g : M→
R, which are elements of an infinite-dimensional Hilbert space. The functions
g are also commonly known as observables, although this may be confused with
the unrelated observability from control theory. Typically, the Hilbert space is
given by the Lebesgue square-integrable functions on M; other choices of a
measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that
acts on measurement functions g as

Ktg = g ◦ Ft, (7.61)

where ◦ is the composition operator. For a discrete-time system with time-step
∆t, this becomes

K∆tg(xk) = g(F∆t(xk)) = g(xk+1). (7.62)

In other words, the Koopman operator defines an infinite-dimensional linear
dynamical system that advances the observation of the state gk = g(xk) to the
next time-step:

g(xk+1) = K∆tg(xk). (7.63)

Note that this is true for any observable function g and for any state xk.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

346 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

The Koopman operator is linear, a property that is inherited from the lin-
earity of the addition operation in function spaces:

Kt(α1g1(x) + α2g2(x)) = α1g1(Ft(x)) + α2g2(Ft(x)) (7.64a)
= α1Ktg1(x) + α2Ktg2(x). (7.64b)

For sufficiently smooth dynamical systems, it is also possible to define the
continuous-time analogue of the Koopman dynamical system in (7.63):

d

dt
g = Kg. (7.65)

The operator K is the infinitesimal generator of the one-parameter family of
transformations Kt [4]. It is defined by its action on an observable function g:

Kg = lim
t→0

Ktg − g
t

= lim
t→0

g ◦ Ft − g
t

. (7.66)

The linear dynamical systems in (7.65) and (7.63) are analogous to the dynami-
cal systems in (7.3) and (7.4), respectively. It is important to note that the orig-
inal state x may be the observable, and the infinite-dimensional operator Kt
will advance this function. However, the simple representation of the observ-
able g = x in a chosen basis for Hilbert space may become arbitrarily complex
once iterated through the dynamics. In other words, finding a representation
for Kx may not be simple or straightforward.

Koopman Eigenfunctions and Intrinsic Coordinates

The Koopman operator is linear, which is appealing, but is infinite-dimensional,
posing issues for representation and computation. Instead of capturing the evo-
lution of all measurement functions in a Hilbert space, applied Koopman anal-
ysis attempts to identify key measurement functions that evolve linearly with
the flow of the dynamics. Eigenfunctions of the Koopman operator provide just
such a set of special measurements that behave linearly in time. In fact, a pri-
mary motivation to adopt the Koopman framework is the ability to simplify
the dynamics through the eigendecomposition of the operator.

A discrete-time Koopman eigenfunction ϕ(x) corresponding to eigenvalue
λ satisfies

ϕ(xk+1) = K∆tϕ(xk) = λϕ(xk). (7.67)

In continuous time, a Koopman eigenfunction ϕ(x) satisfies

d

dt
ϕ(x) = Kϕ(x) = λϕ(x). (7.68)

Obtaining Koopman eigenfunctions from data or from analytic expressions is
a central applied challenge in modern dynamical systems. Discovering these

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.4. KOOPMAN OPERATOR THEORY 347

eigenfunctions enables globally linear representations of strongly nonlinear sys-
tems.

Applying the chain rule to the time derivative of the Koopman eigenfunc-
tion ϕ(x) yields

d

dt
ϕ(x) = ∇ϕ(x) · ẋ = ∇ϕ(x) · f(x). (7.69)

Combined with (7.68), this results in a partial differential equation for the eigen-
function ϕ(x):

∇ϕ(x) · f(x) = λϕ(x). (7.70)

With this nonlinear PDE, it is possible to approximate the eigenfunctions, either
by solving for the Laurent series or with data via regression, both of which are
explored below. This formulation assumes that the dynamics are both contin-
uous and differentiable. The discrete-time dynamics in (7.4) are more general,
although in many examples the continuous-time dynamics have a simpler rep-
resentation than the discrete-time map for long times. For example, the simple
Lorenz system has a simple continuous-time representation, yet is generally
unrepresentable for even moderately long discrete-time updates.

The key takeaway from (7.67) and (7.68) is that the nonlinear dynamics
become completely linear in eigenfunction coordinates, given by ϕ(x). As a
simple example, any conserved quantity of a dynamical system is a Koopman
eigenfunction corresponding to eigenvalue λ = 0. This establishes a Koopman
extension of the famous Noether’s theorem [529], implying that any symmetry
in the governing equations gives rise to a new Koopman eigenfunction with
eigenvalue λ = 0. For example, the Hamiltonian energy function is a Koop-
man eigenfunction for a conservative system. In addition, the constant func-
tion ϕ = 1 is always a trivial eigenfunction corresponding to λ = 0 for every
dynamical system.

Eigenvalue Lattices. Interestingly, a set of Koopman eigenfunctions may be
used to generate more eigenfunctions. In discrete time, we find that the product
of two eigenfunctions ϕ1(x) and ϕ2(x) is also an eigenfunction,

Kt(ϕ1(x)ϕ2(x)) = ϕ1(Ft(x))ϕ2(Ft(x)) (7.71a)
= λ1λ2ϕ1(x)ϕ2(x), (7.71b)

corresponding to a new eigenvalue λ1λ2 given by the product of the two eigen-
values of ϕ1(x) and ϕ2(x). In continuous time, the relationship becomes

K(ϕ1ϕ2) =
d

dt
(ϕ1ϕ2) (7.72a)

= ϕ̇1ϕ2 + ϕ1ϕ̇2 (7.72b)
= λ1ϕ1ϕ2 + λ2ϕ1ϕ2 (7.72c)
= (λ1 + λ2)ϕ1ϕ2. (7.72d)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

348 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Interestingly, this means that the set of Koopman eigenfunctions establishes
a commutative monoid under pointwise multiplication; a monoid has the struc-
ture of a group, except that the elements need not have inverses. Thus, depend-
ing on the dynamical system, there may be a finite set of generator eigenfunc-
tion elements that may be used to construct all other eigenfunctions. The cor-
responding eigenvalues similarly form a lattice, based on the product λ1λ2 or
sum λ1 + λ2, depending on whether the dynamics are in discrete time or con-
tinuous time. For example, given a linear system ẋ = λx, then ϕ(x) = x is an
eigenfunction with eigenvalue λ. Moreover, ϕα = xα is also an eigenfunction
with eigenvalue αλ for any α.

The continuous-time and discrete-time lattices are related in a simple way. If
the continuous-time eigenvalues are given by λ, then the corresponding discrete-
time eigenvalues are given by eλt. Thus, the eigenvalue expressions in (7.71b)
and (7.72d) are related as

eλ1teλ2tϕ1(x)ϕ2(x) = e(λ1+λ2)tϕ1(x)ϕ2(x). (7.73)

As another simple demonstration of the relationship between continuous-
time and discrete-time eigenvalues, consider the continuous-time definition in
(7.66) applied to an eigenfunction:

lim
t→0

Ktϕ(x)− ϕ(x)

t
= lim

t→0

eλtϕ(x)− ϕ(x)

t
= λϕ(x). (7.74)

Koopman Mode Decomposition and Finite Representations

Until now, we have considered scalar measurements of a system, and we un-
covered special eigen-measurements that evolve linearly in time. However, we
often take multiple measurements of a system. In extreme cases, we may mea-
sure the entire state of a high-dimensional spatial system, such as an evolving
fluid flow. These measurements may then be arranged in a vector g:

g(x) =

g1(x)
g2(x)

...
gp(x)

 . (7.75)

Each of the individual measurements may be expanded in terms of the eigen-
functions ϕj(x), which provide a basis for Hilbert space:

gi(x) =
∞∑

j=1

vijϕj(x). (7.76)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.4. KOOPMAN OPERATOR THEORY 349

Thus, the vector of observables, g, may be similarly expanded:

g(x) =

g1(x)
g2(x)

...
gp(x)

 =

∞∑

j=1

ϕj(x)vj, (7.77)

where vj is the jth Koopman mode associated with the eigenfunction ϕj .
For conservative dynamical systems, such as those governed by Hamilto-

nian dynamics, the Koopman operator is unitary on the Hilbert space of square-
integrable functions. Thus, the Koopman eigenfunctions are orthonormal for
conservative systems, and it is possible to compute the Koopman modes vj
directly by projection:

vj =

〈ϕj, g1〉
〈ϕj, g2〉

...
〈ϕj, gp〉

 , (7.78)

where 〈·, ·〉 is the standard inner product of functions in Hilbert space. Thus, the
expansion of the observable function in (7.77) may be thought of as a change of
basis into eigenfunction coordinates. These Koopman modes have a physical
interpretation in the case of direct spatial measurements of a system, g(x) = x,
in which case the modes are coherent spatial modes that behave linearly with
the same temporal dynamics (i.e., oscillations, possibly with linear growth or
decay). These Koopman modes v are also known as dynamic modes in DMD.

Given the decomposition in (7.77), it is possible to represent the dynamics
of the measurements g as follows:

g(xk) = Kk∆tg(x0) = Kk∆t
∞∑

j=0

ϕj(x0)vj (7.79a)

=
∞∑

j=0

Kk∆tϕj(x0)vj (7.79b)

=
∞∑

j=0

λkjϕj(x0)vj, (7.79c)

where Kk∆t is the Koopman operator K∆t applied k times. This sequence of
triples, {(λj, ϕj,vj)}∞j=0, is known as the Koopman mode decomposition, and was
introduced by Mezić in 2005 [497]. Often, it is possible to approximate this
expansion as a truncated sum of only a few dominant terms. The Koopman
mode decomposition was later connected to data-driven regression via the dy-
namic mode decomposition [611], which was discussed in Section 7.2. The

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

350 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

DMD eigenvalues approximate the Koopman eigenvalues λj , the DMD modes
approximate the Koopman modes vj , and the DMD mode amplitudes approxi-
mate the corresponding Koopman eigenfunctions evaluated at the initial condi-
tion ϕj(x0). In fact, the Koopman mode decomposition in (7.79) is nearly identi-
cal to the DMD spectral expansion in (7.28), with the DMD mode amplitudes bj
replaced with the Koopman eigenfunctions ϕj(x0) evaluated at the initial con-
dition, and the DMD modes φj replaced with the Koopman modes vj . It is im-
portant to note that the Koopman modes and eigenfunctions are distinct math-
ematical objects, requiring different approaches for approximation. Koopman
eigenfunctions are often more challenging to compute than Koopman modes,
motivating advanced techniques, such as the extended DMD algorithm [757]
in Section 7.5.

Invariant Eigenspaces and Finite-Dimensional Models

Instead of capturing the evolution of all measurement functions in a Hilbert
space, applied Koopman analysis approximates the evolution on an invariant
subspace spanned by a finite set of measurement functions.

A Koopman-invariant subspace is defined as the span of a set of functions
{g1, g2, . . . , gp} if all functions g in this subspace,

g = α1g1 + α2g2 + · · ·+ αpgp, (7.80)

remain in this subspace after being acted on by the Koopman operator K:

Kg = β1g1 + β2g2 + · · ·+ βpgp. (7.81)

It is possible to obtain a finite-dimensional matrix representation of the Koop-
man operator by restricting it to an invariant subspace spanned by a finite num-
ber of functions {gj}pj=0; this is illustrated in Fig. 7.11. The matrix representation
K acts on a vector space Rp, with the coordinates given by the values of gj(x).
This induces a finite-dimensional linear system, as in (7.63) and (7.65).

Any finite set of eigenfunctions of the Koopman operator will span an in-
variant subspace. Discovering these eigenfunction coordinates is, therefore, a
central challenge, as they provide intrinsic coordinates along which the dy-
namics behave linearly. In practice, it is more likely that we will identify an
approximately invariant subspace, given by a set of functions {gj}pj=0, where
each of the functions gj is well approximated by a finite sum of eigenfunctions:
gj ≈

∑p
k=0 αkϕk.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.4. KOOPMAN OPERATOR THEORY 351

Ft Ft Ft

...

x1

x2 x3 xN
yNy3

y2

y1

g

g g g g g

y1 y2 y3 yN

x1 x2 x3 xN...

f : xk 7! xk+1

g : xk 7! yk

U t : yk 7! yk+1

Ft

Rm

Ft

Ft

M

Kt

Kt Kt Kt Kt

Kt

Figure 7.11: Schematic illustrating the Koopman operator for nonlinear dynam-
ical systems. The dashed lines from yk → xk indicate that we would like to be
able to recover the original state.

Examples of Koopman Embeddings

Nonlinear System with Single Fixed Point and a Slow Manifold

Here, we consider an example system with a single fixed point, given by

ẋ1 = µx1, (7.82a)
ẋ2 = λ(x2 − x2

1). (7.82b)

For λ < µ < 0, the system exhibits a slow attracting manifold given by x2 = x2
1.

It is possible to augment the state x with the nonlinear measurement g = x2
1, to

define a three-dimensional Koopman-invariant subspace. In these coordinates,
the dynamics become linear:

d

dt

y1

y2

y3

 =

µ 0 0
0 λ −λ
0 0 2µ

y1

y2

y3

 for

y1

y2

y3

 =

x1

x2

x2
1

 . (7.83)

The full three-dimensional Koopman observable vector space is visualized
in Fig. 7.12. Trajectories that start on the invariant manifold y3 = y2

1 , visualized
by the blue parabolic surface, are constrained to stay on this manifold. There is
a slow subspace, spanned by the eigenvectors corresponding to the slow eigen-
values µ and 2µ; this subspace is visualized by the green planar surface. Finally,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

352 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Figure 7.12: Visualization of three-dimensional linear Koopman system from
(7.83) along with projection of dynamics onto the x1–x2 plane. The attracting
slow manifold is shown in red, the constraint y3 = y2

1 is shown in blue, and
the slow unstable subspace of (7.83) is shown in green. Black trajectories of
the linear Koopman system in y project onto trajectories of the full nonlinear
system in x in the y1–y2 plane. Here, µ = −0.05 and λ = 1. Reproduced from
Brunton et al. [127].

there is the original asymptotically attracting manifold of the original system,
y2 = y2

1 , which is visualized as the red parabolic surface. The blue and red
parabolic surfaces always intersect in a parabola that is inclined at a 45◦ an-
gle in the y2–y3 direction. The green surface approaches this 45◦ inclination as
the ratio of fast to slow dynamics become increasingly large. In the full three-
dimensional Koopman observable space, the dynamics produce a single sta-
ble node, with trajectories rapidly attracting onto the green subspace and then
slowly approaching the fixed point.

Intrinsic Coordinates Defined by Eigenfunctions of the Koopman Operator.
The left eigenvectors of the Koopman operator yield Koopman eigenfunctions
(i.e., eigen-observables). The Koopman eigenfunctions of (7.83) corresponding

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.4. KOOPMAN OPERATOR THEORY 353

to eigenvalues µ and λ are

ϕµ = x1 and ϕλ = x2 − bx2
1 with b =

λ

λ− 2µ
. (7.84)

The constant b in ϕλ captures the fact that for a finite ratio λ/µ, the dynamics
only shadow the asymptotically attracting slow manifold x2 = x2

1, but in fact
follow neighboring parabolic trajectories. This is illustrated more clearly by the
various surfaces in Fig. 7.12 for different ratios λ/µ.

In this way, a set of intrinsic coordinates may be determined from the ob-
servable functions defined by the left eigenvectors of the Koopman operator on
an invariant subspace. Explicitly,

ϕα(x) = ξαy(x), where ξαK = αξα. (7.85)

These eigen-observables define observable subspaces that remain invariant un-
der the Koopman operator, even after coordinate transformations. As such,
they may be regarded as intrinsic coordinates [757] on the Koopman-invariant
subspace.

Example of Intractable Representation

Consider the logistic map, given by

xk+1 = βxk(1− xk). (7.86)

Let our observable subspace include x and x2:

yk =

[
x
x2

]

k

,

[
xk
x2
k

]
. (7.87)

Writing out the Koopman operator, the first row equation is simple:

yk+1 =

[
x
x2

]

k+1

=

[
β −β
? ?

] [
x
x2

]

k

, (7.88)

but the second row is not obvious. To find this expression, expand x2
k+1:

x2
k+1 = (βxk(1− xk))2 = β2(x2

k − 2x3
k + x4

k). (7.89)

Thus, cubic and quartic polynomial terms are required to advance x2. Similarly,
these terms need polynomials up to sixth and eighth order, respectively, and so
on, ad infinitum:

x x2 x3 x4 x5 x6 x7 x8 x9 x10

x
x2

x3

x4

x5

...

k+1

=

β −β 0 0 0 0 0 0 0 0 · · ·
0 β2 −2β2 r2 0 0 0 0 0 0 · · ·
0 0 β3 −3β3 3β3 β3 0 0 0 0 · · ·
0 0 0 β4 −4β4 6β4 −4β4 β4 0 0 · · ·
0 0 0 0 β5 −5β5 10β5 −10β5 5β5 −β5 · · ·
...

...
...

...
...

...
...

...
...

...
. . .

x
x2

x3

x4

x5

...

k

.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

354 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

It is interesting to note that the rows of this equation are related to the rows of
Pascal’s triangle, with the nth row scaled by rn, and with the omission of the
first row:

[
x0
]
k+1

=
[
0
] [
x0
]
k
. (7.90)

The above representation of the Koopman operator in a polynomial basis is
somewhat troubling. Not only is there no closure, but the determinant of any
finite-rank truncation is very large for β > 1. This illustrates a pitfall associated
with naive representation of the infinite-dimensional Koopman operator for a
simple chaotic system. Truncating the system, or performing a least-squares fit
on an augmented observable vector (i.e., DMD on a nonlinear measurement;
see Section 7.5), yields poor results, with the truncated system only agreeing
with the true dynamics for a small handful of iterations, as the complexity of
the representation grows quickly:

1
x
x2

x3

x4

x5

x6

x7

x8

...

0
1
0
0
0
0
0
0
0
...

K
=⇒

0
β
−β
0
0
0
0
0
0
...

K
=⇒

0
β2

−β2 − β3

2β3

−β3

0
0
0
0
...

K
=⇒

0
β3

−β3 − β4 − β5

2β4 + 2β5 + 2β6

−β4 − β5 − 6β6 − β7

6β6 + 4β7

−2β6 − 6β7

4β7

−β7

...

. (7.91)

Analytic Series Expansions for Eigenfunctions

Given the dynamics in (7.1), it is possible to solve the PDE in (7.70) using stan-
dard techniques, such as recursively solving for the terms in a Taylor or Laurent
series. A number of simple examples are explored below.

Linear Dynamics

Consider the simple linear dynamics

d

dt
x = x. (7.92)

Assuming a Taylor series expansion for ϕ(x):

ϕ(x) = c0 + c1x+ c2x
2 + c3x

3 + · · · ,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.4. KOOPMAN OPERATOR THEORY 355

then the gradient and directional derivatives are given by

∇ϕ = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + · · · ,
∇ϕ · f = c1x+ 2c2x

2 + 3c3x
3 + 4c4x

4 + · · · .
Solving for terms in the Koopman eigenfunction PDE (7.70), we see that c0 = 0
must hold. For any positive integer λ in (7.70), only one of the coefficients may
be non-zero. Specifically, for λ = k ∈ Z+, then ϕ(x) = cxk is an eigenfunction
for any constant c. For instance, if λ = 1, then ϕ(x) = x.

Quadratic Nonlinear Dynamics

Consider a nonlinear dynamical system

d

dt
x = x2. (7.93)

There is no Taylor series that satisfies (7.70), except the trivial solution ϕ = 0
for λ = 0. Instead, we assume a Laurent series:

ϕ(x) = · · ·+ c−3x
−3 + c−2x

−2 + c−1x
−1 + c0

+ c1x+ c2x
2 + c3x

3 + · · · .
The gradient and directional derivatives are given by

∇ϕ = · · · − 3c−3x
−4 − 2c−2x

−3 − c−1x
−2

+ c1 + 2c2x+ 3c3x
2 + 4c4x

3 + · · · ,
∇ϕ · f = · · · − 3c−3x

−2 − 2c−2x
−1 − c−1

+ c1x
2 + 2c2x

3 + 3c3x
4 + 4c4x

5 + · · · .
Solving for the coefficients of the Laurent series that satisfy (7.70), we find that
all coefficients with positive index are zero, i.e., ck = 0 for all k ≥ 1. However,
the non-positive index coefficients are given by the recursion λck+1 = kck, for
negative k ≤ −1. Thus, the Laurent series is

ϕ(x) = c0

(
1− λx−1 +

λ2

2
x−2 − λ3

3!
x−3 + · · ·

)
= c0e

−λ/x.

This holds for all values of λ ∈ C. There are also other Koopman eigenfunctions
that can be identified from the Laurent series.

Polynomial Nonlinear Dynamics

For a more general nonlinear dynamical system

d

dt
x = axn, (7.94)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

356 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

we have that

ϕ(x) = exp

{
λ

(1− n)a
x1−n

}

is an eigenfunction for all λ ∈ C.

As mentioned above, it is also possible to generate new eigenfunctions by tak-
ing powers of these primitive eigenfunctions; the resulting eigenvalues gener-
ate a lattice in the complex plane.

History and Recent Developments

The original analysis of Koopman in 1931 was introduced to describe the evolu-
tion of measurements of Hamiltonian systems [402], and this theory was gener-
alized by Koopman and von Neumann to systems with continuous eigenvalue
spectrum in 1932 [403]. In the case of Hamiltonian flows, the Koopman opera-
tor Kt is unitary, and forms a one-parameter family of unitary transformations
in Hilbert space. Unitary operators should be familiar by now, as the discrete
Fourier transform (DFT) and the singular value decomposition (SVD) both
provide unitary coordinate transformations. Unitarity implies that the inner
product of any two observable functions remains unchanged through action of
the Koopman operator, which is intuitively related to the phase-space volume-
preserving property of Hamiltonian systems. In the original paper [402], Koop-
man drew connections between the Koopman eigenvalue spectrum and con-
served quantities, integrability, and ergodicity. Interestingly, Koopman’s 1931
paper was central in the celebrated proofs of the ergodic theorem by Birkhoff
and von Neumann [88, 89, 510, 521].

Koopman analysis has recently gained renewed interest with the pioneering
work of Mezić and collaborators [138, 139, 140, 427, 497, 498, 500]. The Koop-
man operator is also known as the composition operator, which is formally
the pull-back operator on the space of scalar observable functions [4], and it is
the dual, or left-adjoint, of the Perron–Frobenius operator, or transfer operator,
which is the push-forward operator on the space of probability density func-
tions. When a polynomial basis is chosen to represent the Koopman operator,
then it is closely related to Carleman linearization [163, 164, 165], which has
been used extensively in nonlinear control [51, 408, 674, 686]. Koopman analy-
sis is also connected to the resolvent operator theory from fluid dynamics [655].

Recently, it has been shown that the operator-theoretic framework comple-
ments the traditional geometric and probabilistic perspectives. For example,
level sets of Koopman eigenfunctions form invariant partitions of the state
space of a dynamical system [139]; in particular, eigenfunctions of the Koop-
man operator may be used to analyze the ergodic partition [138, 501]. Koopman

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 357

analysis has also been recently shown to generalize the Hartman–Grobman the-
orem to the entire basin of attraction of a stable or unstable equilibrium point
or periodic orbit [427].

At the time of this writing, representing Koopman eigenfunctions for gen-
eral dynamical systems remains a central unsolved challenge. Significant re-
search efforts are focused on developing data-driven techniques to identify
Koopman eigenfunctions and use these for control, which will be discussed in
the following sections and chapters. Recently, new work has emerged that at-
tempts to leverage the power of deep learning to discover and represent eigen-
functions from data [465, 485, 540, 692, 747, 766].

7.5 Data-Driven Koopman Analysis

Obtaining linear representations for strongly nonlinear systems has the po-
tential to revolutionize our ability to predict and control these systems. The
linearization of dynamics near fixed points or periodic orbits has long been
employed for local linear representation of the dynamics [334]. The Koopman
operator is appealing because it provides a global linear representation, valid
far away from fixed points and periodic orbits. However, previous attempts to
obtain finite-dimensional approximations of the Koopman operator have had
limited success. Dynamic mode decomposition [422, 611, 635] seeks to approxi-
mate the Koopman operator with a best-fit linear model advancing spatial mea-
surements from one time to the next, although these linear measurements are
not rich enough for many nonlinear systems. Augmenting DMD with nonlin-
ear measurements may enrich the model, but there is no guarantee that the
resulting models will be closed under the Koopman operator [127]. Here, we
describe several approaches for identifying Koopman embeddings and eigen-
functions from data. These methods include the extended dynamic mode de-
composition [757], extensions based on SINDy [365], and the use of delay coor-
dinates [126].

Extended DMD

The extended DMD algorithm [757] is essentially the same as standard DMD
[727], except that, instead of performing regression on direct measurements of
the state, regression is performed on an augmented vector containing nonlin-
ear measurements of the state. As discussed earlier, eDMD is equivalent to the
variational approach of conformation dynamics [528, 534, 535], which was de-
veloped in 2013 by Noé and Nüske.

Here, we will modify the notation slightly to conform to related methods.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

358 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

In eDMD, an augmented state is constructed:

y = ΘT (x) =

θ1(x)
θ2(x)

...
θp(x)

 . (7.95)

Here Θ may contain the original state x as well as nonlinear measurements, so
often p� n. Next, two data matrices are constructed, as in DMD:

Y =

y1 y2 · · · ym

 , Y′ =

y2 y3 · · · ym+1

 . (7.96a)

Finally, a best-fit linear operator AY is constructed that maps Y into Y′:

AY = argmin
AY

‖Y′ −AYY‖ = Y′Y†. (7.97)

This regression may be written in terms of the data matrices Θ(X) and Θ(X′):

AY = argmin
AY

‖ΘT (X′)−AYΘT (X)‖ = ΘT (X′)(ΘT (X))†. (7.98)

Because the augmented vector y may be significantly larger than the state
x, kernel methods are often employed to compute this regression [758]. In prin-
ciple, the enriched library Θ provides a larger basis in which to approximate
the Koopman operator. It has been shown recently that, in the limit of infinite
snapshots, the extended DMD operator converges to the Koopman operator
projected onto the subspace spanned by Θ [405]. However, if Θ does not span
a Koopman-invariant subspace, then the projected operator may not have any
resemblance to the original Koopman operator, as all of the eigenvalues and
eigenvectors may be different. In fact, it was shown that the extended DMD op-
erator will have spurious eigenvalues and eigenvectors unless it is represented
in terms of a Koopman-invariant subspace [127]. Therefore, it is essential to use
validation and cross-validation techniques to ensure that eDMD models are
not overfit, as discussed below. For example, it was shown that eDMD cannot
contain the original state x as a measurement and represent a system that has
multiple fixed points, periodic orbits, or other attractors, because these systems
cannot be topologically conjugate to a finite-dimensional linear system [127].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 359

Approximating Koopman Eigenfunctions from Data

In discrete time, a Koopman eigenfunction ϕ(x) evaluated at a number of data
points in X will satisfy:

λϕ(x1)
λϕ(x2)

...
λϕ(xm)

 =

ϕ(x2)
ϕ(x3)

...
ϕ(xm+1)

 . (7.99)

It is possible to approximate this eigenfunction as an expansion in terms of a
set of candidate functions,

Θ(x) =
[
θ1(x) θ2(x) · · · θp(x)

]
. (7.100)

The Koopman eigenfunction may be approximated in this basis as

ϕ(x) ≈
p∑

k=1

θk(x)ξk = Θ(x)ξ. (7.101)

Writing (7.99) in terms of this expansion yields the matrix system:

(λΘ(X)−Θ(X′))ξ = 0. (7.102)

If we seek the best least-squares fit to (7.102), this reduces to the extended DMD
[757, 758] formulation:

λξ = Θ(X)†Θ(X′)ξ. (7.103)

Note that (7.103) is the transpose of (7.98), so that left eigenvectors become
right eigenvectors. Thus, the eigenvectors ξ of Θ†Θ′ yield the coefficients of the
eigenfunction ϕ(x) represented in the basis Θ(x). It is absolutely essential then
to confirm that predicted eigenfunctions actually behave linearly on trajecto-
ries, by comparing them with the predicted dynamics ϕk+1 = λϕk, because the
regression above will result in spurious eigenvalues and eigenvectors unless
the basis elements θj span a Koopman-invariant subspace [127].

Sparse Identification of Eigenfunctions

It is possible to leverage the SINDy regression [132] to identify Koopman eigen-
functions corresponding to a particular eigenvalue λ, selecting only the few ac-
tive terms in the library Θ(x) to avoid overfitting. Given the data matrices, X
and Ẋ from above, it is possible to construct the library of basis functions Θ(X)
as well as a library of directional derivatives, representing the possible terms in
∇ϕ(x) · f(x) from (7.70):

Γ(x, ẋ) =
[
∇θ1(x) · ẋ ∇θ2(x) · ẋ · · · ∇θp(x) · ẋ

]
. (7.104)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

360 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

It is then possible to construct Γ from data:

Γ(X, Ẋ) =

∇θ1(x1) · ẋ1 ∇θ2(x1) · ẋ1 · · · ∇θp(x1) · ẋ1

∇θ1(x2) · ẋ2 ∇θ2(x2) · ẋ2 · · · ∇θp(x2) · ẋ2
...

...
∇θ1(xm) · ẋm ∇θ2(xm) · ẋm · · · ∇θp(xm) · ẋm

 .

For a given eigenvalue λ, the Koopman PDE in (7.70) may be evaluated on data:

(λΘ(X)− Γ(X, Ẋ))ξ = 0. (7.105)

The formulation in (7.105) is implicit, so that ξ will be in the null space of
λΘ(X)− Γ(X, Ẋ). The right null space of (7.105) for a given λ is spanned by the
right singular vectors of λΘ(X)− Γ(X, Ẋ) = UΣV∗ (i.e., columns of V) corre-
sponding to zero-valued singular values. It may be possible to identify the few
active terms in an eigenfunction by finding the sparsest vector in the null space
[576], as in the implicit-SINDy algorithm [478] described in Section 7.3. In this
formulation, the eigenvalues λ are not known a priori, and must be learned with
the approximate eigenfunction. Koopman eigenfunctions and eigenvalues can
also be determined as the solution to the eigenvalue problem AYξα = λαξα,
where AY = Θ†Γ is obtained via least-squares regression, as in the continuous-
time version of eDMD. While many eigenfunctions are spurious, those corre-
sponding to lightly damped eigenvalues can be well approximated.

From a practical standpoint, data in X does not need to be sampled from
full trajectories, but can be obtained using more sophisticated strategies such
as Latin hypercube sampling or sampling from a distribution over the phase
space. Moreover, reproducing kernel Hilbert spaces (RKHS) can be employed
to describe ϕ(x) locally in patches of state space.

Example: Duffing System (Kaiser et al. [365]) We demonstrate the sparse
identification of Koopman eigenfunctions on the undamped Duffing oscillator:

d

dt

[
x1

x2

]
=

[
x2

x1 − x3
1

]
,

where x1 is the position and x2 is the velocity of a particle in a double-well
potential with equilibria (0, 0) and (±1, 0). This system is conservative, with
Hamiltonian H = 1

2
x2

2 − 1
2
x2

1 + 1
4
x4

1. The Hamiltonian, and in general any con-
served quantity, is a Koopman eigenfunction with zero eigenvalue.

For the eigenvalue λ = 0, (7.105) becomes −Γ(X, Ẋ)ξ = 0, and hence a
sparse ξ is sought in the null space of −Γ(X, Ẋ). A library of candidate func-
tions is constructed from data, employing polynomials up to fourth order:

Θ(X) =

x1(t) x2(t) x2

1(t) x1(t)x2(t) · · · x4
2(t)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 361

and

Γ(X, Ẋ) =

ẋ1(t) ẋ2(t) 2x1(t)ẋ1(t) x2(t)ẋ1(t) + x1(t)ẋ2(t) · · · 4x2(t)

3ẋ2(t)

 .

A sparse vector of coefficients ξ may be identified, with the few non-zero
entries determining the active terms in the Koopman eigenfunction. The iden-
tified Koopman eigenfunction associated with λ = 0 is

ϕ(x) = −2
3
x2

1 + 2
3
x2

2 + 1
3
x4

1. (7.106)

This eigenfunction matches the Hamiltonian perfectly up to a constant scaling.

Data-Driven Koopman and Delay Coordinates

Instead of advancing instantaneous linear or nonlinear measurements of the
state of a system directly, as in DMD, it may be possible to obtain intrinsic mea-
surement coordinates for Koopman based on time-delayed measurements of
the system [25, 126, 190, 681]. This perspective is data-driven, relying on the
wealth of information from previous measurements to inform the future. Un-
like a linear or weakly nonlinear system, where trajectories may get trapped at
fixed points or on periodic orbits, chaotic dynamics are particularly well suited
to this analysis: trajectories evolve to densely fill an attractor, so more data pro-
vides more information. The use of delay coordinates may be especially impor-
tant for systems with long-term memory effects, where the Koopman approach
has recently been shown to provide a successful analysis tool [685].

The time-delay measurement scheme is shown schematically in Fig. 7.13,
as illustrated on the Lorenz system for a single time series of the first variable,
x(t). The conditions of the Takens embedding theorem are satisfied [694], so
it is possible to obtain a diffeomorphism between a delay-embedded attractor
and the attractor in the original coordinates. We then obtain eigen-time-delay
coordinates from a time series of a single measurement x(t) by taking the SVD
of the Hankel matrix H:

H =

x(t1) x(t2) · · · x(tp)
x(t2) x(t3) · · · x(tp+1)

...
...

x(tq) x(tq+1) · · · x(tm)

 = UΣV∗. (7.107)

The columns of U and V from the SVD are arranged hierarchically by their
ability to model the columns and rows of H, respectively. Often, H may admit
a low-rank approximation by the first r columns of U and V. Note that the Han-
kel matrix in (7.107) is the basis of the eigensystem realization algorithm [358]

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

362 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

x

Measure

Delay
Coordinates2

666664

v1

v2

v3

...
vr

3
777775

2
666664

v1

v2

v3

...
vr

3
777775

2
666664

v1

v2

v3

...
vr

3
777775

25 30 35 40 45 50 55 60 65
-5

0

5 ×10-3

25 30 35 40 45 50 55 60 65
-0.01

-0.005

0

0.005

0.01

25 30 35 40 45 50 55 60 65
0

0.5

1 ×10-4

Forcing Active
Forcing Inactive

25 30 35 40 45 50 55 60 65
-5

0

5 ×10-3

25 30 35 40 45 50 55 60 65
-0.01

-0.005

0

0.005

0.01

25 30 35 40 45 50 55 60 65
0

0.5

1 ×10-4

Forcing Active
Forcing Inactive

0 5 10 15

2

4

6

8

10

12

14

-60

-30

0

30

60

-5 0 5 10

2

4

6

8

10

12

14

d

dt

2
66666666666666666666664

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

3
77777777777777777777775

=

2
66666666666666666666664

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

3
77777777777777777777775

v15+

0 5 10 15

2

4

6

8

10

12

14

-60

-30

0

30

6060

-60

-30

30

0
d

dt

2
66666666666666666666664

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

3
77777777777777777777775

=
d

dt

2
66666666666666666666664

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

3
77777777777777777777775

=

Regression model

Prediction

t

x(t)

v1

|v15|2 lobe switching

Figure 7.13: Decomposition of chaos into a linear system with forcing. A time
series x(t) is stacked into a Hankel matrix H. The SVD of H yields a hierarchy
of eigen-time series that produce a delay-embedded attractor. A best-fit linear
regression model is obtained on the delay coordinates v; the linear fit for the
first r − 1 variables is excellent, but the last coordinate vr is not well modeled
as linear. Instead, vr is an input that forces the first r − 1 variables. Rare forc-
ing events correspond to lobe switching in the chaotic dynamics. This architec-
ture is called the Hankel alternative view of Koopman (HAVOK) analysis, from
[126]. Modified from Brunton et al. [126].

in linear system identification (see Section 9.3) and singular spectrum analysis
(SSA) [120] in climate time-series analysis.

The low-rank approximation to (7.107) provides a data-driven measurement
system that is approximately invariant to the Koopman operator for states on
the attractor. By definition, the dynamics map the attractor into itself, making
it invariant to the flow. In other words, the columns of U form a Koopman-
invariant subspace. We may rewrite (7.107) with the Koopman operator K ,
K∆t:

H =

x(t1) Kx(t1) · · · Kp−1x(t1)
Kx(t1) K2x(t1) · · · Kpx(t1)

...
...

Kq−1x(t1) Kqx(t1) · · · Km−1x(t1)

 . (7.108)

The columns of (7.107) are well approximated by the first r columns of U. The
first r columns of V provide a time series of the magnitude of each of the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 363

columns of UΣ in the data. By plotting the first three columns of V, we ob-
tain an embedded attractor for the Lorenz system (see Fig. 7.13).

The connection between eigen-time-delay coordinates from (7.107) and the
Koopman operator motivates a linear regression model on the variables in V.
Even with an approximately Koopman-invariant measurement system, there
remain challenges to identifying a linear model for a chaotic system. A linear
model, however detailed, cannot capture multiple fixed points or the unpre-
dictable behavior characteristic of chaos with a positive Lyapunov exponent
[127]. Instead of constructing a closed linear model for the first r variables in
V, we build a linear model on the first r−1 variables and recast the last variable,
vr, as a forcing term:

d

dt
v(t) = Av(t) + Bvr(t), (7.109)

where v =
[
v1 v2 · · · vr−1

]T is a vector of the first r − 1 eigen-time-delay
coordinates. Other work has investigated the splitting of dynamics into deter-
ministic linear and chaotic stochastic dynamics [497].

In all of the examples explored in [126], the linear model on the first r − 1
terms is accurate, while no linear model represents vr. Instead, vr is an input
forcing to the linear dynamics in (7.109), which approximates the nonlinear
dynamics. The statistics of vr(t) are non-Gaussian, with long tails correspond-
ing to rare-event forcing that drives lobe switching in the Lorenz system; this
is related to rare-event forcing distributions observed and modeled by others
[472, 473, 618]. The forced linear system in (7.109) was discovered after ap-
plying the SINDy algorithm [132] to delay coordinates of the Lorenz system.
Continuing to develop Koopman on delay coordinates has significant promise
in the context of closed-loop feedback control, where it may be possible to ma-
nipulate the behavior of a chaotic system by treating vr as a disturbance.

In addition, the use of delay coordinates as intrinsic measurements for Koop-
man analysis suggests that Koopman theory may also be used to improve spa-
tially distributed sensor technologies. A spatial array of sensors, for example
the O(100) strain sensors on the wings of flying insects, may use phase delay
coordinates to provide nearly optimal embeddings to detect and control con-
vective structures (e.g., stall from a gust, leading-edge vortex formation and
convection, etc.).

History of Delay Embeddings for Dynamics

The Hankel matrix has been used for decades in system identification, for ex-
ample in the eigensystem realization algorithm (ERA) [358] and the singular
spectrum analysis (SSA) [120]. These early algorithms were developed specifi-
cally for linear systems, and although they were often applied to weakly non-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

364 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

linear systems, it was unclear how to interpret the resulting models and de-
compositions. Modern Koopman operator theory has provided a valuable new
perspective for how to interpret the results of these classical Hankel-based ap-
proaches when applied to nonlinear systems. Computing DMD on a Hankel
matrix was first introduced by Tu et al. [727] and was used by B. Brunton
et al. [123] in the field of neuroscience. The connection between the Hankel
matrix and the Koopman operator, along with the linear regression models in
(7.109), was established by Brunton et al. [126] in the Hankel alternative view
of Koopman (HAVOK) framework. Several subsequent works have provided
additional theoretical foundations for this approach [25, 167, 190, 328, 371].
Hirsh et al. [328] established connections between HAVOK and the Frenet–
Serret frame from differential geometry, motivating a more accurate compu-
tational modeling approach. The HAVOK approach is also often referred to
as delay-DMD [727] or Hankel-DMD [25]. A connection between delay embed-
dings and the Koopman operator was established as early as 2004 by Mezić and
Banaszuk [500], where a stochastic Koopman operator is defined and a statisti-
cal Takens theorem is proven. Other work has investigated the splitting of dy-
namics into deterministic linear and chaotic stochastic dynamics [497]. The use
of delay coordinates may be especially important for systems with long-term
memory effects and where the Koopman approach has recently been shown to
provide a successful analysis tool [685].

HAVOK Code for Lorenz System

Code 7.6 below generates a HAVOK model for the same Lorenz system data
generated in Code 7.2. Here we use ∆t = 0.01, mo = 10, and r = 10, although
the results would be more accurate for ∆t = 0.001, mo = 100, and r = 15.

Code 7.6: [MATLAB] HAVOK code for Lorenz data generated in Section 7.1.
%% EIGEN-TIME DELAY COORDINATES
stackmax = 10; % Number of shift-stacked rows
r=10; % Rank of HAVOK Model
H = zeros(stackmax,size(x,1)-stackmax);
for k=1:stackmax

H(k,:) = x(k:end-stackmax-1+k,1);
end
[U,S,V] = svd(H,’econ’); % Eigen delay coordinates

%% COMPUTE DERIVATIVES (4TH ORDER CENTRAL DIFFERENCE)
dV = zeros(length(V)-5,r);
for i=3:length(V)-3

for k=1:r
dV(i-2,k) = (1/(12*dt))*(-V(i+2,k)+8*V(i+1,k)-8*V(i

-1,k)+V(i-2,k));

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 365

end
end
% trim first and last two that are lost in derivative
V = V(3:end-3,1:r);

%% BUILD HAVOK REGRESSION MODEL ON TIME DELAY COORDINATES
Xi = V\dV;
A = Xi(1:r-1,1:r-1)’;
B = Xi(end,1:r-1)’;

Code 7.6: [Python] HAVOK code for Lorenz data generated in Section 7.1.
Eigen-time delay coordinates
stackmax = 10 # Number of shift-stacked rows
r = 10 # rank of HAVOK model
H = np.zeros((stackmax,x.shape[0]-stackmax))

for k in range(stackmax):
H[k,:] = x[k:-(stackmax-k),0]

U,S,VT = np.linalg.svd(H,full_matrices=0)
V = VT.T

Compute Derivatives (4th Order Central Difference)
dV = (1/(12*dt))*(-V[4:,:]+8*V[3:-1,:]-8*V[1:-3,:]+V[:-4,:])
trim first and last two that are lost in derivative
V = V[2:-2]

Build HAVOK Regression Model on Time Delay Coordinates
Xi = np.linalg.lstsq(V,dV,rcond=None)[0]
A = Xi[:(r-1),:(r-1)].T
B = Xi[-1,:(r-1)].T

Neural Networks for Koopman Embeddings

Despite the promise of Koopman embeddings, obtaining tractable representa-
tions has remained a central challenge. Recall that, even for relatively simple
dynamical systems, the eigenfunctions of the Koopman operator may be arbi-
trarily complex. Deep learning, which is well suited for representing arbitrary
functions, has recently emerged as a promising approach for discovering and
representing Koopman eigenfunctions [440, 465, 485, 540, 692, 747, 766], provid-
ing a data-driven embedding of strongly nonlinear systems into intrinsic linear
coordinates. In particular, the Koopman perspective fits naturally with the deep
autoencoder structure discussed in Chapter 6, where a few key latent variables
y = ϕ(x) are discovered to parameterize the dynamics. In a Koopman net-
work, an additional constraint is enforced so that the dynamics must be linear

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

366 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Input 𝒙𝒌

Autoencoder:

𝝋−𝟏 𝛗 𝒙𝒌 = 𝒙𝒌

Input 𝒙𝒌 𝒚𝒌 Output 𝒙𝒌

Encoder 𝒚 = 𝝋(𝒙) Decoder 𝒙 = 𝝋−𝟏(𝒚)

𝒚𝒌

Prediction: 𝝋−𝟏 𝐊𝛗 𝒙𝒌 = 𝒙𝐤+𝟏

𝒚𝒌+𝟏

Linearity: 𝐊𝛗 𝒙𝒌 = 𝝋(𝒙𝐤+𝟏)

Network outputs equivalent

𝒚𝒌 Output 𝒙𝒌+𝟏𝒚𝒌+𝟏

𝝋 𝝋−𝟏

𝑲 linear

…

…
…

…
…

…
…

…
…

…

𝒙𝒌 𝒚𝒌

𝝋

𝑲

𝒚𝒌+𝟏 𝒙𝒌+𝟏 𝒚𝒌+𝟏

𝝋

Figure 7.14: Deep neural network architecture used to identify Koopman eigen-
functions ϕ(x). The network is based on a deep autoencoder (top), which iden-
tifies intrinsic coordinates y = ϕ(x). Additional loss functions are included
to enforce linear dynamics in the autoencoder variables (bottom). Reproduced
with permission from Lusch et al. [465].

on these latent variables, forcing the functions ϕ(x) to be Koopman eigenfunc-
tions, as illustrated in Fig. 7.14. The constraint of linear dynamics is enforced by
the loss function ‖ϕ(xk+1)−Kϕ(xk)‖, where K is a matrix. In general, linearity
is enforced over multiple time-steps, so that a trajectory is captured by iterating
K on the latent variables. In addition, it is important to be able to map back to
physical variables x, which is why the autoencoder structure is favorable [465].
Variational autoencoders are also used for stochastic dynamical systems, such
as molecular dynamics, where the map back to physical configuration space
from the latent variables is probabilistic [485, 747].

For simple systems with a discrete eigenvalue spectrum, a compact repre-
sentation may be obtained in terms of a few autoencoder variables. However,
dynamical systems with continuous eigenvalue spectra defy low-dimensional
representations using many existing neural network or Koopman representa-
tions. Continuous spectrum dynamics are ubiquitous, ranging from the sim-
ple pendulum to nonlinear optics and broadband turbulence. For example, the
classical pendulum, given by

ẍ = − sin(ωx), (7.110)

exhibits a continuous range of frequencies, from ω to 0, as the amplitude of the
pendulum oscillation is increased. Thus, the continuous spectrum confounds
a simple description in terms of a few Koopman eigenfunctions [499]. Indeed,
away from the linear regime, an infinite Fourier sum is required to approximate
the shift in frequency.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 367

𝝋−𝟏

𝑲(λ)

λ

𝒙𝒌 𝒚𝒌 𝒚𝒌+𝟏 𝒙𝒌+𝟏

𝝋

Λ

Figure 7.15: Modified network architecture with auxiliary network to parame-
terize the continuous eigenvalue spectrum. A continuous eigenvalue λ enables
aggressive dimensionality reduction in the autoencoder, avoiding the need for
higher harmonics of the fundamental frequency that are generated by the non-
linearity. Reproduced with permission from Lusch et al. [465].

In a recent work by Lusch et al. [465], an auxiliary network is used to pa-
rameterize the continuously varying eigenvalue, enabling a network structure
that is both parsimonious and interpretable. This parameterized network is de-
picted schematically in Fig. 7.15 and illustrated on the simple pendulum in
Fig. 7.16. In contrast to other network structures, which require a large autoen-
coder layer to encode the continuous frequency shift with an asymptotic ex-
pansion in terms of harmonics of the natural frequency, the parameterized net-
work is able to identify a single complex conjugate pair of eigenfunctions with
a varying imaginary eigenvalue pair. If this explicit frequency dependence is
unaccounted for, then a high-dimensional network is necessary to account for
the shifting frequency and eigenvalues.

It is expected that neural network representations of dynamical systems,
and Koopman embeddings in particular, will remain a growing area of interest
in data-driven dynamics. Combining the representational power of deep learn-
ing with the elegance and simplicity of Koopman embeddings has the potential
to transform the analysis and control of complex systems.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

368 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

𝜃

𝑥1

𝑥2 = ሶ𝜃

𝑥1

𝑡

𝑡

𝑥2

p
o
te
n
ti
al

𝑥1 = 𝜃

I. II.A. III.

B.

C.

𝑥1

𝑥1

𝑦1

𝑥2

𝑥2

𝑦2

−0.09 0 0.09

Figure 7.16: Neural network embedding of the nonlinear pendulum, using the
parameterized network in Fig. 7.15. As the pendulum amplitude increases, the
frequency continuously changes (I). In the Koopman eigenfunction coordinates
(III), the dynamics become linear, given by perfect circles (II.C). Reproduced
with permission from Lusch et al. [?]

Suggested Reading

Texts

(1) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields,
by P. Holmes and J. Guckenheimer, 1983 [334].

(2) Dynamic mode decomposition: Data-driven modeling of complex sys-
tems, by J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, 2016
[422].

(3) Differential equations and dynamical systems, by L. Perko, 2013 [562].

Papers and reviews

(1) Distilling free-form natural laws from experimental data, by M. Schmidt
and H. Lipson, Science, 2009 [640].

(2) Discovering governing equations from data by sparse identification of
nonlinear dynamical systems, by S. L. Brunton, J. L. Proctor, and J. N.
Kutz, Proceedings of the National Academy of Sciences, 2016 [132].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 369

(3) On dynamic mode decomposition: Theory and applications, by J. H. Tu,
C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, Journal of
Computational Dynamics, 2014 [727].

(4) Hamiltonian systems and transformation in Hilbert space, by B. O. Koop-
man, Proceedings of the National Academy of Sciences, 1931 [402].

(5) Spectral properties of dynamical systems, model reduction and decom-
positions, by I. Mezić, Nonlinear Dynamics, 2005 [497].

(6) Data-driven model reduction and transfer operator approximation, by S.
Klus, F. Nuske, P. Koltai, H. Wu, I. Kevrekidis, C. Schutte, and F. Noe,
Journal of Nonlinear Dynamics, 2018 [392].

(7) Hidden physics models: Machine learning of nonlinear partial differen-
tial equations, by M. Raissi and G. E. Karniadakis, Journal of Computa-
tional Physics, 2018 [583].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

370 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

Homework

Exercise 7-1. Create a similar bifurcation diagram to the logistic map, but for
the hat map, given by

xk+1 =

{
βxk for xk ∈ [0, 1

2
),

β/2− βxk for xk ∈ [1
2
, 1].

For what values of β is this map chaotic?

Exercise 7-2. This exercise will explore how to compare trajectories of chaotic
systems. For chaotic systems, simply comparing the solutions becomes diffi-
cult, because even minuscule changes in the initial conditions can give rise
to entirely different solutions because of exponential growth of these small
changes in time. Instead, it is often more natural to compare the probability
distributions of the chaotic attractor.

(a) Generate two trajectories with nearby initial conditions, within an initial
distance of 1× 10−6, for the Lorenz system with the standard parameters.
Plot these two time series. Compute the error between the two trajectories
as a function of time and explain the trend.

(b) For a given point on the attractor, find the perturbation direction that
gives the largest error for T = 1 between the two trajectories.

(c) Now, we will compare the distribution of these trajectories using the Kullback–
Leibler (KL) divergence, also known as the relative entropy. In this simple
example, we will only compare the x coordinate of the two trajectories.
The KL divergence between two discrete distributions P (x) and Q(x) is
given by

DKL(P,Q) =
∑

x∈X
P (x) log

(
P (x)

Q(x)

)
, (7.111)

where X is the set of discrete states. For our Lorenz example, we will
compute a binned histogram of the x variable from −20 to 20 with bins
of width 0.2, and this will be our discrete distribution. Compute the KL
divergence of the two trajectories as a function of time. How does this
trend differ from the error plot above?

(d) Now generate two trajectories starting from the same initial condition but
with different parameters of the Lorenz system. Compute the KL diver-
gence of these two solutions.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 371

Exercise 7-3. This exercise will explore the finite-time Lyapunov exponent (FTLE)
as a measure of local stretching between neighboring particles in a chaotic dy-
namical system.

(a) First, we will generate a set of approximately equally spaced points on
the Lorenz attractor. Generate a long-time trajectory (at least T = 100) for
the Lorenz system, starting from a standard initial condition and using
standard parameters. Discard the first t = 1 portion of the trajectory. Cre-
ate a library of points, initialized with the first point on the trajectory after
t = 1. For each subsequent point on the trajectory, add it to the library if
and only if it is a distance of greater than δ = 0.1 from all other points in
the library. This will be a sampling of the attractor.

(b) Now, for each point x0 in this set, find the nearest point x′ on the attractor
and compute the difference xδ = x0−x′. Simulate x0 and xε = x0 + εxδ for
T = 1, using ε = 0.01. Repeat this for every point on the attractor. For each
point, compute the finite-time Lyapunov exponent using the following
formula:

σ =
1

T
log

(‖xε(T)− x0(T)‖2

ε

)
.

Plot each point on the attractor, color-coded by the FTLE σ. Which points
are the most sensitive? Is this consistent with your intuition?

(c) Repeat this experiment for various ε and T and explain the results.

(d) Finally, it is possible to create a proxy for this sensitivity using an adaptive
step integrator, such as rk45. Simulate a long-time trajectory with a very
small minimum ∆t and a small error tolerance. Plot the trajectory color-
coded by the ∆t selected by the integrator. Is this consistent with the FTLE
plots above?

Exercise 7-4. This exercise will test the data requirements for identifying an
accurate SINDy model for the Lorenz system, following the work of Champion
et al. [167]. First, we will use clean data without any measurement noise.

(a) Generate a long trajectory with a fine sampling rate of ∆t = 0.0001; dis-
card the first t = 1 of the data. Use SINDy to generate models using an
increasing length of data T . At what T is it possible to identify the cor-
rect Lorenz mode? Plot the data up until T . Do the results surprise you?
(Explain why.)

(b) Now, repeat this experiment for different sampling rates from t = 0.0001
to 0.1. How does the minimum data length T change? How does the num-
ber of samples T/∆t change?

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

372 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

(c) Repeat the experiment with small additive Gaussian noise on the trajec-
tory. With noise, repeat the identification for several noise realizations to
obtain an average success rate. Also try different noise magnitudes. Re-
peat the main figure in the Champion et al. [167] paper.

Exercise 7-5. Generate and plot a trajectory for the Rossler system, given by

ẋ = −y − z,
ẏ = x+ ay,

ż = b+ z(x− c),

with parameters a = 0.2, b = 0.2, and c = 14. First, let us marvel at how a
chaotic system can be generated with a single quadratic term (the xz term in
the third equation). Use this trajectory to identify a SINDy model. Explore dif-
ferent sparsifying thresholds and different trajectory lengths. Now add a small
amount of noise to the trajectory and re-identify the model, again with differ-
ent thresholds and lengths. When there is sufficiently long trajectory data, what
happens when the threshold is too large? When it is too small?

Exercise 7-6. This example will explore and compare the SINDy method and
genetic programming to learn the equations of motion for a challenging system.

(a) Derive the equations of motion for a double pendulum and simulate for
an initial condition near the double-inverted configuration.

(b) Use this data to generate a model using the SINDy method as in Kaheman
et al. [364].

(c) Use this data to generate a model using the genetic programming ap-
proach as in Schmidt and Lipson [640].

(d) Repeat the above experiments with and without friction. Compare the
results and discuss.

(e) Try using both approaches to learn conserved quantities for the double
pendulum system in the absence of friction. Note that you will need to
use a very accurate integrator to avoid numerical issues due to chaos.

Exercise 7-7. This exercise will explore identifying a PDE using PDE-FIND
based on data from the Korteweg–de Vries (KdV) system

ut + uxxx − 6uux = 0.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 373

This system gives rise to coherent traveling wave solutions, known as solitons,
that retain their shape as they travel at a constant wave speed, despite the non-
linearity in the system. In general, a soliton solution will take the form

u(x, t) = − c
2

sech2

(√
c

2
(x− ct)

)

for an arbitrary positive wave speed c. Notice that the wave speed c is linked
to the amplitude and width of the wave.

(a) Generate data by initializing a single-soliton solution

u(x, 0) = −1
2
sech2(1

2
(x)),

with a wave speed corresponding to c = 1 above. Try to identify a PDE
model using PDE-FIND based on this data. What is the sparsest model
that supports the data?

(b) Next, use data beginning at two initial conditions. The first initial condi-
tion is the one above with c = 1, and the second initial condition is a soli-
ton solution with c = 4. Concatenate this data and identify a PDE model
using PDE-FIND. What is the sparsest model that supports the data?

(c) Discuss the two models that are identified depending on the initial data,
and explain any differences.

Exercise 7-8. This exercise will explore the connection between DMD and hid-
den Markov models (HMMs). A Markov model describes the probabilities of
transitioning from one of finitely many states to another. Typically this informa-
tion is encoded in a transition probability matrix P that defines a probabilistic
dynamical system

xk+1 = Pxk.

The vector xk ∈ Rn is a vector of probabilities3 of being in one of n states at
time-step k. One way to simulate a Markov model forward in time is to evolve
the probabilities in x until they reach a steady state (given by the eigenvector
of P corresponding to unit eigenvalue). Alternatively, it is possible to make
an observation at each time-step k, whereby the state xk+1 is chosen based on
the probability vector Pxk so that xk+1 has a 1 in exactly one position and 0s
everywhere else. This technically corresponds to a modified system

xk+1 = O(Pxk),

3Note that this is the transpose of the Russian standard notation for Markov models to be
consistent with the rest of the book.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

374 CHAPTER 7. DATA-DRIVEN DYNAMICAL SYSTEMS

where the operator O is the observation operator that samples from the proba-
bility distribution given by Pxk.

In this example, consider a Markov process determining a weather model for
the transition between sunny, rainy, or cloudy weather, which are the three
states in x ∈ R3. The transition probability matrix is given by

P =

0 0.25 0.25
0.40 0.50 0.25
0.60 0.25 0.50

 .

First, what is the long-time expected probability distribution?

Now, simulate a random instance of this process, using the observation oper-
ator O at every step. Create a data matrix using this process, and identify a
DMD model. What is the structure of the model? Does it agree with the tran-
sition matrix P? Does it satisfy conservation of probability, meaning that the
columns each sum to 1?

Exercise 7-9. This exercise will develop a probabilistic model for the chaotic
dynamics in the Lorenz system, following the seminal paper by Kaiser et al.
[367] on cluster reduced-order modeling (CROM).

(a) First, generate a long trajectory of the Lorenz system, starting with the
standard parameters and integrating until T = 500 with a time-step of
∆t = 0.005. Next, use k-means clustering on the data to segment it into
k = 10 clusters and plot the data, color-coded by which cluster it belongs
to.

(b) The CROM approach creates a k × k Markov model P for the probability
of transitioning from one cluster to another. To compute this transition
matrix, begin by creating a k × k matrix initialized with all zeros. Next,
go through the trajectory data, and for every point keep track of which
cluster the point belongs to and what cluster the next point belongs to. If
the current point belongs to cluster j and the next point belongs to cluster
i, add a 1 to the Pij location in the matrix. After all transitions from the
entire trajectory have been recorded, normalize each column of P by the
sum of the column, so that all columns add up to 1.

(c) Now simulate the evolution of the CROM model starting with the final
data point at T = 500 and plot the evolution. How does this compare with
a trajectory of the Lorenz system initialized at this same location?

(d) Reproduce Figs. 4 and 5 from the Kaiser et al. [367] paper and explain
these results.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

7.5. DATA-DRIVEN KOOPMAN ANALYSIS 375

(e) Now, repeat the above with different cluster sizes k. Do the results im-
prove or worsen for fewer clusters? For more clusters?

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 8

Linear Control Theory

The focus of this book has largely been on characterizing complex systems
through dimensionality reduction, sparse sampling, and dynamical systems
modeling. However, an overarching goal for many systems is the ability to ac-
tively manipulate their behavior for a given engineering objective. The study
and practice of manipulating dynamical systems is broadly known as control
theory, and it is one of the most successful fields at the interface of applied
mathematics and practical engineering. Control theory is inseparable from data
science, as it relies on sensor measurements (data) obtained from a system to
achieve a given objective. In fact, control theory deals with living data, as suc-
cessful application modifies the dynamics of the system, thus changing the
characteristics of the measurements. Control theory forces the reader to con-
front reality, as simplifying assumptions and model approximations are tested.

Control theory has helped shape the modern technological and industrial
landscape. Examples abound, including cruise control in automobiles, posi-
tion control in construction equipment, fly-by-wire autopilots in aircraft, in-
dustrial automation, packet routing in the Internet, commercial HVAC (heat-
ing, ventilation, and air-conditioning) systems, stabilization of rockets, and PID
(proportional–integral–derivative) temperature and pressure control in mod-
ern espresso machines, to name only a few of the many applications. In the
future, control will be increasingly applied to high-dimensional, strongly non-
linear and multi-scale problems, such as turbulence, neuroscience, finance, epi-
demiology, autonomous robots, and self-driving cars. In these future applica-
tions, data-driven modeling and control will be vitally important; this is the
subject of Chapters 7 and 10.

This chapter will introduce the key concepts from closed-loop feedback con-
trol. The goal is to build intuition for how and when to use feedback con-
trol, motivated by practical real-world challenges. Most of the theory will be
developed for linear systems, where a wealth of powerful techniques exist
[222, 665]. This theory will then be demonstrated on simple and intuitive ex-
amples, such as to develop a cruise controller for an automobile or to stabilize

376

377

an inverted pendulum on a moving cart. Code will be provided in MATLAB
and Python. Historically, control was typically implemented in MATLAB be-
cause of the extensive control toolboxes and functionality. However, advanced
control is now possible in Python through the Python Control Systems Library
(python-control), available at https://python-control.readthedocs.
io/. This toolbox provides, among other functionality, Python wrappers for
the same SLICOT optimization libraries [77] that are used in MATLAB’s con-
trol toolboxes. In all of the Python codes, it is assumed that the following is
added to the preamble:

from control.matlab import *
import slycot

This will make the Python code very similar to, and in some cases identical
to, the corresponding MATLAB code. If code is not duplicated for MATLAB
and Python, then it may be assumed that the python-control implementation is
nearly identical.

Types of Control

There are many ways to manipulate the behavior of a dynamical system, and
these control approaches are organized schematically in Fig. 8.1. Passive control
does not require input energy, and, when sufficient, it is desirable because of its
simplicity, reliability, and low cost. For example, stop signs at a traffic intersec-
tion regulate the flow of traffic. Active control requires input energy, and these
controllers are divided into two broad categories based on whether or not sen-
sors are used to inform the controller. In the first category, open-loop control
relies on a pre-programmed control sequence; in the traffic example, signals
may be pre-programmed to regulate traffic dynamically at different times of
day. In the second category, active control uses sensors to inform the control
law. Disturbance feedforward control measures exogenous disturbances to the
system and then feeds this into an open-loop control law; an example of feed-
forward control would be to pre-emptively change the direction of the flow of
traffic near a stadium when a large crowd of people are expected to leave. Fi-
nally, the last category is closed-loop feedback control, which will be the main
focus of this chapter. Closed-loop control uses sensors to measure the system
directly and then shapes the control in response to whether the system is actu-
ally achieving the desired goal. Many modern traffic systems have smart traffic
lights with a control logic informed by inductive sensors in the roadbed that
measure traffic density.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://python-control.readthedocs.io/
https://python-control.readthedocs.io/

378 CHAPTER 8. LINEAR CONTROL THEORY

pas
siv

e

no se
nso

rs
op

en
-lo

op

dist
urb

an
ce

fee
dfo

rw
ar

d

closed-loop

feedback

sensor-based

active
Figure 8.1: Schematic illustrating the various types of control. Most of this chap-
ter will focus on closed-loop feedback control.

8.1 Closed-Loop Feedback Control

The main focus of this chapter is closed-loop feedback control, which is the
method of choice for systems with uncertainty, instability, and/or external dis-
turbances. Figure 8.2 depicts the general feedback control framework, where
sensor measurements, y, of a system are fed back into a controller, which then
decides on an actuation signal, u, to manipulate the dynamics and provide ro-
bust performance despite model uncertainty and exogenous disturbances. In
all of the examples discussed in this chapter, the vector of exogenous distur-
bances may be decomposed as w =

[
wT
d wT

n wT
r

]T , where wd are distur-
bances to the state of the system, wn is measurement noise, and wr is a reference
trajectory that should be tracked by the closed-loop system.

Mathematically, the system and measurements are typically described by a
dynamical system:

d

dt
x = f(x,u,wd), (8.1a)

y = g(x,u,wn). (8.1b)

The goal is to construct a control law,

u = k(y,wr), (8.2)

that minimizes a cost function,

J , J(x,u,wr). (8.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.1. CLOSED-LOOP FEEDBACK CONTROL 379

System

Controller

Disturbances
w

Cost
J

Sensors
y

Actuators
u

Figure 8.2: Standard framework for feedback control. Measurements of the sys-
tem, y(t), are fed back into a controller, which then decides on the appropriate
actuation signal u(t) to control the system. The control law is designed to mod-
ify the system dynamics and provide good performance, quantified by the cost
J , despite exogenous disturbances and noise in w. The exogenous input w may
also include a reference trajectory wr that should be tracked.

Thus, modern control relies heavily on techniques from optimization [101]. In
general, the controller in (8.2) will be a dynamical system, rather than a static
function of the inputs. For example, the Kalman filter in Section 8.5 dynamically
estimates the full state x from measurements of u and y. In this case, the control
law will become u = k(y, x̂,wr), where x̂ is the full-state estimate.

To motivate the added cost and complexity of sensor-based feedback con-
trol, it is helpful to compare with open-loop control. For reference tracking
problems, the controller is designed to steer the output of a system towards
a desired reference output value wr, thus minimizing the error ε = y − wr.
Open-loop control, shown in Fig. 8.3, uses a model of the system to design
an actuation signal u that produces the desired reference output. However, this
pre-planned strategy cannot correct for external disturbances to the system and
is fundamentally incapable of changing the dynamics. Thus, it is impossible to
stabilize an unstable system, such as an inverted pendulum, with open-loop
control, since the system model would have to be known perfectly and the
system would need to be perfectly isolated from disturbances. Moreover, any
model uncertainty will directly contribute to open-loop tracking error.

In contrast, closed-loop feedback control, shown in Fig. 8.4, uses sensor
measurements of the system to inform the controller about how the system
is actually responding. These sensor measurements provide information about
unmodeled dynamics and disturbances that would degrade the performance

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

380 CHAPTER 8. LINEAR CONTROL THEORY

Controller System
wr u + y

wd wn

+

Figure 8.3: Open-loop control diagram. Given a desired reference signal wr, the
open-loop control law constructs a control protocol u to drive the system based
on a model. External disturbances (wd) and sensor noise (wn), as well as un-
modeled system dynamics and uncertainty, are not accounted for and degrade
performance.

Controller System
wr + ε u + y

−

Feedback signal

wd wn

+

Figure 8.4: Closed-loop feedback control diagram. The sensor signal y is fed
back and subtracted from the reference signal wr, providing information about
how the system is responding to actuation and external disturbances. The con-
troller uses the resulting error ε to determine the correct actuation signal u
for the desired response. Feedback is often able to stabilize unstable dynam-
ics while effectively rejecting disturbances wd and attenuating noise wn.

in open-loop control. Further, with feedback it is often possible to modify and
stabilize the dynamics of the closed-loop system, something that is not pos-
sible with open-loop control. Thus, closed-loop feedback control is often able
to maintain high-performance operation for systems with unstable dynamics,
model uncertainty, and external disturbances.

Examples of the Benefits of Feedback Control

To summarize, closed-loop feedback control has several benefits over open-
loop control:

• It may be possible to stabilize an unstable system.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.1. CLOSED-LOOP FEEDBACK CONTROL 381

• It may be possible to compensate for external disturbances.

• It may be possible to correct for unmodeled dynamics and model uncer-
tainty.

These issues are illustrated in the following two simple examples.

Inverted Pendulum. Consider the unstable inverted pendulum equations,
which will be derived later in Section 8.2. The linearized equations are

d

dt

[
x1

x2

]
=

[
0 1
g/L d

] [
x1

x2

]
+

[
0
1

]
u, (8.4)

where x1 = θ, x2 = θ̇, u is a torque applied to the pendulum arm, g is gravita-
tional acceleration, L is the length of the pendulum arm, and d is damping. We
may write this system in standard form as

d

dt
x = Ax + Bu.

If we choose constants so that the natural frequency is ωn =
√
g/L = 1 and

d = 0, then the system has eigenvalues λ = ±1, corresponding to an unstable
saddle-type fixed point.

No open-loop control strategy can change the dynamics of the system, given
by the eigenvalues of A. However, with full-state feedback control, given by
u = −Kx, the closed-loop system becomes

d

dt
x = Ax + Bu = (A−BK)x.

Choosing K =
[
4 4

]
, corresponding to a control law u = −4x1−4x2 = −4θ−4θ̇,

the closed-loop system (A−BK) has stable eigenvalues λ = −1 and λ = −3.
Determining when it is possible to change the eigenvalues of the closed-

loop system, and determining the appropriate control law K to achieve this,
will be the subject of future sections.

Cruise Control. To appreciate the ability of closed-loop control to compensate
for unmodeled dynamics and disturbances, we will consider a simple model of
cruise control in an automobile. Let u be the rate of fuel fed into the engine, and
let y be the car’s speed. Neglecting transients, a crude model1 is

y = u. (8.5)

1A more realistic model would have acceleration dynamics, so that ẋ = −x+ u and y = x.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

382 CHAPTER 8. LINEAR CONTROL THEORY

Thus, if we double the gas input, we double the automobile’s speed.
Based on this model, we may design an open-loop cruise controller to track

a reference speed wr by simply commanding an input of u = wr. However, an
incorrect automobile model (i.e., in actuality y = 2u), or external disturbances,
such as rolling hills (i.e., if y = u + sin(t)), are not accounted for in the simple
open-loop design.

In contrast, a closed-loop control law, based on measurements of the speed,
is able to compensate for unmodeled dynamics and disturbances. Consider the
closed-loop control law u = K(wr − y), so that gas is increased when the mea-
sured velocity is too low, and decreased when it is too high. Then if the dynam-
ics are actually y = 2u instead of y = u, the open-loop system will have 50%
steady-state tracking error, while the performance of the closed-loop system
can be significantly improved for large K:

y = 2K(wr − y) =⇒ (1 + 2K)y = 2Kwr =⇒ y =
2K

1 + 2K
wr. (8.6)

For K = 50, the closed-loop system only has 1% steady-state tracking error.
Similarly, an added disturbance wd will be attenuated by a factor of 1/(2K + 1).

As a concrete example, consider a reference tracking problem with a de-
sired reference speed of 60 mph miles per hour). The model is y = u, and the
true system is y = 0.5u. In addition, there is a disturbance in the form of rolling
hills that increase and decrease the speed by ±10 mph at a frequency of 0.5 Hz.
An open-loop controller is compared with a closed-loop proportional controller
with K = 50 in Fig. 8.5 and Code 8.1. Although the closed-loop controller has
significantly better performance, we will see later that a large proportional gain
may come at the cost of robustness. Adding an integral term will improve per-
formance.

Code 8.1: [MATLAB] Compare open-loop and closed-loop cruise control.
t = 0:.01:10; % time

wr = 60*ones(size(t)); % reference speed
d = 10*sin(pi*t); % disturbance

aModel = 1; % y = aModel*u
aTrue = .5; % y = aTrue*u

uOL = wr/aModel; % Open-loop u based on model
yOL = aTrue*uOL + d; % Open-loop response

K = 50; % control gain, u=K(wr-y);
yCL = aTrue*K/(1+aTrue*K)*wr + d/(1+aTrue*K);

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.2. LINEAR TIME-INVARIANT SYSTEMS 383

0 1 2 3 4 5 6 7 8 9 10

Time

-10

0

10

20

30

40

50

60
S

p
e

e
d

Reference

Disturbance

Open Loop

Closed Loop

Figure 8.5: Open-loop versus closed-loop cruise control.

Code 8.1: [Python] Compare open-loop and closed-loop cruise control.
t = np.arange(0,10,0.01) # time

wr = 60 * np.ones_like(t) # reference speed
d = 10*np.sin(np.pi*t) # disturbance

aModel = 1 # y = aModel*u
aTrue = 0.5 # y = aTrue*u

uOL = wr/aModel # Open-loop u based on model
yOL = aTrue*uOL + d # Open-loop response

K = 50 # control gain, u=K(wr-y)
yCL = (aTrue*K/(1+aTrue*K))*wr + d/(1+aTrue*K)

8.2 Linear Time-Invariant Systems

The most complete theory of control has been developed for linear systems
[30, 222, 665]. Linear systems are generally obtained by linearizing a nonlinear
system about a fixed point or a periodic orbit. However, instability may quickly
take a trajectory far away from the fixed point. Fortunately, an effective stabi-
lizing controller will keep the state of the system in a small neighborhood of the
fixed point where the linear approximation is valid. For example, in the case of
the inverted pendulum, feedback control may keep the pendulum stabilized in
the vertical position where the dynamics behave linearly.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

384 CHAPTER 8. LINEAR CONTROL THEORY

Linearization of Nonlinear Dynamics

Given a nonlinear input–output system

d

dt
x = f(x,u), (8.7a)

y = g(x,u), (8.7b)

it is possible to linearize the dynamics near a fixed point (x̄, ū) where f(x̄, ū) = 0.
For small ∆x = x − x̄ and ∆u = u − ū, the dynamics f may be expanded in a
Taylor series about the point (x̄, ū) as

f(x̄ + ∆x, ū + ∆u) = f(x̄, ū) +
df

dx

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

A

·∆x +
df

du

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

B

·∆u + · · · . (8.8)

Similarly, the output equation g may be expanded as

g(x̄ + ∆x, ū + ∆u) = g(x̄, ū) +
dg

dx

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

C

·∆x +
dg

du

∣∣∣∣
(x̄,ū)︸ ︷︷ ︸

D

·∆u + · · · . (8.9)

For small displacements around the fixed point, the higher-order terms are neg-
ligibly small. Dropping the ∆ and shifting to a coordinate system where x̄, ū,
and ȳ are at the origin, the linearized dynamics may be written as

d

dt
x = Ax + Bu, (8.10a)

y = Cx + Du. (8.10b)

Note that we have neglected the disturbance and noise inputs, wd and wn, re-
spectively; these will be added back in the discussion on Kalman filtering in
Section 8.5.

Unforced Linear System

In the absence of control (i.e., u = 0), and with measurements of the full state
(i.e., y = x), the dynamical system in (8.10) becomes

d

dt
x = Ax. (8.11)

The solution x(t) is given by

x(t) = eAtx(0), (8.12)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.2. LINEAR TIME-INVARIANT SYSTEMS 385

where the matrix exponential is defined by

eAt = I + At+
A2t2

2!
+

A3t3

3!
+ · · · . (8.13)

The solution in (8.12) is determined entirely by the eigenvalues and eigenvec-
tors of the matrix A. Consider the eigendecomposition of A:

AT = TΛ. (8.14)

In the simplest case, Λ is a diagonal matrix of distinct eigenvalues and T is a
matrix whose columns are the corresponding linearly independent eigenvec-
tors of A. For repeated eigenvalues, Λ may be written in Jordan form, with
entries above the diagonal for degenerate eigenvalues of multiplicity ≥ 2; the
corresponding columns of T will be generalized eigenvectors.

In either case, it is easier to compute the matrix exponential eΛt than eAt. For
diagonal Λ, the matrix exponential is given by

eΛt =

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
0 0 · · · eλnt

 . (8.15)

In the case of a non-trivial Jordan block in Λ with entries above the diago-
nal, simple extensions exist related to nilpotent matrices (for details, see Perko
[562]).

Rearranging the terms in (8.14), we find that it is simple to represent powers
of A in terms of the eigenvectors and eigenvalues:

A = TΛT−1, (8.16a)

A2 = (TΛT−1)(TΛT−1) = TΛ2T−1, (8.16b)
...

Ak = (TΛT−1)(TΛT−1) · · · (TΛT−1) = TΛkT−1. (8.16c)

Finally, substituting these expressions into (8.13) yields

eAt = eTΛT−1t = TT−1 + TΛT−1t+
TΛ2T−1t2

2!
+

TΛ3T−1t3

3!
+ · · · (8.17a)

= T

[
I + Λt+

Λ2t2

2!
+

Λ3t3

3!
+ · · ·

]
T−1 (8.17b)

= TeΛtT−1. (8.17c)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

386 CHAPTER 8. LINEAR CONTROL THEORY

Thus, we see that it is possible to compute the matrix exponential efficiently
in terms of the eigendecomposition of A. Moreover, the matrix of eigenvectors
T defines a change of coordinates that dramatically simplifies the dynamics:

x = Tz =⇒ ż = T−1ẋ = T−1Ax = T−1ATz =⇒ ż = Λz. (8.18)

In other words, changing to eigenvector coordinates, the dynamics become di-
agonal. Combining (8.12) with (8.17c), it is possible to write the solution x(t)
as

x(t) = T eΛt T−1x(0)︸ ︷︷ ︸
z(0)︸ ︷︷ ︸

z(t)︸ ︷︷ ︸
x(t)

. (8.19)

In the first step, T−1 maps the initial condition in physical coordinates, x(0),
into eigenvector coordinates, z(0). The next step advances these initial condi-
tions using the diagonal update eΛt, which is considerably simpler in eigen-
vector coordinates z. Finally, multiplying by T maps z(t) back to physical coor-
dinates, x(t).

In addition to making it possible to compute the matrix exponential, and
hence the solution x(t), the eigendecomposition of A is even more useful to
understand the dynamics and stability of the system. We see from (8.19) that
the only time-varying portion of the solution is eΛt. In general, these eigenval-
ues λ = a + ib may be complex numbers, so that the solutions are given by
eλt = eat(cos(bt) + i sin(bt)). Thus, if all of the eigenvalues λk have negative real
part (i.e., Re(λ) = a < 0), then the system is stable, and solutions all decay to
x = 0 as t → ∞. However, if even a single eigenvalue has positive real part,
then the system is unstable and will diverge from the fixed point along the
corresponding unstable eigenvector direction. Any random initial condition is
likely to have a component in this unstable direction, and, moreover, distur-
bances will likely excite all eigenvectors of the system.

Forced Linear System

With forcing, and for zero initial condition, x(0) = 0, the solution to (8.10a) is

x(t) =

∫ t

0

eA(t−τ)Bu(τ) dτ , eAtB ∗ u(t). (8.20)

The control input u(t) is convolved with the kernel eAtB. With an output y =
Cx, we have y(t) = CeAtB ∗ u(t). This convolution is illustrated in Fig. 8.6 for
a single-input, single-output (SISO) system in terms of the impulse response
g(t) = CeAtB =

∫ t
0

CeA(t−τ)Bδ(τ) dτ given a Dirac delta input u(t) = δ(t).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.2. LINEAR TIME-INVARIANT SYSTEMS 387

Impulse response

t0 g(t− t0)

τ1 τ2 τ3 t

Input
u(t)

τ1

τ2

τ3

g(t− τ1)

g(t− τ2)

g(t− τ3)

y(t) = g ∗ u

Output

Figure 8.6: Convolution for a single-input, single-output (SISO) system.

Discrete-Time Systems

In many real-world applications, systems are sampled at discrete instants in
time. Thus, digital control systems are typically formulated in terms of discrete-
time dynamical systems:

xk+1 = Adxk + Bduk, (8.21a)
yk = Cdxk + Dduk, (8.21b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

388 CHAPTER 8. LINEAR CONTROL THEORY

eλ∆t

C C

Continuous time Discrete time

|λ| = 1

Figure 8.7: The matrix exponential defines a conformal map on the complex
plane, mapping stable eigenvalues in the left half-plane into eigenvalues inside
the unit circle.

where xk = x(k∆t). The system matrices in (8.21) can be obtained from the
continuous-time system in (8.10) as

Ad = eA∆t, (8.22a)

Bd =

∫ ∆t

0

eAτB dτ, (8.22b)

Cd = C, (8.22c)
Dd = D. (8.22d)

The stability of the discrete-time system in (8.21) is still determined by the
eigenvalues of Ad, although now a system is stable if and only if all discrete-
time eigenvalues are inside the unit circle in the complex plane. Thus, exp(A∆t)
defines a conformal mapping on the complex plane from continuous time to
discrete time, where eigenvalues in the left half-plane map to eigenvalues in-
side the unit circle.

Example: Inverted Pendulum

Consider the inverted pendulum in Fig. 8.8 with a torque input u at the base.
The equation of motion, derived using the Euler–Lagrange equations,2 is

θ̈ = − g
L

sin(θ) + u. (8.23)

2The Lagrangian is L = (m/2)L2θ̇2 − mgL cos(θ), and the Euler–Lagrange equation is
(d/dt)∂L/∂θ̇ − ∂L/∂θ = τ , where τ is the input torque.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.3. CONTROLLABILITY AND OBSERVABILITY 389

g
L

m

θ

u = τ

Figure 8.8: Schematic of inverted pendulum system.

Introducing the state x, given by the angular position and velocity, we can write
this second-order differential equation as a system of first-order equations:

x =

[
x1

x2

]
=

[
θ

θ̇

]
=⇒ d

dt

[
x1

x2

]
=

[
x2

−(g/L) sin(x1) + u

]
. (8.24)

Taking the Jacobian of f(x,u) yields

df

dx
=

[
0 1

−(g/L) cos(x1) 0

]
,

df

du
=

[
0
1

]
. (8.25)

Linearizing at the pendulum-up (x1 = π, x2 = 0) and pendulum-down (x1 = 0,
x2 = 0) equilibria gives

d

dt

[
x1

x2

]
=

[
0 1
g/L 0

] [
x1

x2

]
+

[
0
1

]
u

︸ ︷︷ ︸
pendulum up, λ=±

√
g/L

and
d

dt

[
x1

x2

]
=

[
0 1
−g/L 0

] [
x1

x2

]
+

[
0
1

]
u

︸ ︷︷ ︸
pendulum down, λ=±i

√
g/L

.

Thus, we see that the down position is a stable center with eigenvalues λ =

±i
√
g/L corresponding to oscillations at a natural frequency of

√
g/L. The

pendulum-up position is an unstable saddle with eigenvalues λ = ±
√
g/L.

8.3 Controllability and Observability

A natural question arises in linear control theory: To what extent can closed-
loop feedback u = −Kx manipulate the behavior of the system in (8.10a)? We
already saw in Section 8.1 that it was possible to modify the eigenvalues of
the unstable inverted pendulum system via closed-loop feedback, resulting in
a new system matrix (A −BK) with stable eigenvalues. This section will pro-
vide concrete conditions on when and how the system dynamics may be ma-
nipulated through feedback control. The dual question, of when it is possible
to estimate the full state x from measurements y, will also be addressed.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

390 CHAPTER 8. LINEAR CONTROL THEORY

Controllability

The ability to design the eigenvalues of the closed-loop system with the choice
of K relies on the system in (8.10a) being controllable. The controllability of a
linear system is determined entirely by the column space of the controllability
matrix C:

C =
[
B AB A2B · · · An−1B

]
. (8.26)

If the matrix C has n linearly independent columns, so that it spans all of Rn,
then the system in (8.10a) is controllable. The span of the columns of the control-
lability matrix C forms a Krylov subspace that determines which state vector
directions in Rn may be manipulated with control. Thus, in addition to control-
lability implying arbitrary eigenvalue placement, it also implies that any state
ξ ∈ Rn is reachable in a finite time with some actuation signal u(t).

The following three conditions are equivalent:

(a) Controllability. The span of C is Rn. The matrix C may be generated by

>> ctrb(A,B)

and the rank may be tested to see if it is equal to n by

>> rank(ctrb(A,B))

In Python, the rank is computed by

>>> numpy.linalg.matrix_rank(ctrb(A,B))

(b) Arbitrary eigenvalue placement. It is possible to design the eigenvalues of
the closed-loop system through choice of feedback u = −Kx:

d

dt
x = Ax + Bu = (A−BK)x. (8.27)

Given a set of desired eigenvalues, the gain K can be determined by

>> K = place(A,B,neweigs)

Designing K for the best performance will be discussed in Section 8.4.

(c) Reachability of Rn. It is possible to steer the system to any arbitrary state
x(t) = ξ ∈ Rn in a finite time with some actuation signal u(t).

Note that reachability also applies to open-loop systems. In particular, if a di-
rection ξ is not in the span of C, then it is impossible for control to push in this
direction in either open-loop or closed-loop systems.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.3. CONTROLLABILITY AND OBSERVABILITY 391

Examples. The notion of controllability is more easily understood by investi-
gating a few simple examples. First, consider the following system:

d

dt

[
x1

x2

]
=

[
1 0
0 2

] [
x1

x2

]
+

[
0
1

]
u =⇒ C =

[
0 0
1 2

]
. (8.28)

This system is not controllable, because the controllability matrix C consists of
two linearly dependent vectors and does not span R2. Even before checking
the rank of the controllability matrix, it is easy to see that the system will not
be controllable since the states x1 and x2 are completely decoupled and the
actuation input u only affects the second state.

Modifying this example to include two actuation inputs makes the system
controllable by increasing the control authority:

d

dt

[
x1

x2

]
=

[
1 0
0 2

] [
x1

x2

]
+

[
1 0
0 1

] [
u1

u2

]
=⇒ C =

[
1 0 1 0
0 1 0 2

]
. (8.29)

This fully actuated system is clearly controllable because x1 and x2 may be inde-
pendently controlled with u1 and u2. The controllability of this system is con-
firmed by checking that the columns of C do span R2.

The most interesting cases are less obvious than these two examples. Con-
sider the system

d

dt

[
x1

x2

]
=

[
1 1
0 2

] [
x1

x2

]
+

[
0
1

]
u =⇒ C =

[
0 1
1 2

]
. (8.30)

This two-state system is controllable with a single actuation input because the
states x1 and x2 are now coupled through the dynamics. Similarly,

d

dt

[
x1

x2

]
=

[
1 0
0 2

] [
x1

x2

]
+

[
1
1

]
u =⇒ C =

[
1 1
1 2

]
(8.31)

is controllable even though the dynamics of x1 and x2 are decoupled, because
the actuator B =

[
1 1

]T is able to simultaneously affect both states and they
have different timescales.

We will see in Section 8.3 that controllability is intimately related to the
alignment of the columns of B with the eigenvector directions of A.

Observability

Mathematically, observability of the system in (8.10) is nearly identical to con-
trollability, although the physical interpretation differs somewhat. A system is
observable if it is possible to estimate any state ξ ∈ Rn from a time history of the
measurements y(t).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

392 CHAPTER 8. LINEAR CONTROL THEORY

Again, the observability of a system is entirely determined by the row space
of the observability matrixO:

O =

C
CA
CA2

...
CAn−1

. (8.32)

In particular, if the rows of the matrixO span Rn, then it is possible to estimate
any full-dimensional state x ∈ Rn from the time history of y(t). The matrix O
may be generated by

>> obsv(A,C)

The motivation for full-state estimation is relatively straightforward. We
have already seen that, with full-state feedback, u = −Kx, it is possible to
modify the behavior of a controllable system. However, if full-state measure-
ments of x are not available, it is necessary to estimate x from the measurements.
This is possible when the system is observable. In Section 8.5, we will see that
it is possible to design an observer dynamical system to estimate the full state
from noisy measurements. As in the case of a controllable system, if a system is
observable, it is possible to design the eigenvalues of the estimator dynamical
system to have desirable characteristics, such as fast estimation and effective
noise attenuation.

Interestingly, the observability criterion is mathematically the dual of the
controllability criterion. In fact, the observability matrix is the transpose of the
controllability matrix for the pair (AT ,CT):

>> O = ctrb(A’,C’)’; % ’obsv’ is dual of ’crtb’

The PBH Test for Controllability

There are many tests to determine whether or not a system is controllable. One
of the most useful and illuminating is the Popov–Belevitch–Hautus (PBH) test.
The PBH test states that the pair (A,B) is controllable if and only if the column
rank of the matrix

[
(A− λI) B

]
is equal to n for all λ ∈ C. This test is partic-

ularly fascinating because it connects controllability3 to a relationship between
the columns of B and the eigenspace of A.

First, the PBH test only needs to be checked at λ that are eigenvalues of A,
since the rank of A−λI is equal to n except when λ is an eigenvalue of A. In fact,

3There is an equivalent PBH test for observability that states that
[
(A− λI)

C

]
must have row

rank n for all λ ∈ C for the system to be observable.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.3. CONTROLLABILITY AND OBSERVABILITY 393

the characteristic equation det(A−λI) = 0 is used to determine the eigenvalues
of A as exactly those values where the matrix A−λI becomes rank-deficient or
degenerate.

Now, given that (A−λI) is only rank-deficient for eigenvalues λ, it also fol-
lows that the null space, or kernel, of A− λI is given by the span of the eigen-
vectors corresponding to that particular eigenvalue. Thus, for

[
(A− λI) B

]
to

have rank n, the columns in B must have some component in each of the eigen-
vector directions associated with A to complement the null space of A− λI.

If A has n distinct eigenvalues, then the system will be controllable with a
single actuation input, since the matrix A−λI will have at most one eigenvector
direction in the null space. In particular, we may choose B as the sum of all
of the n linearly independent eigenvectors, and it will be guaranteed to have
some component in each direction. It is also interesting to note that if B is a
random vector (>>B=randn(n,1);), then (A,B) will be controllable with high
probability, since it will be exceedingly unlikely that B will be randomly chosen
so that it has zero contribution from any given eigenvector.

If there are degenerate eigenvalues with multiplicity ≥ 2, so that the null
space of A − λI is multi-dimensional, then the actuation input must have as
many degrees of freedom. In other words, the only time that multiple actuators
(columns of B) are strictly required is for systems that have degenerate eigen-
values. However, if a system is highly non-normal, it may be helpful to have
multiple actuators in practice for better control authority. Such non-normal sys-
tems are characterized by large transient growth due to destructive interference
between nearly parallel eigenvectors, often with similar eigenvalues.

The Cayley–Hamilton Theorem and Reachability

To provide insight into the relationship between the controllability of the pair
(A,B) and the reachability of any vector ξ ∈ Rn via the actuation input u(t),
we will leverage the Cayley–Hamilton theorem. This is a gem of linear algebra
that provides an elegant way to represent solutions of ẋ = Ax in terms of a
finite sum of powers of A, rather than the infinite sum required for the matrix
exponential in (8.13).

The Cayley–Hamilton theorem states that every matrix A satisfies its own
characteristic (eigenvalue) equation, det(A− λI) = 0:

det(A− λI) = λn + an−1λ
n−1 + · · ·+ a2λ

2 + a1λ+ a0 = 0 (8.33a)
=⇒ An + an−1A

n−1 + · · ·+ a2A
2 + a1A + a0I = 0. (8.33b)

Although this is relatively simple to state, it has profound consequences. In
particular, it is possible to express An as a linear combination of smaller powers
of A:

An = −a0I− a1A− a2A
2 − · · · − an−1A

n−1. (8.34)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

394 CHAPTER 8. LINEAR CONTROL THEORY

It is straightforward to see that this also implies that any higher power Ak≥n

may also be expressed as a sum of the matrices {I,A, . . . ,An−1}:

Ak≥n =
n−1∑

j=0

αjA
j. (8.35)

Thus, it is possible to express the infinite sum in the exponential eAt as

eAt = I + At+
A2t2

2!
+ · · · (8.36a)

= β0(t)I + β1(t)A + β2(t)A2 + · · ·+ βn−1(t)An−1. (8.36b)

We are now equipped to see how controllability relates to the reachability
of an arbitrary vector ξ ∈ Rn. From (8.20), we see that a state ξ is reachable if
there is some u(t) so that

ξ =

∫ t

0

eA(t−τ)Bu(τ) dτ. (8.37)

Expanding the exponential on the right-hand side in terms of (8.36b), we have

ξ =

∫ t

0

[β0(t− τ)IBu(τ) + β1(t− τ)ABu(τ) + · · ·

· · ·+ βn−1(t− τ)An−1Bu(τ)] dτ

= B

∫ t

0

β0(t− τ)u(τ) dτ + AB

∫ t

0

β1(t− τ)u(τ) dτ + · · ·

· · ·+ An−1B

∫ t

0

βn−1(t− τ)u(τ) dτ

=
[
B AB · · · An−1B

]

∫ t

0

β0(t− τ)u(τ) dτ

∫ t

0

β1(t− τ)u(τ) dτ

...
∫ t

0

βn−1(t− τ)u(τ) dτ

.

Note that the matrix on the left is the controllability matrix C, and we see that
the only way that all of Rn is reachable is if the column space of C spans all of
Rn. It is somewhat more difficult to see that if C has rank n then it is possible to
design a u(t) to reach any arbitrary state ξ ∈ Rn, but this relies on the fact that
the n functions {βj(t)}n−1

j=0 are linearly independent functions. It is also the case
that there is not a unique actuation input u(t) to reach a given state ξ, as there
are many different paths one may take.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.3. CONTROLLABILITY AND OBSERVABILITY 395

Gramians and Degrees of Controllability/Observability

The previous tests for controllability and observability are binary, in the sense
that the rank of C (respectively, O) is either n, or it is not. However, there are
degrees of controllability and observability, as some states x may be easier to
control or estimate than others.

To identify which states are more or less controllable, one must analyze the
eigendecomposition of the controllability Gramian:

Wc(t) =

∫ t

0

eAτBB∗eA∗τ dτ. (8.38)

Similarly, the observability Gramian is given by

Wo(t) =

∫ t

0

eA∗τC∗CeAτ dτ. (8.39)

These Gramians are often evaluated at infinite time, and, unless otherwise stated,
we refer to Wc = limt→∞Wc(t) and Wo = limt→∞Wo(t).

The controllability of a state x is measured by x∗Wcx, which will be larger
for more controllable states. If the value of x∗Wcx is large, then it is possible
to navigate the system far in the x direction with a unit control input. The ob-
servability of a state is similarly measured by x∗Wox. Both Gramians are sym-
metric and positive semi-definite, having non-negative eigenvalues. Thus, the
eigenvalues and eigenvectors may be ordered hierarchically, with eigenvectors
corresponding to large eigenvalues being more easily controllable or observ-
able. In this way, the Gramians induce a new inner product over state space in
terms of the controllability or observability of the states.

Gramians may be visualized by ellipsoids in state space, with the principal
axes given by directions that are hierarchically ordered in terms of controlla-
bility or observability. An example of this visualization is shown in Fig. 9.2
in Chapter 9. In fact, Gramians may be used to design reduced-order mod-
els for high-dimensional systems. Through a balancing transformation, a key
subspace is identified with the most jointly controllable and observable modes.
These modes then define a good projection basis to define a model that captures
the dominant input–output dynamics. This form of balanced model reduction
will be investigated further in Section 9.2.

Gramians are also useful to determine the minimum-energy control u(t)
required to navigate the system to x(tf) at time tf from x(0) = 0:

u(t) = B∗(eA(tf−t))∗Wc(tf)
−1x(tf). (8.40)

The total energy expended by this control law is given by
∫ tf

0

‖u(τ)‖2 dτ = x∗Wc(tf)
−1x. (8.41)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

396 CHAPTER 8. LINEAR CONTROL THEORY

It can now be seen that if the controllability matrix is nearly singular, then there
are directions that require extreme actuation energy to manipulate. Conversely,
if the eigenvalues of Wc are all large, then the system is easily controlled.

It is generally impracticable to compute the Gramians directly using (8.38)
and (8.39). Instead, the controllability Gramian is the solution to the following
Lyapunov equation,

AWc + WcA
∗ + BB∗ = 0, (8.42)

while the observability Gramian is the solution to

A∗Wo + WoA + C∗C = 0. (8.43)

Obtaining Gramians by solving a Lyapunov equation is typically quite ex-
pensive for high-dimensional systems [76, 288, 310, 662, 669]. Instead, Grami-
ans are often approximated empirically using snapshot data from the direct
and adjoint systems, as will be discussed in Section 9.2.

Stabilizability and Detectability

In practice, full-state controllability and observability may be too much to ex-
pect in high-dimensional systems. For example, in a high-dimensional fluid
system, it may be unrealistic to manipulate every minor fluid vortex; instead,
control authority over the large, energy-containing coherent structures is often
enough.

Stabilizability refers to the ability to control all unstable eigenvector direc-
tions of A, so that they are in the span of C. In practice, we might relax this def-
inition to include lightly damped eigenvector modes, corresponding to eigen-
values with a small, negative real part. Similarly, if all unstable eigenvectors of
A are in the span ofO∗, then the system is detectable.

There may also be states in the model description that are superfluous for
control. As an example, consider the control system for a commercial passenger
jet. The state of the system may include the passenger seat positions, although
this will surely not be controllable by the pilot, nor should it be.

8.4 Optimal Full-State Control: Linear–Quadratic Reg-
ulator (LQR)

We have seen in the previous sections that if (A,B) is controllable, then it is
possible to arbitrarily manipulate the eigenvalues of the closed-loop system
(A − BK) through choice of a full-state feedback control law u = −Kx. This
implicitly assumes that full-state measurements are available (i.e., C = I and
D = 0, so that y = x). Although full-state measurements are not always avail-
able, especially for high-dimensional systems, we will show in the next section

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.4. OPTIMAL FULL-STATE CONTROL: LINEAR–QUADRATIC
REGULATOR (LQR) 397

that, if the system is observable, it is possible to build a full-state estimate from
the sensor measurements.

Given a controllable system, and either measurements of the full state or
of an observable system with a full-state estimate, there are many choices of
stabilizing control laws u = −Kx. It is possible to make the eigenvalues of
the closed-loop system (A − BK) arbitrarily stable, placing them as far as de-
sired in the left half of the complex plane. However, overly stable eigenval-
ues may require exceedingly expensive control expenditure and might also
result in actuation signals that exceed maximum allowable values. Choosing
very stable eigenvalues may also cause the control system to overreact to noise
and disturbances, much as a new driver will overreact to vibrations in the
steering wheel, causing the closed-loop system to jitter. Over-stabilization can
counter-intuitively degrade robustness and may lead to instability if there are
small time delays or unmodeled dynamics. Robustness will be discussed in
Section 8.8.

Choosing the best gain matrix K to stabilize the system without expending
too much control effort is an important goal in optimal control. A balance must
be struck between the stability of the closed-loop system and the aggressive-
ness of control. It is important to take control expenditure into account (1) to
prevent the controller from overreacting to high-frequency noise and distur-
bances, (2) so that actuation does not exceed maximum allowed amplitudes,
and (3) so that control is not prohibitively expensive. In particular, the cost
function

J(t) =

∫ t

0

x(τ)∗Qx(τ) + u(τ)∗Ru(τ) dτ (8.44)

balances the cost of effective regulation of the state with the cost of control. The
matrices Q and R weight the cost of deviations of the state from zero and the
cost of actuation, respectively. The matrix Q is positive semi-definite, and R is
positive definite; these matrices are often diagonal, and the diagonal elements
may be tuned to change the relative importance of the control objectives.

Adding such a cost function makes choosing the control law a well-posed
optimization problem, for which there is a wealth of theoretical and numerical
techniques [101]. The linear–quadratic regulator (LQR) control law u = −Krx
is designed to minimize J = limt→∞ J(t). LQR is so-named because it is a lin-
ear control law, designed for a linear system, minimizing a quadratic cost func-
tion, that regulates the state of the system to limt→∞ x(t) = 0. Because the cost
function in (8.44) is quadratic, there is an analytical solution for the optimal
controller gains Kr, given by

Kr = R−1B∗X, (8.45)

where X is the solution to an algebraic Riccati equation:

A∗X + XA−XBR−1B∗X + Q = 0. (8.46)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

398 CHAPTER 8. LINEAR CONTROL THEORY

System
d

dt
x = Ax + Bu

y = x

LQR
u = −Krx

xu

Figure 8.9: Schematic of the linear–quadratic regulator (LQR) for optimal full-
state feedback. The optimal controller for a linear system given measurements
of the full state, y = x, is given by proportional control u = −Krx, where Kr is
a constant-gain matrix obtained by solving an algebraic Riccati equation.

Solving the above Riccati equation for X, and hence for Kr, is numerically ro-
bust and already implemented in many programming languages [76, 430]. The
gain matrix Kr is obtained via

>> Kr = lqr(A,B,Q,R);

in MATLAB and via

>>> Kr = lqr(A,B,Q,R)[0]

in python-control. However, solving the Riccati equation scales asO(n3) in the
state dimension n, making it prohibitively expensive for large systems or for
online computations for slowly changing state equations or linear parameter
varying (LPV) control. This motivates the development of reduced-order mod-
els that capture the same dominant behavior with many fewer states. Control-
oriented reduced-order models will be developed more in Chapter 9.

The LQR controller is shown schematically in Fig. 8.9. Out of all possible
control laws u = K(x), including nonlinear controllers, the LQR controller
u = −Krx is optimal, as we will show in Section 8.4. However, it may be the
case that a linearized system is linearly uncontrollable while the full nonlinear
system in (8.7) is controllable with a nonlinear control law u = K(x).

Derivation of the Riccati Equation for Optimal Control

It is worth taking a theoretical detour here to derive the Riccati equation in
(8.46) for the problem of optimal full-state regulation. This derivation will pro-
vide an example of how to solve convex optimization problems using the calcu-
lus of variations, and it will also provide a template for computing the optimal

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.4. OPTIMAL FULL-STATE CONTROL: LINEAR–QUADRATIC
REGULATOR (LQR) 399

control solution for nonlinear systems. Because of the similarity of optimal con-
trol to the formulation of Lagrangian and Hamiltonian classical mechanics in
terms of the variational principal, we adopt similar language and notation.

First, we will add a terminal cost to our LQR cost function in (8.44), and also
introduce a factor of 1/2 to simplify computations:

J =

∫ tf

0

1
2
(x∗Qx + u∗Ru)︸ ︷︷ ︸

Lagrangian, L

dτ + 1
2
x(tf)

∗Qfx(tf)︸ ︷︷ ︸
terminal cost

. (8.47)

The goal is to minimize the quadratic cost function J subject to the dynamical
constraint

ẋ = Ax + Bu. (8.48)

We may solve this using the calculus of variations by introducing the fol-
lowing augmented cost function:

Jaug =

∫ tf

0

[1
2
(x∗Qx + u∗Ru) + λ∗(Ax + Bu− ẋ)] dτ + 1

2
x(tf)

∗Qfx(tf). (8.49)

The variable λ is a Lagrange multiplier, called the co-state, that enforces the
dynamic constraints; λmay take any value and Jaug = J will hold.

Taking the total variation of Jaug in (8.49) yields

δJaug =

∫ tf

0

[
∂L
∂x

δx +
∂L
∂u

δu + λ∗Aδx + λ∗Bδu− λ∗δẋ
]

dτ + Qfx(tf)δx(tf).

(8.50)
The partial derivatives4 of the Lagrangian are ∂L/∂x = x∗Q and ∂L/∂u = u∗R.
The last term in the integral may be modified using integration by parts:

−
∫ tf

0

λ∗δẋ dτ = −λ∗(tf)δx(tf) + λ∗(0)δx(0) +

∫ tf

0

λ̇∗δx dτ.

The term λ∗(0)δx(0) is equal to zero, or else the control system would be non-
causal (i.e., then future control could change the initial condition of the system).

Finally, the total variation of the augmented cost function in (8.50) simplifies
as follows:

δJaug =

∫ tf

0

(x∗Q + λ∗A + λ̇∗)δx dτ +

∫ tf

0

(u∗R + λ∗B)δu dτ

+ (x(tf)
∗Qf − λ∗(tf))δx(tf). (8.51)

4The derivative of a matrix expression Ax with respect to x is A, and the derivative of x∗A
with respect to x is A∗.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

400 CHAPTER 8. LINEAR CONTROL THEORY

Each variation term in (8.51) must equal zero for an optimal control solution
that minimizes J . Thus, we may break this up into three equations:

x∗Q + λ∗A + λ̇∗ = 0, (8.52a)
u∗R + λ∗B = 0, (8.52b)

x(tf)
∗Qf − λ∗(tf) = 0. (8.52c)

Note that the constraint in (8.52c) represents an initial condition for the reverse-
time equation for λ starting at tf . Thus, the dynamics in (8.48) with initial con-
dition x(0) = x0 and (8.52) with the final-time condition λ(tf) = Qfx(tf) form
a two-point boundary value problem. This may be integrated numerically to
find the optimal control solution, even for nonlinear systems.

Because the dynamics are linear, it is possible to posit the form λ = Px, and
substitute into (8.52) above. The first equation becomes:

(Ṗx + Pẋ)∗ + x∗Q + λ∗A = 0.

Taking the transpose, and substituting (8.48) in for ẋ, yields

Ṗx + P(Ax + Bu) + Qx + A∗Px = 0.

From (8.52b), we have

u = −R−1B∗λ = −R−1B∗Px.

Finally, combining yields

Ṗx + PAx + A∗Px−PBR−1B∗Px + Qx = 0. (8.53)

This equation must be true for all x, and so it may also be written as a matrix
equation. Dropping the terminal cost and letting time go to infinity, the Ṗ term
disappears, and we recover the algebraic Riccati equation:

PA + AP∗ −PBR−1B∗P + Q = 0.

Although this procedure is somewhat involved, each step is relatively straight-
forward. In addition, the dynamics in (8.48) may be replaced with nonlinear dy-
namics ẋ = f(x,u), and a similar nonlinear two-point boundary value problem
may be formulated with ∂f/∂x replacing A and ∂f/∂u replacing B. This pro-
cedure is extremely general, and may be used to numerically obtain nonlinear
optimal control trajectories.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.5. OPTIMAL FULL-STATE ESTIMATION: THE KALMAN FILTER 401

Hamiltonian Formulation. Similar to the Lagrangian formulation above, it is
also possible to solve the optimization problem by introducing the following
Hamiltonian:

H = 1
2
(x∗Qx + u∗Ru)︸ ︷︷ ︸

L

+λ∗(Ax + Bu). (8.54)

Then Hamilton’s equations become

ẋ =

(
∂H
∂λ

)∗
= Ax + Bu, x(0) = x0, (8.55a)

−λ̇ =

(
∂H
∂x

)∗
= Qx + A∗λ, λ(tf) = Qfx(tf). (8.55b)

Again, this is a two-point boundary value problem in x and λ. Plugging in the
same expression λ = Px will result in the same Riccati equation as above.

8.5 Optimal Full-State Estimation: the Kalman Fil-
ter

The optimal LQR controller from Section 8.4 relies on full-state measurements
of the system. However, full-state measurements may be either prohibitively
expensive or technologically infeasible to obtain, especially for high-dimensional
systems. The computational burden of collecting and processing full-state mea-
surements may also introduce unacceptable time delays that will limit robust
performance.

Instead of measuring the full state x, it may be possible to estimate the state
from limited noisy measurements y. In fact, full-state estimation is mathemati-
cally possible as long as the pair (A,C) are observable, although the effective-
ness of estimation depends on the degree of observability as quantified by the
observability Gramian. The Kalman filter [296, 370, 750] is the most commonly
used full-state estimator, as it optimally balances the competing effects of mea-
surement noise, disturbances, and model uncertainty. As will be shown in the
next section, it is possible to use the full-state estimate from a Kalman filter in
conjunction with the optimal full-state LQR feedback law.

When deriving the optimal full-state estimator, it is necessary to reintroduce
disturbances to the state, wd, and sensor noise, wn:

d

dt
x = Ax + Bu + wd, (8.56a)

y = Cx + Du + wn. (8.56b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

402 CHAPTER 8. LINEAR CONTROL THEORY

The Kalman filter assumes that both the disturbance and noise are zero-mean
Gaussian processes with known covariances:

E(wd(t)wd(τ)∗) = Vdδ(t− τ), (8.57a)
E(wn(t)wn(τ)∗) = Vnδ(t− τ). (8.57b)

Here E is the expected value and δ(·) is the Dirac delta function. The matrices
Vd and Vn are positive semi-definite with entries containing the covariances
of the disturbance and noise terms. Extensions to the Kalman filter exist for
correlated, biased, and unknown noise and disturbance terms [489, 671].

It is possible to obtain an estimate x̂ of the full state x from measurements
of the input u and output y, via the following estimator dynamical system:

d

dt
x̂ = Ax̂ + Bu + Kf (y − ŷ), (8.58a)

ŷ = Cx̂ + Du. (8.58b)

The matrices A, B, C, and D are obtained from the system model, and the filter
gain Kf is determined via a similar procedure as in LQR. Thus Kf is given by

Kf = YC∗V−1
n , (8.59)

where Y is the solution to another algebraic Riccati equation:

YA∗ + AY −YC∗V−1
n CY + Vd = 0. (8.60)

This solution is commonly referred to as the Kalman filter, and it is the optimal
full-state estimator with respect to the following cost function:

J = lim
t→∞

E((x(t)− x̂(t))∗(x(t)− x̂(t))). (8.61)

This cost function implicitly includes the effects of disturbance and noise, which
are required to determine the optimal balance between aggressive estimation
and noise attenuation. Thus, the Kalman filter is referred to as linear–quadratic
estimation (LQE), and has a dual formulation to the LQR optimization. The cost
in (8.61) is computed as an ensemble average over many realizations.

The Kalman filter gain Kf may be determined via

>> Kf = lqe(A,I,C,Vd,Vn); % design Kalman filter gain

where I is the n × n identity matrix. Optimal control and estimation are math-
ematical dual problems, as are controllability and observability, so the Kalman
filter may also be found using LQR:

>> Kf = (lqr(A’,C’,Vd,Vn))’; % LQR and LQE are dual problems

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.5. OPTIMAL FULL-STATE ESTIMATION: THE KALMAN FILTER 403

System
d

dt
x = Ax + Bu + wd

y = Cx + wn

Kalman filter
d

dt
x̂ = (A−KfC)x̂

+ Kfy + Bu

wn

wd

u y

x +
E

J

x̂

−

B
u + + ∫ x̂

y +
Kf

+

A

+

Cŷ

−

Figure 8.10: Schematic of the Kalman filter for full-state estimation from noisy
measurements y = Cx+wn with process noise (disturbances) wd. This diagram
does not have a feedthrough term D, although it may be included.

The Kalman filter is shown schematically in Fig. 8.10.
Substituting the output estimate ŷ from (8.58b) into (8.58a) yields

d

dt
x̂ = (A−KfC)x̂ + Kfy + (B−KfD)u (8.62a)

= (A−KfC)x̂ +
[
Kf (B−KfD)

] [y
u

]
. (8.62b)

The estimator dynamical system is expressed in terms of the estimate x̂ with
inputs y and u. If the system is observable, it is possible to place the eigenvalues
of A−KfC arbitrarily with choice of Kf . When the eigenvalues of the estimator
are stable, then the state estimate x̂ converges to the full state x asymptotically,
as long as the model faithfully captures the true system dynamics. To see this

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

404 CHAPTER 8. LINEAR CONTROL THEORY

convergence, consider the dynamics of the estimation error ε = x− x̂:

d

dt
ε =

d

dt
x− d

dt
x̂

= [Ax + Bu + wd]− [(A−KfC)x̂ + Kfy + (B−KfD)u]

= Aε+ wd + KfCx̂−Kfy + KfDu

= Aε+ wd + KfCx̂−Kf [Cx + Du + wn]︸ ︷︷ ︸
y

+KfDu

= (A−KfC)ε+ wd −Kfwn.

Therefore, the estimate x̂ will converge to the true full state when A−KfC
has stable eigenvalues. As with LQR, there is a tradeoff between over-stabilization
of these eigenvalues and the amplification of sensor noise. This is similar to
the behavior of an inexperienced driver who may hold the steering wheel too
tightly and will overreact to every minor bump and disturbance on the road.

There are many variants of the Kalman filter for nonlinear systems [360,
361, 729], including the extended and unscented Kalman filters. The ensemble
Kalman filter [20] is an extension that works well for high-dimensional sys-
tems, such as in geophysical data assimilation [596]. All of these methods still
assume Gaussian noise processes, and the particle filter provides a more gen-
eral, although more computationally intensive, alternative that can handle ar-
bitrary noise distributions [306, 602]. The unscented Kalman filter balances the
efficiency of the Kalman filter and accuracy of the particle filter.

8.6 Optimal Sensor-Based Control: Linear–Quadratic
Gaussian (LQG)

The full-state estimate from the Kalman filter is generally used in conjunction
with the full-state feedback control law from LQR, resulting in optimal sensor-
based feedback. Remarkably, the LQR gain Kr and the Kalman filter gain Kf

may be designed separately, and the resulting sensor-based feedback will re-
main optimal and retain the closed-loop eigenvalues when combined.

Combining the LQR full-state feedback with the Kalman filter full-state esti-
mator results in the linear–quadratic Gaussian (LQG) controller. The LQG con-
troller is a dynamical system with input y, output u, and internal state x̂:

d

dt
x̂ = (A−KfC−BKr)x̂ + Kfy, (8.63a)

u = −Krx̂. (8.63b)

The LQG controller is optimal with respect to the following ensemble-averaged

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.6. OPTIMAL SENSOR-BASED CONTROL: LINEAR–QUADRATIC
GAUSSIAN (LQG) 405

System
d

dt
x = Ax + Bu + wd

y = Cx

wd

wn

u

Kalman
filter

LQR
u = −Krx̂

y

x̂

LQG

Figure 8.11: Schematic illustrating the linear–quadratic Gaussian (LQG) con-
troller for optimal closed-loop feedback based on noisy measurements y. The
optimal LQR and Kalman filter gain matrices Kr and Kf may be designed inde-
pendently, based on two different algebraic Riccati equations. When combined,
the resulting sensor-based feedback remains optimal.

version of the cost function from (8.44):

J(t) =

〈∫ t

0

[x(τ)∗Qx(τ) + u(τ)∗Ru(τ)] dτ

〉
. (8.64)

The controller u = −Krx̂ is in terms of the state estimate, and so this cost
function must be averaged over many realizations of the disturbance and noise.
Applying LQR to x̂ results in the following state dynamics:

d

dt
x = Ax−BKrx̂ + wd (8.65a)

= Ax−BKrx + BKr(x− x̂) + wd (8.65b)
= Ax−BKrx + BKrε+ wd. (8.65c)

Again ε = x− x̂ as before. Finally, the closed-loop system may be written as

d

dt

[
x
ε

]
=

[
A−BKr BKr

0 A−KfC

] [
x
ε

]
+

[
I 0
I −Kf

] [
wd

wn

]
. (8.66)

Thus, the closed-loop eigenvalues of the LQG-regulated system are given by
the eigenvalues of A−BKr and A−KfC, which were optimally chosen by the
LQR and Kalman filter gain matrices, respectively.

The LQG framework, shown in Fig. 8.11, relies on an accurate model of the
system and knowledge of the magnitudes of the disturbances and measure-
ment noise, which are assumed to be Gaussian processes. In real-world sys-
tems, each of these assumptions may be invalid, and even small time delays

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

406 CHAPTER 8. LINEAR CONTROL THEORY

and model uncertainty may destroy the robustness of LQG and result in in-
stability [209]. The lack of robustness of LQG regulators to model uncertainty
motivates the introduction of robust control in Section 8.8. For example, it is
possible to robustify LQG regulators through a process known as loop-transfer
recovery. However, despite robustness issues, LQG control is extremely effec-
tive for many systems, and is among the most common control paradigms.

In contrast to classical control approaches, such as proportional–integral–
derivative (PID) control and designing faster inner-loop control and slow outer-
loop control assuming a separation of timescales, LQG is able to handle multiple-
input, multiple-output (MIMO) systems with overlapping timescales and multi-
objective cost functions with no additional complexity in the algorithm or im-
plementation.

8.7 Case Study: Inverted Pendulum on a Cart

To consolidate the concepts of optimal control, we will implement a stabiliz-
ing controller for an inverted pendulum on a cart, shown in Fig. 8.12. The full
nonlinear dynamics are given by

ẋ = v, (8.67a)

v̇ =
−m2L2g cos(θ) sin(θ) +mL2(mLω2 sin(θ)− δv) +mL2u

mL2(M +m(1− cos(θ)2))
, (8.67b)

θ̇ = ω, (8.67c)

ω̇ =
(m+M)mgL sin(θ)−mL cos(θ)(mLω2 sin(θ)− δv)−mL cos(θ)u

mL2(M +m(1− cos(θ)2))
, (8.67d)

where x is the cart position, v is the velocity, θ is the pendulum angle, ω is the
angular velocity, m is the pendulum mass, M is the cart mass, L is the pendu-
lum arm, g is the gravitational acceleration, δ is a friction damping on the cart,
and u is a control force applied to the cart.

The function pendcart, defined in Code 8.2, may be used to simulate the full
nonlinear system in (8.67).

Code 8.2: [MATLAB] Right-hand side function for inverted pendulum on cart.
function dx = pendcart(x,m,M,L,g,d,u)

Sx = sin(x(3));
Cx = cos(x(3));
D = m*L*L*(M+m*(1-Cxˆ2));

dx(1,1) = x(2);
dx(2,1) = (1/D)*(-mˆ2*Lˆ2*g*Cx*Sx + m*Lˆ2*(m*L*x(4)ˆ2*Sx - d

*x(2))) + m*L*L*(1/D)*u;

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.7. CASE STUDY: INVERTED PENDULUM ON A CART 407

π−θ

L

m

M

g
?

- x

-
u = F

Figure 8.12: Schematic of inverted pendulum on a cart. The control forcing acts
to accelerate or decelerate the cart. For this example, we assume the following
parameter values: pendulum mass (m = 1), cart mass (M = 5), pendulum
length (L = 2), gravitational acceleration (g = −10), and cart damping (δ = 1).

dx(3,1) = x(4);
dx(4,1) = (1/D)*((m+M)*m*g*L*Sx - m*L*Cx*(m*L*x(4)ˆ2*Sx - d*

x(2))) - m*L*Cx*(1/D)*u;

Code 8.2: [Python] Right-hand side function for inverted pendulum on cart.
def pendcart(x,t,m,M,L,g,d,uf):

u = uf(x) # evaluate anonymous function at x
Sx = np.sin(x[2])
Cx = np.cos(x[2])
D = m*L*L*(M+m*(1-Cx**2))

dx = np.zeros(4)
dx[0] = x[1]
dx[1] = (1/D)*(-(m**2)*(L**2)*g*Cx*Sx + m*(L**2)*(m*L*(x

[3]**2)*Sx - d*x[1])) + m*L*L*(1/D)*u
dx[2] = x[3]
dx[3] = (1/D)*((m+M)*m*g*L*Sx - m*L*Cx*(m*L*(x[3]**2)*Sx

- d*x[1])) - m*L*Cx*(1/D)*u;

return dx

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

408 CHAPTER 8. LINEAR CONTROL THEORY

There are two fixed points, corresponding to either the pendulum-down
(θ = 0) or pendulum-up (θ = π) configuration; in both cases, v = ω = 0 for the
fixed point, and the cart position x is a free variable, as the equations do not
depend explicitly on x. It is possible to linearize the equations in (8.67) about
either the up or down solutions, yielding the following linearized dynamics:

d

dt

x1

x2

x3

x4

 =

0 1 0 0
0 −δ/M bmg/M 0
0 0 0 1
0 −bδ/ML −b(m+M)g/ML 0

x1

x2

x3

x4

+

0
1/M

0
b/ML

u (8.68)

for

x1

x2

x3

x4

 =

x
v
θ
ω

 ,

where b = 1 for the pendulum-up fixed point, and b = −1 for the pendulum-
down fixed point. The system matrices A and B are initialized in Code 8.3
using the values for the constants given in Fig. 8.12.

Code 8.3: [MATLAB] Construct system matrices for inverted pendulum on a
cart.

m = 1; M = 5; L = 2; g = -10; d = 1;

b = 1; % Pendulum up (b=1)

A = [0 1 0 0;
0 -d/M b*m*g/M 0;
0 0 0 1;
0 -b*d/(M*L) -b*(m+M)*g/(M*L) 0];

B = [0; 1/M; 0; b*1/(M*L)];

Code 8.3: [Python] Construct system matrices for inverted pendulum on a cart.
m = 1; M = 5; L = 2; g = -10; d = 1;

b = 1 # pendulum up (b=1)

A = np.array([[0,1,0,0], [0,-d/M,b*m*g/M,0], [0,0,0,1], [0,-
b*d/(M*L),-b*(m+M)*g/(M*L),0]])

B = np.array([0,1/M,0,b/(M*L)]).reshape((4,1))

We may also confirm that the open-loop system is unstable by checking the
eigenvalues of A using eig(A) in MATLAB or np.linalg.eig(A) in Python,
which returns

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.7. CASE STUDY: INVERTED PENDULUM ON A CART 409

array([0. , -2.431123 , -0.23363938, 2.46476238])

In the following, we will test for controllability and observability, develop
full-state feedback (LQR), full-state estimation (Kalman filter), and sensor-based
feedback (LQG) solutions.

Full-State Feedback Control of the Cart–Pendulum

In this section, we will design an LQR controller to stabilize the inverted pen-
dulum configuration (θ = π) assuming full-state measurements, y = x. Be-
fore any control design, we must confirm that the system is linearly control-
lable with the given A and B matrices. This is accomplished by computing the
rank of the controllability matrix using either rank(crtr(A,B)) in MATLAB
or numpy.linalg.matrix_rank(ctrb(A,B)) in Python, which returns a rank
of 4. Thus, the pair (A,B) is controllable, since the controllability matrix has full
rank. It is then possible to specify given Q and R matrices for the cost function
and design the LQR controller gain matrix K, as in Code 8.4.

Code 8.4: [MATLAB] Design LQR controller to stabilize inverted pendulum on
a cart.

Q = eye(4); % state cost, 4x4 identity matrix
R = .0001; % control cost

K = lqr(A,B,Q,R);

Code 8.4: [Python] Design LQR controller to stabilize inverted pendulum on a
cart.

Q = np.eye(4) # state cost, 4x4 identity matrix
R = 0.0001 # control cost

K = lqr(A,B,Q,R)[0]

We may then simulate the closed-loop system response of the full nonlin-
ear system. We will initialize our simulation slightly off equilibrium, at x0 =[
−1 0 π + 0.1 0

]T , and we also impose a desired step change in the refer-
ence position of the cart, from x = −1 to x = 1.

Code 8.5: [MATLAB] Simulate closed-loop inverted pendulum on a cart sys-
tem.

tspan = 0:.001:10;
x0 = [-1; 0; pi+.1; 0]; % initial condition
wr = [1; 0; pi; 0]; % reference position
u=@(x)-K*(x - wr); % control law
[t,x] = ode45(@(t,x)pendcart(x,m,M,L,g,d,u(x)),tspan,x0);

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

410 CHAPTER 8. LINEAR CONTROL THEORY

0 1 2 3 4 5 6 7 8 9 10

Time

-3

-2

-1

0

1

2

3

4

S
ta

te

x

v

Figure 8.13: Closed-loop system response of inverted pendulum on a cart sta-
bilized with an LQR controller.

Code 8.5: [Python] Simulate closed-loop inverted pendulum on a cart system.
tspan = np.arange(0,10,0.001)
x0 = np.array([-1,0,np.pi+0.1,0]) # Initial condition
wr = np.array([1,0,np.pi,0]) # Reference position
u = lambda x: -K@(x-wr) # Control law
x = integrate.odeint(pendcart,x0,tspan,args=(m,M,L,g,d,u))

In this code, the actuation is set to

u = −K(x−wr), (8.69)

where wr =
[
1 0 π 0

]T is the reference position. The closed-loop response is
shown in Fig. 8.13.

In the above procedure, specifying the system dynamics and simulating the
closed-loop system response is considerably more involved than actually de-
signing the controller, which amounts to a single function call in MATLAB and
Python. It is also helpful to compare the LQR response to the response obtained
by non-optimal eigenvalue placement. In particular, Fig. 8.14 shows the system
response and cost function for 100 randomly generated sets of stable eigen-
values, chosen in the interval [−3.5,−0.5]. The LQR controller has the lowest
overall cost, as it is chosen to minimize J . The code to plot the pendulum–cart
system is provided online.

Non-Minimum-Phase Systems. It can be seen from the response that, in or-
der to move from x = −1 to x = 1, the system initially moves in the wrong
direction. This behavior indicates that the system is a non-minimum-phase sys-
tem, which introduces challenges for robust control, as we will soon see. There

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.7. CASE STUDY: INVERTED PENDULUM ON A CART 411

0 1 2 3 4 5 6 7 8 9 10

Time

0

5

10

15

20

25

30

35

40

45

C
o

s
t

LQR

Figure 8.14: Comparison of LQR controller response and cost function with
other pole placement locations. Bold lines represent the LQR solutions.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

412 CHAPTER 8. LINEAR CONTROL THEORY

are many examples of non-minimum-phase systems in control. For instance,
parallel parking an automobile first involves moving the center of mass of the
car away from the curb before it then moves closer. Other examples include
increasing altitude in an aircraft, where the elevators must first move the cen-
ter of mass down to increase the angle of attack on the main wings before lift
increases the altitude. Adding cold fuel to a turbine may also initially drop the
temperature before it eventually increases.

Full-State Estimation of the Cart–Pendulum

Now we turn to the full-state estimation problem based on limited noisy mea-
surements y. For this example, we will develop the Kalman filter for the pendulum-
down condition (θ = 0), since without feedback the system in the pendulum-
up condition will quickly leave the fixed point where the linear model is valid.
When we combine the Kalman filter with LQR in the next example, it will be
possible to control the unstable inverted pendulum configuration. Switching to
the pendulum-down configuration is simple in the code by setting b = −1.

Before designing a Kalman filter, we must choose a sensor and test for ob-
servability. If we measure the cart position, y = x1, which corresponds to a
matrix C =

[
1 0 0 0

]
, then the observability matrix has a full rank of 4.

This may be confirmed using the command rank(obsv(A,C)) in MATLAB or
numpy.linalg.matrix_rank(obsv(A,C)) in Python.

Because the cart position x1 does not appear explicitly in the dynamics, the
system is not fully observable for any measurement that does not include x1.
Thus, it is impossible to estimate the cart position with a measurement of the
pendulum angle. However, if the cart position is not important for the cost
function (i.e., if we only want to stabilize the pendulum, and do not care where
the cart is located), then other choices of sensor will be admissible.

Now we design the Kalman filter, specifying disturbance and noise covari-
ances, in Code 8.6.

Code 8.6: [MATLAB] Code to specify disturbance and noise magnitudes and
develop Kalman filter gain.

Vd = eye(4); % disturbance covariance
Vn = 1; % noise covariance

% Build Kalman filter
[Kf,P,E] = lqe(A,eye(4),C,Vd,Vn); % design Kalman filter
% alternatively, possible to design using "LQR" code
Kf = (lqr(A’,C’,Vd,Vn))’;

Code 8.6: [Python] Code to specify disturbance and noise magnitudes and de-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.7. CASE STUDY: INVERTED PENDULUM ON A CART 413

velop Kalman filter gain.
Vd = np.eye(4) # disturbance covariance
Vn = 1 # noise covariance

Build Kalman filter
Kf, P, E = lqe(A,np.eye(4),C,Vd,Vn)

The Kalman filter gain matrix is given by

Kf =
[
1.9222 1.3474 −0.6182 −1.8016

]T
.

To simulate the system and Kalman filter, we must augment the original
system to include disturbance and noise inputs, as in Code 8.7.

Code 8.7: [MATLAB] Augment system inputs with disturbance and noise
terms, and create Kalman filter system.

B_aug = [B eye(4) 0*B]; % [u I*wd 0*wn]
D_aug = [0 0 0 0 0 1]; % D matrix passes noise through

sysC = ss(A,B_aug,C,D_aug); % single-measurement system

% "true" system w/ full-state output, disturbance, no noise
sysTruth = ss(A,B_aug,eye(4),zeros(4,size(B_aug,2)));

sysKF = ss(A-Kf*C,[B Kf],eye(4),0*[B Kf]); % Kalman filter

Code 8.7: [Python] Augment system inputs with disturbance and noise terms,
and create Kalman filter system.

Baug = np.concatenate((B, np.eye(4),np.zeros_like(B)),axis
=1) # [u I*wd 0*wn]

Daug = np.array([0,0,0,0,0,1]) # D matrix passes noise
through

sysC = ss(A,Baug,C,Daug) # Single-measurement system

"True" system w/ full-state output, disturbance, no noise
sysTruth = ss(A,Baug,np.eye(4),np.zeros((4,Baug.shape[1])))

BKf = np.concatenate((B,np.atleast_2d(Kf).T),axis=1)
sysKF = ss(A-np.outer(Kf,C),BKf,np.eye(4),np.zeros_like(BKf)

)

Code 8.8 simulates the system with a single output measurement, including
additive disturbances and noise, and we use this as the input to a Kalman filter
estimator. At times t = 1 and t = 15, we give the system a large positive and
negative impulse in the actuation, respectively.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

414 CHAPTER 8. LINEAR CONTROL THEORY

Code 8.8: [MATLAB] Simulate system and estimate full state.
%% Estimate linearized system in "down" position
dt = .01;
t = dt:dt:50;

uDIST = sqrt(Vd)*randn(4,size(t,2)); % random disturbance
uNOISE = sqrt(Vn)*randn(size(t)); % random noise
u = 0*t;
u(1/dt) = 20/dt; % positive impulse
u(15/dt) = -20/dt; % negative impulse

u_aug = [u; uDIST; uNOISE]; % input w/ disturbance and noise

[y,t] = lsim(sysC,u_aug,t); % noisy measurement
[xtrue,t] = lsim(sysTruth,u_aug,t); % true state
[xhat,t] = lsim(sysKF,[u; y’],t); % state estimate

Code 8.8: [Python] Simulate system and estimate full state.
Estimate linearized system in down position: Gantry crane
dt = 0.01
t = np.arange(0,50,dt)

uDIST = np.sqrt(Vd) @ np.random.randn(4,len(t)) # random
disturbance

uNOISE = np.sqrt(Vn) * np.random.randn(len(t)) # random
noise

u = np.zeros_like(t)
u[100] = 20/dt # positive impulse
u[1500] = -20/dt # negative impulse

input w/ disturbance and noise:
uAUG = np.concatenate((u.reshape((1,len(u))),uDIST,uNOISE.

reshape((1,len(uNOISE))))).T

y,t,_ = lsim(sysC,uAUG,t) # noisy
measurement

xtrue,t,_ = lsim(sysTruth,uAUG,t) # true state
xhat,t,_ = lsim(sysKF,np.row_stack((u,y)).T,t) # estimate

Figure 8.15 shows the noisy measurement signal used by the Kalman filter,
and Fig. 8.16 shows the full noiseless state, with disturbances, along with the
Kalman filter estimate.

To build intuition, it is recommended that the reader investigate the per-
formance of the Kalman filter when the model is an imperfect representation
of the simulated dynamics. When combined with full-state control in the next

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.7. CASE STUDY: INVERTED PENDULUM ON A CART 415

0 5 10 15 20 25 30 35 40 45 50

Time

-5

0

5

10

15

20

25
M

e
a

s
u

re
m

e
n

t
y (measured)

y (no noise)

y (KF estimate)

Figure 8.15: Noisy measurement that is used for the Kalman filter, along with
the underlying noiseless signal and the Kalman filter estimate.

0 5 10 15 20 25 30 35 40 45 50

Time

-5

0

5

10

15

20

25

S
ta

te

Figure 8.16: The true and Kalman filter estimated states for the pendulum on a
cart system.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

416 CHAPTER 8. LINEAR CONTROL THEORY

cartpend_sim

u

d

y

Nonlinear ODE for
Inverted Pendulum on a Cart

Scope

-K* uvec

LQR

C* uvec

Measurement

x' = Ax+Bu
 y = Cx+Du

Kalman Filter

Step x

d1

d4

d2

d3

n

u

y

x1

x2

x3

x4

Figure 8.17: MATLAB Simulink model for sensor-based LQG feedback control.

section, small time delays and changes to the system model may cause fragility.

Sensor-Based Feedback Control of the Cart–Pendulum

To apply an LQG regulator to the inverted pendulum on a cart, we will simu-
late the full nonlinear system in Simulink, as shown in Fig. 8.17. The nonlinear
dynamics are encapsulated in the block cartpend sim, and the inputs consist
of the actuation signal u and disturbance wd. We record the full state for per-
formance analysis, although only noisy measurements y = Cx + wn and the
actuation signal u are passed to the Kalman filter. The full-state estimate is then
passed to the LQR block, which commands the desired actuation signal. For
this example, we use the following LQR and LQE weighting matrices: Q = I4×4,
R = 0.000001, Vd = 0.04 I4×4, and Vn = 0.0002.

The system starts near the vertical equilibrium, at x0 =
[
0 0 3.14 0

]T ,
and we command a step in the cart position from x = 0 to x = 1 at t = 10. The
resulting response is shown in Fig. 8.18. Despite noisy measurements (Fig. 8.19)
and disturbances (Fig. 8.20), the controller is able to effectively track the refer-
ence cart position while stabilizing the inverted pendulum.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.7. CASE STUDY: INVERTED PENDULUM ON A CART 417

0 5 10 15 20 25 30 35 40 45 50

Time

-1

0

1

2

3

4

S
ta

te
x

v

Figure 8.18: Output response using LQG feedback control.

0 5 10 15 20 25 30 35 40 45 50

Time

-0.2

0

0.2

0.4

0.6

0.8

1

M
e

a
s
u

re
m

e
n

t

y (measured)

y (no noise)

y (KF estimate)

Figure 8.19: Noisy measurement used for the Kalman filter, along with the un-
derlying noiseless signal and the Kalman filter estimate.

45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50
-1

0

1

D
is

tu
rb

a
n

c
e

,
d

45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50

Time

-50

0

50

A
c
tu

a
ti
o

n
,

u

Figure 8.20: Disturbance and actuation signals.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

418 CHAPTER 8. LINEAR CONTROL THEORY

8.8 Robust Control and Frequency-Domain Techniques

Until now, we have described control systems in terms of state-space systems
of ordinary differential equations. This perspective readily lends itself to stabil-
ity analysis and design via placement of closed-loop eigenvalues. However, in
a seminal paper by John Doyle in 1978 [209],5 it was shown that LQG regula-
tors can have arbitrarily small stability margins, making them fragile to model
uncertainties, time delays, and other model imperfections.

Fortunately, a short time after Doyle’s famous 1978 paper, a rigorous math-
ematical theory was developed to design controllers that promote robustness.
Indeed, this new theory of robust control generalizes the optimal control frame-
work used to develop LQR/LQG, by incorporating a different cost function
that penalizes worse-case scenario performance.

To understand and design controllers for robust performance, it will be
helpful to look at frequency-domain transfer functions of various signals. In par-
ticular, we will consider the sensitivity, complementary sensitivity, and loop
transfer functions. These enable quantitative and visual approaches to assess
robust performance, and they enable intuitive and compact representations of
control systems.

Robust control is a natural perspective when considering uncertain models
obtained from noisy or incomplete data. Moreover, it may be possible to man-
age system nonlinearity as a form of structured model uncertainty. Finally, we
will discuss known factors that limit robust performance, including time delays
and non-minimum-phase behavior.

Frequency-Domain Techniques

To understand and manage the tradeoffs between robustness and performance
in a control system, it is helpful to design and analyze controllers using frequency-
domain techniques.

The Laplace transform allows us to go between the time domain (state space)
and frequency domain:

L{f(t)} = f(s) =

∫ ∞

0−
f(t)e−st dt. (8.70)

Here, s is the complex-valued Laplace variable. The Laplace transform may
be thought of as a one-sided generalized Fourier transform that is valid for
functions that do not converge to zero as t → ∞. The Laplace transform is
particularly useful because it transforms differential equations into algebraic
equations, and convolution integrals in the time domain become simple prod-
ucts in the frequency domain. To see how time derivatives pass through the

5Title: Guaranteed margins for LQG regulators. “Abstract: There are none.”

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 419

Laplace transform, we use integration by parts:

L
{

d

dt
f(t)

}
=

∫ ∞

0−

d

dt
f(t)

︸ ︷︷ ︸
dv

e−st︸︷︷︸
u

dt

=
[
f(t)e−st

]t=∞
t=0−
−
∫ ∞

0−
f(t)(−se−st) dt

= f(0−) + sL{f(t)}.

Thus, for zero initial conditions, L{df/dt} = sf(s).
Taking the Laplace transform of the control system in (8.10) yields

sx(s) = Ax(s) + Bu(s), (8.71a)
y(s) = Cx(s) + Du(s). (8.71b)

It is possible to solve for x(s) in the first equation, as

(sI−A)x(s) = Bu(s) =⇒ x(s) = (sI−A)−1Bu(s). (8.72)

Substituting this into the second equation, we arrive at a mapping from inputs
u to outputs y:

y(s) = [C(sI−A)−1C + D]u(s). (8.73)

We define this mapping as the transfer function:

G(s) =
y(s)

u(s)
= C(sI−A)−1B + D. (8.74)

For linear systems, there are three equivalent representations: (1) time do-
main, in terms of the impulse response; (2) frequency domain, in terms of the
transfer function; and (3) state space, in terms of a system of differential equa-
tions. These representations are shown schematically in Fig. 8.21. As we will
see, there are many benefits to analyzing control systems in the frequency do-
main.

Frequency Response

The transfer function in (8.74) is particularly useful because it gives rise to the
frequency response, which is a graphical representation of the control system
in terms of measurable data. To illustrate this, we will consider a single-input,
single-output (SISO) system. It is a property of linear systems with zero initial
conditions that a sinusoidal input will give rise to a sinusoidal output with the
same frequency, perhaps with a different magnitude A and phase φ:

u(t) = sin(ωt) =⇒ y(t) = A sin(ωt+ φ). (8.75)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

420 CHAPTER 8. LINEAR CONTROL THEORY

Linear time-invariant
(LTI) systems

1) Impulse response g

y(t)=
∫ t

0 g(t−τ)u(τ)dτ
= g ∗ u

2) Transfer function G

y(s) = G(s)u(s)

3) State space (ODE)

ẋ = Ax + Bu

y = Cx + Cu

Physical
system

Laplace
transform

G(s) = L{g(t)}

Canonical realization
(not unique)

G(s) = C(sI−A)−1B + D

Eigensystem
realization
algorithm(ERA)

g(t) = y(t) for u = δ(t)

Figure 8.21: Three equivalent representations of linear time-invariant systems.

This is true for long times, after initial transients die out. The amplitude A and
phase φ of the output sinusoid depend on the input frequency ω. These func-
tions A(ω) and φ(ω) may be mapped out by running a number of experiments
with sinusoidal input at different frequencies ω. Alternatively, this information
is obtained from the complex-valued transfer function G(s):

A(ω) = |G(iω)|, φ(ω) = ∠G(iω). (8.76)

Thus, the amplitude and phase angle for input sin(ωt) may be obtained by eval-
uating the transfer function at s = iω (i.e., along the imaginary axis in the com-
plex plane). These quantities may then be plotted, resulting in the frequency
response or Bode plot.

For a concrete example, consider the spring–mass–damper system, shown
in Fig. 8.22. The equations of motion are given by

mẍ = −δẋ− kx+ u. (8.77)

Choosing values m = 1, δ = 1, k = 2, and taking the Laplace transform yields

G(s) =
1

s2 + s+ 2
. (8.78)

Here we are assuming that the output y is a measurement of the position x of
the mass. Note that the denominator of the transfer function G(s) is the char-
acteristic equation of (8.77), written in state-space form. Thus, the poles of the
complex function G(s) are eigenvalues of the state-space system.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 421

m

-
x

-u

k

δ

Figure 8.22: Spring–mass–damper system.

-80

-60

-40

-20

0

M
a

g
n

it
u

d
e

 (
d

B
)

10
-1

10
0

10
1

10
2

-180

-135

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency (rad/s)

Figure 8.23: Frequency response of spring–mass–damper system. The magni-
tude is plotted on a logarithmic scale, in units of decibel (dB), and the frequency
is likewise on a log scale.

It is now possible to create this system and plot the frequency response (i.e.,
the Bode plot), as shown in Fig. 8.23 and computed in Code 8.9. Note that the
frequency response is readily interpretable and provides physical intuition. For
example, the zero slope of the magnitude at low frequencies indicates that slow
forcing translates directly into motion of the mass, while the roll-off of the mag-
nitude at high frequencies indicates that fast forcing is attenuated and does not
significantly affect the motion of the mass. Moreover, the resonance frequency
is seen as a peak in the magnitude, indicating an amplification of forcing at this
frequency. Code 8.9 also shows how to manipulate state-space realizations into

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

422 CHAPTER 8. LINEAR CONTROL THEORY

frequency-domain representations, and vice versa.

Code 8.9: [MATLAB] Create transfer function and plot frequency response
(Bode) plot. Convert between state-space and frequency-domain representa-
tions.

s = tf(’s’); % Laplace variable
G = 1/(sˆ2 + s + 2); % Transfer function
bode(G); % Frequency response

% State space realization
A = [0 1; -2 -1];
B = [0; 1];
C = [1 0];
D = 0;

% Convert to frequency domain
[num,den] = ss2tf(A,B,C,D);
G = tf(num,den)

% Convert back to state space
[A,B,C,D] = tf2ss(G.num{1},G.den{1})

Code 8.9: [Python] Create transfer function and plot frequency response (Bode)
plot. Convert between state-space and frequency-domain representations.

s = tf(np.array([1,0]),np.array([0,1]))
G = 1/(s**2 + s + 2)
w, mag, phase = bode(G)

State space realization
A = np.array([[0,1],[-2,-1]])
B = np.array([0,1]).reshape((2,1))
C = np.array([1,0])
D = 0

Convert to frequency domain
G = ss2tf(A,B,C,D) # returns transfer function

Convert back to state space
sysSS= tf2ss(G) # returns state space system

Note that the state-space representation is not unique, and going from a
transfer function to state space may switch the order of the state variables.

The frequency domain is also useful because impulsive or step inputs are
particularly simple to represent with the Laplace transform. The impulse re-
sponse (Fig. 8.24) and step response (Fig. 8.25) are computed in MATLAB by

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 423

0 2 4 6 8 10 12
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Impulse Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 8.24: Impulse response of spring–mass–damper system.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 8.25: Step response of spring–mass–damper system.

>> impulse(G); % Impulse response
>> step(G); % Step response

and in python-control by

>>> ia,it = impulse(G) # Impulse response
>>> plt.plot(it,ia) # Need to plot output of impulse

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

424 CHAPTER 8. LINEAR CONTROL THEORY

Controller
K

System
G

wr + ε u + y

wn

+

+

−

Feedback signal

Gd

wd

+

Figure 8.26: Closed-loop feedback control diagram with reference input, noise,
and disturbance. We will consider the various transfer functions from exoge-
nous inputs to the error ε, thus deriving the loop transfer function, as well as
the sensitivity and complementary sensitivity functions.

>>> ia,it = step(G) # Step response
>>> plt.plot(it,ia) # Need to plot output of step

Performance and the Loop Transfer Function: Sensitivity and
Complementary Sensitivity

Consider a slightly modified version of Fig. 8.4, where the disturbance has a
model, Pd. This new diagram, shown in Fig. 8.26, will be used to derive the
important transfer functions relevant for assessing robust performance:

y = GK(wr − y −wn) + Gdwd (8.79a)
=⇒ (I + GK)y = GKwr −GKwn + Gdwd (8.79b)
=⇒ y = (I + GK)−1GK︸ ︷︷ ︸

T

wr − (I + GK)−1GK︸ ︷︷ ︸
T

wn

+ (I + GK)−1

︸ ︷︷ ︸
S

Gdwd. (8.79c)

Here, S is the sensitivity function and T is the complementary sensitivity function.
We may denote L = GK, the loop transfer function, shown in Fig. 8.27, which is
the open-loop transfer function in the absence of feedback. Both S and T may

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 425

-60

-40

-20

0

20

40
M

a
g

n
it
u

d
e

 (
d

B
)

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

45

90

P
h

a
s
e

 (
d

e
g

)

L

S

T

Bode Diagram

Frequency (rad/s)

Figure 8.27: Loop transfer function L along with sensitivity S and complemen-
tary sensitivity T functions.

be simplified in terms of L:

S = (I + L)−1, (8.80a)
T = (I + L)−1L. (8.80b)

Conveniently, the sensitivity and complementary sensitivity functions must
add up to the identity: S + T = I.

In practice, the transfer function from the exogenous inputs to the noiseless
error ε is more useful for design:

ε = wr − y = Swr + Twn − SGdwd. (8.81)

Thus, we see that the sensitivity and complementary sensitivity functions
provide the maps from reference, disturbance, and noise inputs to the tracking
error. Since we desire small tracking error, we may then specify S and T to have
desirable properties, and ideally we will be able to achieve these specifications
by designing the loop transfer function L. In practice, we will choose the con-
troller K with knowledge of the model G so that the loop transfer function has

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

426 CHAPTER 8. LINEAR CONTROL THEORY

beneficial properties in the frequency domain. For example, small gain at high
frequencies will attenuate sensor noise, since this will result in T being small.
Similarly, high gain at low frequencies will provide good reference tracking
performance, as S will be small at low frequencies. However, S and T cannot
both be small everywhere, since S + T = I, from (8.80), and so these design
objectives may compete.

For performance and robustness, we want the maximum peak of S, MS =
‖S‖∞, to be as small as possible. From (8.81), it is clear that, in the absence of
noise, feedback control improves performance (i.e., reduces error) for all fre-
quencies where |S| < 1; thus control is effective when T ≈ 1. As explained in
[665, p. 37], all real systems will have a range of frequencies where |S| > 1, in
which case performance is degraded. Minimizing the peak MS mitigates the
amount of degradation experienced with feedback at these frequencies, im-
proving performance. In addition, the minimum distance of the loop transfer
function L to the point−1 in the complex plane is given byM−1

S . By the Nyquist
stability theorem, the larger this distance, the greater the stability margin of the
closed-loop system, improving robustness. These are the two major reasons to
minimize MS.

The controller bandwidth ωB is the frequency below which feedback control
is effective. This is a subjective definition. Often, ωB is the frequency where
|S(jω)| first crosses −3 dB from below. We would ideally like the controller
bandwidth to be as large as possible without amplifying sensor noise, which
typically has a high frequency. However, there are fundamental bandwidth lim-
itations that are imposed for systems that have time delays or right half-plane
zeros [665].

Inverting the Dynamics

With a model of the form in (8.10) or (8.73), it may be possible to design an
open-loop control law to achieve some desired specification without the use of
measurement-based feedback or feedforward control. For instance, if perfect
tracking of the reference input wr is desired in Fig. 8.3, under certain circum-
stances it may be possible to design a controller by inverting the system dy-
namics G, i.e., K(s) = G−1(s). In this case, the transfer function from reference
wr to output s is given by GG−1 = 1, so that the output perfectly matches the
reference. However, perfect control is never possible in real-world systems, and
this strategy should be used with caution, since it generally relies on a number
of significant assumptions on the system G. First, effective control based on
inversion requires extremely precise knowledge of G and well-characterized,
predictable disturbances; there is little room for model errors or uncertainties,
as there are no sensor measurements to determine if performance is as expected
and no corrective feedback mechanisms to modify the actuation strategy to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 427

compensate.
For open-loop control using system inversion, G must also be stable. It is

impossible to fundamentally change the dynamics of a linear system through
open-loop control, and thus an unstable system cannot be stabilized without
feedback. Attempting to stabilize an unstable system by inverting the dynam-
ics will typically have disastrous consequences. For instance, consider the fol-
lowing unstable system with a pole at s = 5 and a zero at s = −10:

G(s) = (s+ 10)/(s− 5).

Inverting the dynamics would result in a controller

K = (s− 5)/(s+ 10).

However, if there is even the slightest uncertainty in the model, so that the true
pole is at 5− ε, then the open-loop system will be

Gtrue(s)K(s) = (s− 5)/(s− 5 + ε).

This system is still unstable, despite the attempted pole cancelation. Moreover,
the unstable mode is now nearly unobservable.

In addition to stability, G must not have any time delays or zeros in the right
half-plane, and it must have the same number of poles as zeros. If G has any
zeros in the right half-plane, then the inverted controller K will be unstable,
since it will have right half-plane poles. These systems are called non-minimum-
phase, and there have been generalizations to dynamic inversion that provide
bounded inverses to these systems [203]. Similarly, time delays are not invert-
ible, and if G has more poles than zeros, then the resulting controller will not
be realizable and may have extremely large actuation signals b. There are also
generalizations that provide regularized model inversion, where optimization
schemes are applied with penalty terms added to keep the resulting actuation
signal b bounded. These regularized open-loop controllers are often signifi-
cantly more effective, with improved robustness.

Combined, these restrictions on G imply that model-based open-loop con-
trol should only be used when the system is well behaved, accurately character-
ized by a model, when disturbances are characterized, and when the additional
feedback control hardware is unnecessarily expensive. Otherwise, performance
goals must be modest. Open-loop model inversion is often used in manufac-
turing and robotics, where systems are well characterized and constrained in a
standard operating environment.

Robust Control

As discussed above, LQG controllers are known to have arbitrarily poor robust-
ness margins. This is a serious problem in systems such as turbulence control,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

428 CHAPTER 8. LINEAR CONTROL THEORY

neuromechanical systems, and epidemiology, where the dynamics are wrought
with uncertainty and time delays.

Figure 8.2 shows the most general schematic for closed-loop feedback con-
trol, encompassing both optimal and robust control strategies. In the gener-
alized theory of modern control, the goal is to minimize the transfer func-
tion from exogenous inputs w (reference, disturbances, noise, etc.) to a multi-
objective cost function J (accuracy, actuation cost, time-domain performance,
etc.). Optimal control (e.g., LQR, LQE, LQG) is optimal with respect to the H2-
norm, a bounded 2-norm on a Hardy space, consisting of stable and strictly
proper transfer functions (meaning gain rolls off at high frequency). Robust
control is similarly optimal with respect to theH∞ bounded infinity-norm, con-
sisting of stable and proper transfer functions (gain does not grow infinite at
high frequencies). The infinity-norm is defined as

‖G‖∞ , max
ω

σ1(G(iω)). (8.82)

Here, σ1 denotes the maximum singular value. Since the ‖ · ‖∞-norm is the
maximum value of the transfer function at any frequency, it is often called a
worst-case scenario norm; therefore, minimizing the infinity-norm provides ro-
bustness to worst-case exogenous inputs.H∞ robust controllers are used when
robustness is important. There are many connections betweenH2 andH∞ con-
trol, as they exist within the same framework and simply optimize different
norms. We refer the reader to the excellent reference books expanding on this
theory [222, 665].

If we let Gw→J denote the transfer function from w to J, then the goal ofH∞
control is to construct a controller to minimize the infinity-norm: min ‖Gw→J‖∞.
This is typically difficult, and no analytic closed-form solution exists for the
optimal controller in general. However, there are relatively efficient iterative
methods to find a controller such that ‖Gw→J‖∞ < γ, as described in [211].
There are numerous conditions and caveats that describe when this method
can be used. In addition, there are computationally efficient algorithms imple-
mented in both MATLAB and Python, and these methods require relatively
low overhead from the user.

Selecting the cost function J to meet design specifications is a critically im-
portant part of robust control design. Considerations such as disturbance re-
jection, noise attenuation, controller bandwidth, and actuation cost may be ac-
counted for by a weighted sum of the transfer functions S, T, and KS. In the
mixed sensitivity control problem, various weighting transfer functions are used
to balance the relative importance of these considerations at various frequency
ranges. For instance, we may weight S by a low-pass filter and KS by a high-
pass filter, so that disturbance rejection at low frequency is promoted and con-
trol response at high frequency is discouraged. A general cost function may

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 429

consist of three weighting filters Fk multiplying S, T, and KS:
∥∥∥∥∥∥

F1S
F2T

F3KS

∥∥∥∥∥∥
∞

.

Another possible robust control design is calledH∞ loop shaping. This pro-
cedure may be more straightforward than mixed sensitivity synthesis for many
problems. The loop shaping method consists of two major steps. First, a desired
open-loop transfer function is specified based on performance goals and clas-
sical control design. Second, the shaped loop is made robust with respect to a
large class of model uncertainty. Indeed, the procedure of H∞ loop shaping al-
lows the user to design an ideal controller to meet performance specifications,
such as rise-time, bandwidth, settling-time, etc. Typically, a loop shape should
have large gain at low frequency to guarantee accurate reference tracking and
slow disturbance rejection, low gain at high frequencies to attenuate sensor
noise, and a crossover frequency that ensures desirable bandwidth. The loop
transfer function is then robustified so that there are improved gain and phase
margins.
H2 optimal control (e.g., LQR, LQE, LQG) has been an extremely popular

control paradigm because of its simple mathematical formulation and its tun-
ability by user input. However, the advantages ofH∞ control are being increas-
ingly realized. Additionally, there are numerous consumer software solutions
that make implementation relatively straightforward. In MATLAB, mixed sen-
sitivity is accomplished using the mixsyn command in the robust control tool-
box. Similarly, loop shaping is accomplished using the loopsyn command in
the robust control toolbox.

Fundamental Limitations on Robust Performance

As discussed above, we want to minimize the peaks of S and T to improve ro-
bustness. Some peakedness is inevitable, and there are certain system charac-
teristics that significantly limit performance and robustness. Most notably, time
delays and right half-plane zeros of the open-loop system will limit the effec-
tive control bandwidth and will increase the attainable lower bound for peaks
of S and T. This contributes to both degrading performance and decreasing
robustness.

Similarly, a system will suffer from robust performance limitations if the
number of poles exceeds the number of zeros by more than two. These funda-
mental limitations are quantified in the waterbed integrals, which are so named
because if you push a waterbed down in one location, it must rise in another.
Thus, there are limits to how much one can push down peaks in S without
causing other peaks to pop up.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

430 CHAPTER 8. LINEAR CONTROL THEORY

Time delays are relatively easy to understand, since a time delay τ will in-
troduce an additional phase lag of τω at the frequency ω, limiting how fast the
controller can respond effectively (i.e., bandwidth). Thus, the bandwidth for a
controller with acceptable phase margins is typically ωB < 1/τ .

Following the discussion in [665], these fundamental limitations may be un-
derstood in relation to the limitations of open-loop control based on model in-
version. If we consider high-gain feedback u = K(wr − y) for a system as in
Fig. 8.26 and (8.81), but without disturbances or noise, we have

u = Kε = KSwr. (8.83)

We may write this in terms of the complementary sensitivity T, by noting that
since T = I− S, we have T = L(I + L)−1 = GKS:

u = G−1Twr. (8.84)

Thus, at frequencies where T is nearly the identity I and control is effective, the
actuation is effectively inverting G. Even with sensor-based feedback, perfect
control is unattainable. For example, if G has right half-plane zeros, then the ac-
tuation signal will become unbounded if the gain K is too aggressive. Similarly,
limitations arise with time delays and when the number of poles of G exceeds
the number of zeros, as in the case of open-loop model-based inversion.

As a final illustration of the limitation of right half-plane zeros, we consider
the case of proportional control u = Ky in a SISO system withG(s) = N(s)/D(s).
Here, roots of the numerator N(s) are zeros and roots of the denominator D(s)
are poles. The closed-loop transfer function from reference wr to sensors s is
given by

y(s)

wr(s)
=

GK

1 +GK
=

NK/D

1 +NK/D
=

NK

D +NK
. (8.85)

For small control gain K, the term NK in the denominator is small, and the
poles of the closed-loop system are near the poles of G, given by roots of D.
As K is increased, the NK term in the denominator begins to dominate, and
closed-loop poles are attracted to the roots of N , which are the open-loop zeros
of G. Thus, if there are right half-plane zeros of the open-loop system G, then
high-gain proportional control will drive the system unstable. These effects are
often observed in the root locus plot from classical control theory. In this way,
we see that right half-plane zeros will directly impose limitations on the gain
margin of the controller.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 431

Suggested Reading

Texts

(1) Feedback systems: An introduction for scientists and engineers, by K. J.
Aström and R. M. Murray, 2010 [30].

(2) Feedback control theory, by J. C. Doyle, B. A. Francis, and A. R. Tannen-
baum, 2013 [210].

(3) Multivariable feedback control: Analysis and design, by S. Skogestad and
I. Postlethwaite, 2005 [665].

(4) A course in robust control theory: A convex approach, by G. E. Dullerud
and F. Paganini, 2000 [222].

(5) Optimal control and estimation, by R. F. Stengel, 2012 [675].

Papers and reviews

(1) Guaranteed margins for LQG regulators, by J. C. Doyle, IEEE Transactions
on Automatic Control, 1978 [209].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

432 CHAPTER 8. LINEAR CONTROL THEORY

Homework

Exercise 8-1. Give an example of a control system in your daily life. Describe
the inputs and outputs. What are the system dynamics? What are the control
objectives?

Exercise 8-2. This example will explore the optimal control workflow on a ro-
tary inverted pendulum.

(a) Derive the equations of motion for a rotary pendulum, where the base of
the pendulum is mounted to a rotating arm. The control input is a torque
input to the rotor arm.

(b) Identify the fixed points of the system and linearize about each fixed
point. What is the stability of each fixed point? Determine the linear con-
trollability of each fixed point.

(c) Design an LQR controller for the pendulum-up configuration assuming
full-state measurements.

(d) Determine the observability of the pendulum-up configuration if we can-
not measure the full state, but instead measure the pendulum angle and
the rotor angle. Similarly, determine the observability if we only measure
the pendulum angular rate and the rotor angle. Which sensor configura-
tion is more observable? Pick at least one different sensor set and assess if
this configuration is observable.

(e) Assuming a measurement of the pendulum angle and rotor angle, design
a Kalman filter to estimate the full state. Design for disturbance magni-
tude 1 × 10−3 and sensor noise 1 × 10−2. Simulate the noisy system and
compare the Kalman filter estimate with the true state without added
noise.

(f) Design an LQG controller for the pendulum-up configuration and demon-
strate this controller in simulation. How does the controller perform when
you introduce a small time delay? At what point does the time delay
cause the system to go unstable?

Exercise 8-3. Derive the equations of motion for a double pendulum on a cart.

Repeat each step above for the double pendulum.

Exercise 8-4. This exercise will design a controller to move a cart with a pen-
dulum in the down position from one point on a track to another. The goal
will be to move quickly from point x = 0 to point x = 1 while minimizing the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

8.8. ROBUST CONTROL AND FREQUENCY-DOMAIN TECHNIQUES 433

amount the pendulum swings, which corresponds to the problem faced when
designing a controller for a gantry crane. What will make this example more
interesting is that it is a non-minimum-phase system.

First, try using a simple proportional feedback controller, with gain K, where
the control input is proportional to the error between the state and the goal.
Plot the poles and zeros of the closed-loop system for a range of K, and explain
the results.

Design a full-state LQR controller to track a reference position of the cart, while
minimizing the pendulum swinging. Try different LQR gain matrices, and com-
pare the step response when setting the reference state from x = 0 to x = 1.

Exercise 8-5. Generate two different state-space realizations for the following
transfer function:

G(s) =
1

s2 + 3s+ 2
.

Find a coordinate transformation between the states of the two systems.

Exercise 8-6. This example will explore how an ill-conditioned controllability
Gramian can affect state-feedback control.

(a) Create a continuous-time, single-input state-space system that has n = 2
states and full-state measurements (i.e., C = I). Design the system to be
technically controllable, yet with one of the directions being much more
controllable than the other (i.e., 106 times more controllable). Compute
the controllability Gramian for this system and compute its eigendecom-
position. Explain what you find.

(b) Design an LQR controller for this system using weight matrices Q = I
and R = 1. Simulate the response of the closed-loop system, and explain
the results.

(c) Using this controller, initialize the system at thousands of points ran-
domly sampled from a unit circle where ‖x‖ = 1, and compute the LQR
cost J for each of these trajectories. Plot the initial conditions on the sphere,
color-coded by the cost J . Reconcile this plot with the controllability Gramian
you computed earlier.

Exercise 8-7. For the inverted pendulum on a cart, we will analyze the sensi-
tivity and robustness of LQG control. Plot the sensitivity and complementary
sensitivity for this system. What are the limits of robustness?

Robustify the LQG controller using loop synthesis. Compare the robustness
before and after.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

434 CHAPTER 8. LINEAR CONTROL THEORY

For the LQG controller, introduce a small time delay to the system and char-
acterize what changes in the control response and performance. At what size
time delay does the system go unstable? Determine the units for a realistic-
sized pendulum.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 9

Balanced Models for Control

Many systems of interest are exceedingly high-dimensional, making them dif-
ficult to characterize. High dimensionality also limits controller robustness due
to significant computational time delays. For example, for the governing equa-
tions of fluid dynamics, the resulting discretized equations may have millions
or billions of degrees of freedom, making them expensive to simulate. Thus,
significant effort has gone into obtaining reduced-order models that capture
the most relevant mechanisms and are suitable for feedback control.

Unlike reduced-order models based on proper orthogonal decomposition
(see Chapters 12 and 13), which order modes based on energy content in the
data, here we will discuss a class of balanced reduced-order models that em-
ploy a different inner product to order modes based on input–output energy.
Thus, only modes that are both highly controllable and highly observable are
selected, making balanced models ideal for control applications. In this chapter
we also describe related procedures for model reduction and system identifica-
tion, depending on whether or not the user starts with a high-fidelity model or
simply has access to measurement data.

9.1 Model Reduction and System Identification

In many nonlinear systems, it is still possible to use linear control techniques.
For example, in fluid dynamics there are numerous success stories of linear
model-based flow control [39, 124, 240], for example to delay transition from
laminar to turbulent flow in a spatially developing boundary layer, to reduce
skin-friction drag in wall turbulence, and to stabilize the flow past an open cav-
ity. However, many linear control approaches do not scale well to large state
spaces, and they may be prohibitively expensive to enact for real-time control
on short timescales. Thus, it is often necessary to develop low-dimensional ap-
proximations of the system for use in real-time feedback control.

There are two broad approaches to obtain reduced-order models (ROMs).
First, it is possible to start with a high-dimensional system, such as the dis-

435

436 CHAPTER 9. BALANCED MODELS FOR CONTROL

cretized Navier–Stokes equations, and project the dynamics onto a low-dimensional
subspace identified, for example, using proper orthogonal decomposition (POD;
Chapter 12) [79, 335] and Galerkin projection [75, 577]. There are numerous
variations to this procedure, including the discrete empirical interpolation method
(DEIM; Section 13.5) [171, 556], gappy POD (Section 13.1) [239], balanced proper
orthogonal decomposition (BPOD; Section 9.2) [608, 755], and many more. The
second approach is to collect data from a simulation or an experiment and iden-
tify a low-rank model using data-driven techniques. This approach is typically
called system identification, and is often preferred for control design because of
the relative ease of implementation. Examples include the dynamic mode de-
composition (DMD; Section 7.2) [422, 611, 635, 727], the eigensystem realization
algorithm (ERA; Section 9.3) [358, 468], the observer Kalman filter identification
(OKID; Section 9.3) [357, 359, 563], NARMAX [86], and the sparse identification
of nonlinear dynamics (SINDy; Section 7.3) [132].

After a linear model has been identified, either by model reduction or sys-
tem identification, it may then be used for model-based control design. How-
ever, there are a number of issues that may arise in practice, as linear model-
based control might not work for a large class of systems. First, the system be-
ing modeled may be strongly nonlinear, in which case the linear approximation
might only capture a small portion of the dynamic effects. Next, the system may
be stochastically driven, so that the linear model will average out the relevant
fluctuations. Finally, when control is applied to the full system, the attractor
dynamics may change, rendering the linearized model invalid. Exceptions in-
clude the stabilization of fixed points, where feedback control rejects nonlinear
disturbances and keeps the system in a neighborhood of the fixed point where
the linearized model is accurate. There are also methods for system identifica-
tion and model reduction that are nonlinear, involve stochasticity, and change
with the attractor. However, these methods are typically advanced and they
also may limit the available machinery from control theory.

9.2 Balanced Model Reduction

The high dimensionality and short timescales associated with complex systems
may render the model-based control strategies described in Chapter 8 infeasi-
ble for real-time applications. Moreover, obtaining H2 and H∞ optimal con-
trollers may be computationally intractable, as they involve either solving a
high-dimensional Riccati equation, or an expensive iterative optimization. As
has been demonstrated throughout this book, even if the ambient dimension
is large, there may still be a few dominant coherent structures that character-
ize the system. Reduced-order models provide efficient, low-dimensional rep-
resentations of these most relevant mechanisms. Low-order models may then

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.2. BALANCED MODEL REDUCTION 437

be used to design efficient controllers that can be applied in real time, even for
high-dimensional systems. An alternative is to develop controllers based on the
full-dimensional model and then apply model reduction techniques directly to
the full controller [172, 261, 283, 537].

Model reduction is essentially data reduction that respects the fact that the
data is generated by a dynamic process. If the dynamical system is a linear
time-invariant (LTI) input–output system, then there is a wealth of machinery
available for model reduction, and performance bounds may be quantified. The
techniques explored here are based on the singular value decomposition (SVD;
Chapter 1) [144, 285, 286], and the minimal realization theory of Ho and Kalman
[329, 509]. The general idea is to determine a hierarchical modal decomposition
of the system state that may be truncated at some model order, only keeping
the coherent structures that are most important for control.

The Goal of Model Reduction

Consider a high-dimensional system, depicted schematically in Fig. 9.1,

d

dt
x = Ax + Bu, (9.1a)

y = Cx + Du, (9.1b)

for example, from a spatially discretized simulation of a partial differential
equation (PDE). The primary goal of model reduction is to find a coordinate
transformation x = Ψx̃ giving rise to a related system (Ã, B̃, C̃, D̃) with simi-
lar input–output characteristics,

d

dt
x̃ = Ãx̃ + B̃u, (9.2a)

y = C̃x̃ + D̃u, (9.2b)

in terms of a state x̃ ∈ Rr with reduced dimension, r � n. Note that u and
y are the same in (9.1) and (9.2) even though the system states are different.
Obtaining the projection operator Ψ will be the focus of this section.

As a motivating example, consider the following simplified model:

d

dt

[
x1

x2

]
=

[
−2 0
0 −1

] [
x1

x2

]
+

[
1

10−10

]
u, (9.3a)

y =
[
1 10−10

] [x1

x2

]
. (9.3b)

In this case, the state x2 is barely controllable and barely observable. Simply
choosing x̃ = x1 will result in a reduced-order model that faithfully captures

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

438 CHAPTER 9. BALANCED MODELS FOR CONTROL

Systemu y

Figure 9.1: Input–output system. A control-oriented reduced-order model will
capture the transfer function from u to y.

the input–output dynamics. Although the choice x̃ = x1 seems intuitive in this
extreme case, many model reduction techniques would erroneously favor the
state x̃ = x2, since it is more lightly damped. Throughout this section, we will
investigate how to accurately and efficiently find the transformation matrix Ψ
that best captures the input–output dynamics.

The proper orthogonal decomposition [79, 335] from Chapter 12 provides
a transform matrix Ψ, the columns of which are modes that are ordered based
on energy content.1 POD has been widely used to generate ROMs of complex
systems, many for control, and it is guaranteed to provide an optimal low-
rank basis to capture the maximal energy or variance in a data set. However,
it may be the case that the most energetic modes are nearly uncontrollable or
unobservable, and therefore may not be relevant for control. Similarly, in many
cases the most controllable and observable state directions may have very low
energy; for example, acoustic modes typically have very low energy, yet they
mediate the dominant input–output dynamics in many fluid systems. The rud-
der on a ship provides a good analogy: although it accounts for a small amount
of the total energy, it is dynamically important for control.

Instead of ordering modes based on energy, it is possible to determine a
hierarchy of modes that are most controllable and observable, therefore captur-
ing the most input–output information. These modes give rise to balanced mod-
els, giving equal weighting to the controllability and observability of a state
via a coordinate transformation that makes the controllability and observabil-
ity Gramians equal and diagonal. These models have been extremely success-
ful, although computing a balanced model using traditional methods is pro-
hibitively expensive for high-dimensional systems. In this section, we describe
the balancing procedure, as well as modern methods for efficient computation
of balanced models. A computationally efficient suite of algorithms for model
reduction and system identification may be found in [71].

A balanced reduced-order model should map inputs to outputs as faithfully
as possible for a given model order r. It is therefore important to introduce an

1When the training data consists of velocity fields, for example from a high-dimensional
discretized fluid system, then the singular values literally indicate the kinetic energy content of
the associated mode. It is common to refer to POD modes as being ordered by energy content,
even in other applications, although variance is more technically correct.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.2. BALANCED MODEL REDUCTION 439

operator norm to quantify how similarly (9.1) and (9.2) act on a given set of in-
puts. Typically, we take the infinity-norm of the difference between the transfer
functions G(s) and Gr(s) obtained from the full system (9.1) and reduced sys-
tem (9.2), respectively. This norm is given by

‖G‖∞ , max
ω

σ1(G(iω)). (9.4)

See Section 8.8 for a primer on transfer functions. To summarize, we seek a
reduced-order model (9.2) of low order, r � n, so the operator norm ‖G−Gr‖∞
is small.

Change of Variables in Control Systems

The balanced model reduction problem may be formulated in terms of first
finding a coordinate transformation,

x = Tz, (9.5)

that hierarchically orders the states in z in terms of their ability to capture the
input–output characteristics of the system. We will begin by considering an in-
vertible transformation T ∈ Rn×n, and then provide a method to compute just
the first r columns, which will comprise the transformation Ψ in (9.2). Thus,
it will be possible to retain only the first r most controllable/observable states,
while truncating the rest. This is similar to the change of variables into eigen-
vector coordinates in (8.18), except that we emphasize controllability and ob-
servability rather than characteristics of the dynamics.

Substituting Tz into (9.1) gives

d

dt
Tz = ATz + Bu, (9.6a)

y = CTz + Du. (9.6b)

Finally, multiplying (9.6a) by T−1 yields

d

dt
z = T−1ATz + T−1Bu, (9.7a)

y = CTz + Du. (9.7b)

This results in the following transformed equations:

d

dt
z = Âz + B̂u, (9.8a)

y = Ĉz + Du, (9.8b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

440 CHAPTER 9. BALANCED MODELS FOR CONTROL

where Â = T−1AT, B̂ = T−1B, and Ĉ = CT. Note that when the columns of
T are orthonormal, the change of coordinates becomes

d

dt
z = T∗ATz + T∗Bu, (9.9a)

y = CTz + Du. (9.9b)

Gramians and Coordinate Transformations

The controllability and observability Gramians each establish an inner prod-
uct on state space in terms of how controllable or observable a given state is,
respectively. As such, Gramians depend on the particular choice of coordinate
system and will transform under a change of coordinates. In the coordinate
system z given by (9.5), the controllability Gramian becomes

Ŵc =

∫ ∞

0

eÂτB̂B̂∗eÂ
∗
τ dτ (9.10a)

=

∫ ∞

0

eT−1ATτT−1BB∗T−∗eT∗A∗T−∗τ dτ (9.10b)

=

∫ ∞

0

T−1eAτTT−1BB∗T−∗T∗eA∗τT−∗ dτ (9.10c)

= T−1

(∫ ∞

0

eAτBB∗eAτ

dτ

)
T−∗ (9.10d)

= T−1WcT
−∗. (9.10e)

Note that here we introduce T−∗ := (T−1)∗ = (T∗)−1. The observability Gramian
transforms similarly:

Ŵo = T∗WoT, (9.11)

which is an exercise for the reader. Both Gramians transform as tensors (i.e.,
in terms of the transform matrix T and its transpose, rather than T and its in-
verse), which is consistent with them inducing an inner product on state space.

Simple Rescaling

This example, modified from Moore [509], demonstrates the ability to balance
a system through a change of coordinates. Consider the system

d

dt

[
x1

x2

]
=

[
−1 0
0 −10

] [
x1

x2

]
+

[
10−3

103

]
u, (9.12a)

y =
[
103 10−3

] [x1

x2

]
. (9.12b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.2. BALANCED MODEL REDUCTION 441

In this example, the first state x1 is barely controllable, while the second state
is barely observable. However, under the change of coordinates z1 = 103x1 and
z2 = 10−3x2, the system becomes balanced:

d

dt

[
z1

z2

]
=

[
−1 0
0 −10

] [
z1

z2

]
+

[
1
1

]
u, (9.13a)

y =
[
1 1

] [z1

z2

]
. (9.13b)

In this example, the coordinate change simply rescales the state x. For instance,
it may be that the first state had units of millimeters while the second state had
units of kilometers. Writing both states in meters balances the dynamics; i.e.,
the controllability and observability Gramians are equal and diagonal.

Balancing Transformations

Now we are ready to derive the balancing coordinate transformation T that
makes the controllability and observability Gramians equal and diagonal:

Ŵc = Ŵo = Σ. (9.14)

First, consider the product of the Gramians from (9.10) and (9.11):

ŴcŴo = T−1WcWoT, (9.15)

Plugging in the desired Ŵc = Ŵo = Σ yields

T−1WcWoT = Σ2 =⇒ WcWoT = TΣ2. (9.16)

The latter expression in (9.16) is the equation for the eigendecomposition of
WcWo, the product of the Gramians in the original coordinates. Thus, the bal-
ancing transformation T is related to the eigendecomposition of WcWo. The
expression above is valid for any scaling of the eigenvectors, and the correct
rescaling must be chosen to exactly balance the Gramians. In other words, there
are many such transformations T that make the product ŴcŴo = Σ2, but
where the individual Gramians are not equal (for example, diagonal Gramians
Ŵc = Σc and Ŵo = Σo will satisfy (9.16) if ΣcΣo = Σ2).

Below, we will introduce the matrix S = T−1 to simplify notation.

Scaling Eigenvectors for the Balancing Transformation

To find the correct scaling of eigenvectors to make Ŵc = Ŵo = Σ, first con-
sider the simplified case of balancing the first diagonal element of Σ. Let ξu

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

442 CHAPTER 9. BALANCED MODELS FOR CONTROL

denote the unscaled first column of T, and let ηu denote the unscaled first row
of S = T−1. Then

ηuWcη
∗
u = σc, (9.17a)

ξ∗uWoξu = σo. (9.17b)

The first element of the diagonalized controllability Gramian is thus σc, while
the first element of the diagonalized observability Gramian is σo. If we scale the
eigenvector ξu by σs, then the inverse eigenvector ηu is scaled by σ−1

s . Trans-
forming via the new scaled eigenvectors ξs = σsξu and ηs = σ−1

s ηu yields

ηsWcη
∗
s = σ−2

s σc, (9.18a)
ξ∗sWoξs = σ2

sσo. (9.18b)

Thus, for the two Gramians to be equal,

σ−2
s σc = σ2

sσo =⇒ σs =

(
σc
σo

)1/4

. (9.19)

To balance every diagonal entry of the controllability and observability Grami-
ans, we first consider the unscaled eigenvector transformation Tu from (9.16);
the subscript u simply denotes unscaled. As an example, we use the standard
scaling in most computational software so that the columns of Tu have unit
norm. Then both Gramians are diagonalized, but are not necessarily equal:

T−1
u WcT

−∗
u = Σc, (9.20a)

T∗uWoTu = Σo. (9.20b)

The scaling that exactly balances these Gramians is then given by Σs = Σ1/4
c Σ−1/4

o .
Thus, the exact balancing transformation is given by

T = TuΣs. (9.21)

It is possible to directly confirm that this transformation balances the Gramians:

(TuΣs)
−1Wc(TuΣs)

−∗ = Σ−1
s T−1

u WcT
−∗
u Σ−1

s = Σ−1
s ΣcΣ

−1
s = Σ1/2

c Σ1/2
o ,
(9.22a)

(TuΣs)
∗Wo(TuΣs) = ΣsT

∗
uWoTuΣs = ΣsΣoΣs = Σ1/2

c Σ1/2
o . (9.22b)

The manipulations above rely on the fact that diagonal matrices commute, so
that ΣcΣo = ΣoΣc, etc.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.2. BALANCED MODEL REDUCTION 443

Example of the Balancing Transform and Gramians

Before confronting the practical challenges associated with accurately and ef-
ficiently computing the balancing transformation, it is helpful to consider an
illustrative example.

In MATLAB, computing the balanced system and the balancing transfor-
mation is a simple one-line command:

[sysb,g,Ti,T] = balreal(sys); % Balance the system

In this code, T is the transformation, Ti is the inverse transformation, sysb is
the balanced system, and g is a vector containing the diagonal elements of the
balanced Gramians.

In Python, computing the balanced system is also simple using the Python
Control Systems Library (python-control):2

sysb = balreal(sys,len(B)); # Balance the system

The following example illustrates the balanced realization for a two-dimensional
system. First, we generate a system and compute its balanced realization, along
with the Gramians for each system. Next, we visualize the Gramians of the un-
balanced and balanced systems in Fig. 9.2.

Code 9.1: [MATLAB] Obtaining a balanced realization.
A = [-.75 1; -.3 -.75];
B = [2; 1];
C = [1 2];
D = 0;

sys = ss(A,B,C,D);

Wc = gram(sys,’c’); % Controllability Gramian
Wo = gram(sys,’o’); % Observability Gramian

[sysb,g,Ti,T] = balreal(sys); % Balance the system

BWc = gram(sysb,’c’) % Balanced Gramians
BWo = gram(sysb,’o’)

Code 9.1: [Python] Obtaining a balanced realization.
from control.matlab import * # Code will resemble Matlab
import slycot

A = np.array([[-0.75,1],[-0.3,-0.75]])

2The Python control toolbox is available at https://python-control.readthedocs.
io/.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://python-control.readthedocs.io/
https://python-control.readthedocs.io/

444 CHAPTER 9. BALANCED MODELS FOR CONTROL

x1

x2

Wc

Wo

Wb‖x‖ = 1

Figure 9.2: Illustration of balancing transformation on Gramians. The reachable
set with unit control input is shown in red, given by W

1/2
c x for ‖x‖ = 1. The

corresponding observable set is shown in blue. Under the balancing transfor-
mation T, the Gramians are equal, shown in purple.

B = np.array([2,1]).reshape((2,1))
C = np.array([1,2])
D = 0

sys = ss(A,B,C,D)

Wc = gram(sys,’c’) # Controllability Gramian
Wo = gram(sys,’o’) # Observability Gramian

sysb = balred(sys,len(B)) # Balance the system

BWc = gram(sysb,’c’) # Balanced Gramians
BWo = gram(sysb,’o’)

The resulting balanced Gramians are equal, diagonal, and ordered from most
controllable/observable mode to least:

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.2. BALANCED MODEL REDUCTION 445

>>BWc =
1.9439 -0.0000
-0.0000 0.3207

>>BWo =
1.9439 0.0000
0.0000 0.3207

To visualize the Gramians in Fig. 9.2, we first recall that the distance the
system can go in a direction x with a unit actuation input is given by x∗Wcx.
Thus, the controllability Gramian may be visualized by plotting W

1/2
c x for x on

a sphere with ‖x‖ = 1. The observability Gramian may be similarly visualized.
In this example, we see that the most controllable and observable directions

may not be well aligned. However, by a change of coordinates, it is possible to
find a new direction that is the most jointly controllable and observable. It is
then possible to represent the system in this one-dimensional subspace, while
still capturing a significant portion of the input–output energy. If the red and
blue Gramians were exactly perpendicular, so that the most controllable di-
rection was the least observable direction, and vice versa, then the balanced
Gramian would be a circle. In this case, there is no preferred state direction,
and both directions are equally important for the input–output behavior.

Instead of using the balreal command, it is possible to manually construct
the balancing transformation from the eigendecomposition of WcWo, as de-
scribed above and provided in code available online.

Balanced Truncation

We have now shown that it is possible to define a change of coordinates so that
the controllability and observability Gramians are equal and diagonal. More-
over, these new coordinates may be ranked hierarchically in terms of their joint
controllability and observability. It may be possible to truncate these coordi-
nates and keep only the most controllable/observable directions, resulting in a
reduced-order model that faithfully captures input–output dynamics.

Given the new coordinates z = T−1x ∈ Rn, it is possible to define a reduced-
order state x̃ ∈ Rr as

z =

z1
...
zr
zr+1

...
zn

 x̃

(9.23)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

446 CHAPTER 9. BALANCED MODELS FOR CONTROL

in terms of the first r most controllable and observable directions. If we parti-
tion the balancing transformation T and inverse transformation S = T−1 into
the first r modes to be retained and the last n− r modes to be truncated,

T =
[
Ψ Tt

]
, S =

[
Φ∗

St

]
, (9.24)

then it is possible to rewrite the transformed dynamics in (9.7) as

d

dt

[
x̃
zt

]
=

[
Φ∗AΨ Φ∗ATt

StAΨ StATt

] [
x̃
zt

]
+

[
Φ∗B
StB

]
u, (9.25a)

y =
[

CΨ CTt

] [x̃
zt

]
+ Du. (9.25b)

In balanced truncation, the state zt is simply truncated (i.e., discarded and set
equal to zero), and only the x̃ equations remain:

d

dt
x̃ = Φ∗AΨx̃ + Φ∗Bu, (9.26a)

y = CΨx̃ + Du. (9.26b)

Only the first r columns of T and of S∗ = T−∗ are required to construct Ψ
and Φ, and thus computing the entire balancing transformation T is unneces-
sary. Note that the matrix Φ here is different than the matrix of DMD modes in
Section 7.2. The computation of Ψ and Φ without T will be discussed in the fol-
lowing sections. A key benefit of balanced truncation is the existence of upper
and lower bounds on the error of a given order truncation:

upper bound ‖G−Gr‖∞ ≤ 2
n∑

j=r+1

σj, (9.27a)

lower bound ‖G−Gr‖∞ > σr+1, (9.27b)

where σj is the jth diagonal entry of the balanced Gramians. The diagonal en-
tries of Σ are also known as Hankel singular values.

Computing Balanced Realizations

In the previous section we demonstrated the feasibility of obtaining a coordi-
nate transformation that balances the controllability and observability Grami-
ans. However, the computation of this balancing transformation is non-trivial,
and significant work has gone into obtaining accurate and efficient methods,
starting with Moore in 1981 [509], and continuing with Lall, Marsden, and
Glavaški in 2002 [426], Willcox and Peraire in 2002 [755], and Rowley in 2005

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.2. BALANCED MODEL REDUCTION 447

[608]. For an excellent and complete treatment of balanced realizations and
model reduction, see Antoulas [24].

In practice, computing the Gramians Wc and Wo and the eigendecomposition
of the product WcWo in (9.16) may be prohibitively expensive for high-dimensional
systems. Instead, the balancing transformation may be approximated from impulse-
response data, utilizing the singular value decomposition for efficient extrac-
tion of the most relevant subspaces.

We will first show that Gramians may be approximated via a snapshot ma-
trix from impulse-response experiments/simulations. Then, we will show how
the balancing transformation may be obtained from this data.

Empirical Gramians

In practice, computing Gramians via the Lyapunov equation is computation-
ally expensive, with computational complexity ofO(n3). Instead, the Gramians
may be approximated by full-state measurements of the discrete-time direct
and adjoint systems:

direct xk+1 = Adxk + Bduk, (9.28a)
adjoint xk+1 = A∗dxk + C∗dyk. (9.28b)

Equation (9.28a) is the discrete-time dynamic update equation from (8.21), and
(9.28b) is the adjoint equation. The matrices Ad, Bd, and Cd are the discrete-
time system matrices from (8.22). Note that the adjoint equation is generally
non-physical, and must be simulated; thus the methods here apply to analyt-
ical equations and simulations, but not to experimental data. An alternative
formulation that does not rely on adjoint data, and therefore generalizes to ex-
periments, will be provided in Section 9.3.

Computing the impulse response of the direct and adjoint systems yields
the following discrete-time snapshot matrices:

Cd =
[
Bd AdBd · · · Amc−1

d Bd

]
, Od =

Cd

CdAd
...

CdA
mo−1
d

 . (9.29)

Note that whenmc = n, Cd is the discrete-time controllability matrix, and when
mo = n, Od is the discrete-time observability matrix; however, we generally
consider mc,mo � n. These matrices may also be obtained by sampling the
continuous-time direct and adjoint systems at a regular interval ∆t.

It is now possible to compute empirical Gramians that approximate the true
Gramians without solving the Lyapunov equations in (8.42) and (8.43):

Wc ≈We
c = CdC∗d, (9.30a)

Wo ≈We
o = O∗dOd. (9.30b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

448 CHAPTER 9. BALANCED MODELS FOR CONTROL

The empirical Gramians essentially comprise a Riemann sum approximation
of the integral in the continuous-time Gramians, which becomes exact as the
time-step of the discrete-time system becomes arbitrarily small and the dura-
tion of the impulse response becomes arbitrarily large. In practice, the impulse-
response snapshots should be collected until the lightly damped transients die
out. The method of empirical Gramians is quite efficient, and is widely used
[425, 426, 509, 608, 755]. Note that p adjoint impulse responses are required,
where p is the number of outputs. This becomes intractable when there are a
large number of outputs (e.g., full-state measurements), motivating the output
projection below.

Balanced POD

Instead of computing the eigendecomposition of WcWo, which is an n × n
matrix, it is possible to compute the balancing transformation via the singular
value decomposition of the product of the snapshot matrices,

OdCd, (9.31)

reminiscent of the method of snapshots from Section 1.3 [663]. This is the ap-
proach taken by Rowley [608].

First, define the generalized Hankel matrix as the product of the adjoint
(Od) and direct (Cd) snapshot matrices from (9.29), for the discrete-time system:

H = OdCd =

Cd

CdAd
...

CdA
mo−1
d

[
Bd AdBd · · · Amc−1

d Bd

]
(9.32a)

=

CdBd CdAdBd · · · CdA
mc−1
d Bd

CdAdBd CdA
2
dBd · · · CdA

mc
d Bd

...
...

CdA
mo−1
d Bd CdA

mo
d Bd · · · CdA

mc+mo−2
d Bd

 . (9.32b)

Next, we factor H using the SVD:

H = UΣV∗ =
[
Ũ Ut

] [Σ̃ 0
0 Σt

] [
Ṽ
∗

V∗t

]
≈ ŨΣ̃Ṽ

∗
. (9.33)

For a given desired model order r � n, only the first r columns of U and V are
retained, along with the first r × r block of Σ; the remaining contribution from
UtΣtV

∗
t may be truncated. This yields a bi-orthogonal set of modes given by:

direct modes Ψ = CdṼΣ̃
−1/2

, (9.34a)

adjoint modes Φ = O∗dŨΣ̃
−1/2

. (9.34b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.2. BALANCED MODEL REDUCTION 449

The direct modes Ψ ∈ Rn×r and adjoint modes Φ ∈ Rn×r are bi-orthogonal,
Φ∗Ψ = Ir×r, and Rowley [608] showed that they establish the change of coor-
dinates that balance the truncated empirical Gramians. Thus, Ψ approximates
the first r columns of the full n×n balancing transformation, T, and Φ∗ approx-
imates the first r rows of the n× n inverse balancing transformation, S = T−1.

Now, it is possible to project the original system onto these modes, yielding
a balanced reduced-order model of order r:

Ã = Φ∗AdΨ, (9.35a)

B̃ = Φ∗Bd, (9.35b)

C̃ = CdΨ. (9.35c)

It is possible to compute the reduced system dynamics in (9.35a) without hav-
ing direct access to Ad. In some cases, Ad may be exceedingly large and un-
wieldy, and instead it is only possible to evaluate the action of this matrix on
an input vector. For example, in many modern fluid dynamics codes, the ma-
trix Ad is not actually represented, but because it is sparse, it is possible to
implement efficient routines to multiply this matrix by a vector.

It is important to note that the reduced-order model in (9.35) is formulated
in discrete time, as it is based on discrete-time empirical snapshot matrices.
However, it is simple to obtain the corresponding continuous-time system:

>>sysD = ss(Atilde,Btilde,Ctilde,D,dt); % Discrete-time
>>sysC = d2c(sysD); % Continuous-time

In this example, D is the same in continuous time and discrete time, and in the
full-order and reduced-order models.

Note that a BPOD model may not exactly satisfy the upper bound from
balanced truncation (see (9.27)) due to errors in the empirical Gramians.

Output Projection

Often, in high-dimensional simulations, we assume full-state measurements, so
that p = n is exceedingly large. To avoid computing p = n adjoint simulations,
it is possible instead to solve an output-projected adjoint equation [608]:

xk+1 = A∗dxk + C∗dŨy, (9.36)

where Ũ is a matrix containing the first r singular vectors of Cd. Thus, we first
identify a low-dimensional POD subspace Ũ from a direct impulse response,
and then only perform adjoint impulse-response simulations by exciting these
few POD coefficient measurements. More generally, if y is high-dimensional but
does not measure the full state, it is possible to use a POD subspace trained
on the measurements, given by the first r singular vectors Ũ of CdCd. Adjoint
impulse responses may then be performed in these output POD directions.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

450 CHAPTER 9. BALANCED MODELS FOR CONTROL

Data Collection and Stacking

The powers mc and mo in (9.32) signify that data must be collected until the
matrices Cd andO∗d are full rank, after which the controllable/observable sub-
spaces have been sampled. Unless we collect data until transients decay, the
true Gramians are only approximately balanced. Instead, it is possible to col-
lect data until the Hankel matrix is full rank, balance the resulting model, and
then truncate. This more efficient approach is developed in [724] and [462].

The snapshot matrices in (9.29) are generated from impulse-response simu-
lations of the direct (9.28a) and adjoint (9.36) systems. These time-series snap-
shots are then interleaved to form the snapshot matrices.

Historical Note

The balanced POD method described above originated with the seminal work
of Moore in 1981 [509], which provided a data-driven generalization of the min-
imal realization theory of Ho and Kalman [329]. Until then, minimal realiza-
tions were defined in terms of idealized controllable and observable subspaces,
which neglected the subtlety of degrees of controllability and observability.

Moore’s paper introduced a number of critical concepts that bridged the gap
from theory to reality. First, he established a connection between principal com-
ponent analysis (PCA) and Gramians, showing that information about degrees
of controllability and observability may be mined from data via the SVD. Next,
Moore showed that a balancing transformation exists that makes the Grami-
ans equal, diagonal, and hierarchically ordered by balanced controllability and
observability; moreover, he provides an algorithm to compute this transfor-
mation. This set the stage for principled model reduction, whereby states may
be truncated based on their joint controllability and observability. Moore fur-
ther introduced the notion of an empirical Gramian, although he did not use
this terminology. He also realized that computing Wc and Wo directly is less
accurate than computing the SVD of the empirical snapshot matrices from the
direct and adjoint systems, and he avoided directly computing the eigendecom-
position of WcWo by using these SVD transformations. In 2002, Lall, Marsden,
and Glavaški [426] generalized this theory to nonlinear systems.

One drawback of Moore’s approach is that he computed the entire n×n bal-
ancing transformation, which is not suitable for exceedingly high-dimensional
systems. In 2002, Willcox and Peraire [755] generalized the method to high-
dimensional systems, introducing a variant based on the rank-r decomposi-
tions of Wc and Wo obtained from the direct and adjoint snapshot matrices. It
is then possible to compute the eigendecomposition of WcWo using efficient
eigenvalue solvers without ever actually writing down the full n × n matri-
ces. However, this approach has the drawback of requiring as many adjoint
impulse-response simulations as the number of output equations, which may

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 451

be exceedingly large for full-state measurements. In 2005, Rowley [608] ad-
dressed this issue by introducing the output projection, discussed above, which
limits the number of adjoint simulations to the number of relevant POD modes
in the data. He also showed that it is possible to use the eigendecomposition of
the product OdCd. The product OdCd is often smaller, and these computations
may be more accurate.

It is interesting to note that a nearly equivalent formulation was developed
20 years earlier in the field of system identification. The so-called eigensystem
realization algorithm (ERA) [358], introduced in 1985 by Juang and Pappa, ob-
tains equivalent balanced models without the need for adjoint data, making it
useful for system identification in experiments. This connection between ERA
and BPOD was established by Ma et al. in 2011 [468].

Balanced Model Reduction Example

In this example we will demonstrate the computation of balanced truncation
and balanced POD models on a random state-space system with n = 100 states,
q = 2 inputs, and p = 2 outputs. First, we generate a system:

q = 2; % Number of inputs
p = 2; % Number of outputs
n = 100; % State dimension
sysFull = drss(n,p,q); % Discrete random system

Next, we compute the Hankel singular values, which are plotted in Fig. 9.3. We
see that r = 10 modes capture over 90% of the input–output energy.

hsvs = hsvd(sysFull); % Hankel singular values

Now we construct an exact balanced truncation model with order r = 10:

%% Exact balanced truncation
sysBT = balred(sysFull,r); % Balanced truncation

The full-order system, and the balanced truncation and balanced POD mod-
els are compared in Fig. 9.4. The code used to generate a BPOD model is avail-
able in MATLAB and Python on the book’s GitHub. It can be seen that the bal-
anced model accurately captures the dominant input–output dynamics, even
when only 10% of the modes are kept.

9.3 System Identification

In contrast to model reduction, where the system model (A,B,C,D) was known,
system identification is purely data-driven. System identification may be thought
of as a form of machine learning, where an input–output map of a system is
learned from training data in a representation that generalizes to data that was

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

452 CHAPTER 9. BALANCED MODELS FOR CONTROL

0 20 40 60 80 100
10

-15

10
-10

10
-5

10
0

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

r r

σr

(∑
r k
=

1
σ
k
)
/
(∑

n k
=

1
σ
k
)

Figure 9.3: Hankel singular values (left) and cumulative sum (right) for random
state-space system with n = 100 and p = q = 2. The first r = 10 Hankel singular
values contain 92.9% of the cumulative sum.

0 20 40 60
-5

0

5

10

y
1

u
1

0 20 40 60
-5

0

5

10
u

2

Full model, n=100

Balanced truncation, r=10

Balanced POD, r=10

0 20 40 60

t

-10

-5

0

5

y
2

0 20 40 60

t

-4

-2

0

2

4

6

Figure 9.4: Impulse response of full-state model with n = 100 and p = q = 2,
along with balanced truncation and balanced POD models with r = 10.

not in the training set. There is a vast literature on methods for system iden-
tification [357, 451], and many of the leading methods are based on a form of
dynamic regression that fits models based on data, such as the DMD from Sec-
tion 7.2. For this section, we consider the eigensystem realization algorithm
(ERA) and observer Kalman filter identification (OKID) methods because of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 453

their connection to balanced model reduction [468, 509, 608, 727] and their suc-
cessful application in high-dimensional systems such as vibration control of
aerospace structures and closed-loop flow control [38, 39, 345]. The ERA/OKID
procedure is also applicable to multiple-input, multiple-output (MIMO) sys-
tems. Other methods include the autoregressive moving average (ARMA) and
autoregressive moving average with exogenous inputs (ARMAX) models [100,
751], the nonlinear autoregressive moving average with exogenous inputs (NAR-
MAX) [86] model, and the SINDy method from Section 7.3.

Eigensystem Realization Algorithm

The eigensystem realization algorithm (ERA) produces low-dimensional linear
input–output models from sensor measurements of an impulse-response ex-
periment, based on the “minimal realization” theory of Ho and Kalman [329].
The modern theory was developed to identify structural models for various
spacecraft [358], and it has been shown by Ma et al. [468] that ERA models
are equivalent to BPOD models.3 However, ERA is based entirely on impulse-
response measurements and does not require prior knowledge of a model.

We consider a discrete-time system, as described in Section 8.2:

xk+1 = Adxk + Bduk, (9.37a)
yk = Cdxk + Dduk. (9.37b)

A discrete-time delta function input in the actuation u,

uδk , uδ(k∆t) =

{
I, k = 0,
0, k = 1, 2, 3, . . . ,

(9.38)

gives rise to a discrete-time impulse response in the sensors y:

yδk , yδ(k∆t) =

{
Dd, k = 0,
CdA

k−1
d Bd, k = 1, 2, 3,

(9.39)

In an experiment or simulation, typically q impulse responses are performed,
one for each of the q separate input channels. The output responses are collected
for each impulsive input, and, at a given time-step k, the output vector in re-
sponse to the jth impulsive input will form the jth column of yδk. Thus, each of
the yδk is a p× q matrix CAk−1B. Note that the system matrices (A,B,C,D) do
not actually need to exist, as the method below is purely data-driven.

The Hankel matrix H from (9.32) is formed by stacking shifted time series of
impulse-response measurements into a matrix, as in the HAVOK method from

3BPOD and ERA models both balance the empirical Gramians and approximate balanced
truncation [509] for high-dimensional systems, given a sufficient volume of data.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

454 CHAPTER 9. BALANCED MODELS FOR CONTROL

Section 7.5:

H =

yδ1 yδ2 · · · yδmc
yδ2 yδ3 · · · yδmc+1
...

...
yδmo yδmo+1 · · · yδmc+mo−1

 (9.40a)

=

CdBd CdAdBd · · · CdA
mc−1
d Bd

CdAdBd CdA
2
dBd · · · CdA

mc
d Bd

...
...

CdA
mo−1
d Bd CdA

mo
d Bd · · · CdA

mc+mo−2
d Bd

 . (9.40b)

The matrix H may be constructed purely from measurements yδ, without sep-
arately constructing Od and Cd. Thus, we do not need access to adjoint equa-
tions.

Taking the SVD of the Hankel matrix yields the dominant temporal patterns
in the time-series data:

H = UΣV∗ =
[
Ũ Ut

] [Σ̃ 0
0 Σt

] [
Ṽ
∗

V∗t

]
≈ ŨΣ̃Ṽ

∗
. (9.41)

The small singular values in Σt are truncated, and only the first r singular val-
ues in Σ̃ are retained. The columns of Ũ and Ṽ are eigen-time-delay coordinates.

Until this point, the ERA algorithm closely resembles the BPOD procedure
from Section 9.2. However, we do not require direct access to Od and Cd or
the system (A,B,C,D) to construct the direct and adjoint balancing transfor-
mations. Instead, with sensor measurements from an impulse-response exper-
iment, it is also possible to create a second, shifted Hankel matrix H′:

H′ =

y2 yδ3 · · · yδmc+1

yδ3 yδ4 · · · yδmc+2
...

...
yδmo+1 yδmo+2 · · · yδmc+mo

 (9.42a)

=

CdAdBd CdA
2
dBd · · · CdA

mc
d Bd

CdA
2
dBd CdA

3
dBd · · · CdA

mc+1
d Bd

...
...

CdA
mo
d Bd CdA

mo+1
d Bd · · · CdA

mc+mo−1
d Bd

 = OdACd. (9.42b)

Based on the matrices H and H′, we are able to construct a reduced-order

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 455

model as follows:

Ã = Σ̃
−1/2

Ũ
∗
H′ṼΣ̃

−1/2
, (9.43a)

B̃ = Σ̃
1/2

Ṽ
∗
[
Iq
0

]
, (9.43b)

C̃ =
[
Ip 0

]
ŨΣ̃

1/2
. (9.43c)

Here Iq is the q × q identity matrix, which extracts the first q columns, and Ip is
the p× p identity matrix, which extracts the first p rows. Alternatively, B̃ and C̃

may be computed using the fact that H ≈ ŨΣ̃Ṽ
∗

as

B̃ = Σ̃
−1/2

Ũ
∗
H

[
Iq
0

]
, (9.44a)

C̃ =
[
Ip 0

]
HṼΣ̃

−1/2
. (9.44b)

Thus, we express the input–output dynamics in terms of a reduced system with
a low-dimensional state x̃ ∈ Rr:

x̃k+1 = Ãx̃k + B̃u, (9.45a)

y = C̃x̃k. (9.45b)

The Hankel matrices H and H′ are constructed from impulse-response sim-
ulations/experiments, without the need for storing direct or adjoint snapshots,
as in other balanced model reduction techniques. However, if full-state snap-
shots are available, for example, by collecting velocity fields in simulations or
particle image velocimetry (PIV) experiments, it is then possible to construct di-
rect modes. These full-state snapshots form Cd, and modes can be constructed
by

Ψ = CdṼΣ̃
−1/2

. (9.46)

These modes may then be used to approximate the full state of the high-dimensional
system from the low-dimensional model in (9.45) by

x ≈ Ψx̃. (9.47)

If enough data is collected when constructing the Hankel matrix H, then
ERA balances the empirical controllability and observability Gramians, OdO∗d
and C∗dCd. However, if less data is collected, so that lightly damped transients
do not have time to decay, then ERA will only approximately balance the sys-
tem. It is instead possible to collect just enough data so that the Hankel matrix
H reaches numerical full rank (i.e., so that remaining singular values are below

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

456 CHAPTER 9. BALANCED MODELS FOR CONTROL

a threshold tolerance), and compute an ERA model. The resulting ERA model
will typically have a relatively low order, given by the numerical rank of the
controllability and observability subspaces. It may then be possible to apply
exact balanced truncation to this smaller model, as is advocated in [724] and
[462].

The code to compute ERA is provided in Code 9.2 below. Large portions of
the code that format the input data into a Hankel matrix are omitted, but can
be found on the book’s GitHub.

Code 9.2: [MATLAB] Eigensystem realization algorithm.
function [Ar,Br,Cr,Dr,HSVs] = ERA(YY,m,n,nin,nout,r)

% Code to format data into Hankel matrix H omitted

[U,S,V] = svd(H,’econ’);
Sigma = S(1:r,1:r);
Ur = U(:,1:r);
Vr = V(:,1:r);
Ar = Sigmaˆ(-.5)*Ur’*H2*Vr*Sigmaˆ(-.5);
Br = Sigmaˆ(-.5)*Ur’*H(:,1:nin);
Cr = H(1:nout,:)*Vr*Sigmaˆ(-.5);
HSVs = diag(S);

Code 9.2: [Python] Eigensystem realization algorithm.
def ERA(YY,m,n,nin,nout,r):

Code to format data into Hankel matrix H omitted

U,S,VT = np.linalg.svd(H,full_matrices=0)
V = VT.T
Sigma = np.diag(S[:r])
Ur = U[:,:r]
Vr = V[:,:r]
Ar = fractional_matrix_power(Sigma,-0.5) @ Ur.T @ H2 @

Vr @ fractional_matrix_power(Sigma,-0.5)
Br = fractional_matrix_power(Sigma,-0.5) @ Ur.T @ H[:,:

nin]
Cr = H[:nout,:] @ Vr @ fractional_matrix_power(Sigma

,-0.5)
HSVs = S

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 457

0 20 40 60 80 100

-2

0

2

0 20 40 60 80 100

-4
-2
0
2
4
6
8

u

y

k

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100

0

1

2

u

y

k

u = δ(t)

OKID

Figure 9.5: Schematic overview of OKID procedure. The output of OKID is an
impulse response that can be used for system identification via ERA.

Observer Kalman Filter Identification

OKID, illustrated in Fig. 9.5, was developed to complement the ERA for lightly
damped experimental systems with noise [359]. In practice, performing iso-
lated impulse-response experiments is challenging, and the effect of measure-
ment noise can contaminate results. Moreover, if there is a large separation of
timescales, then a tremendous amount of data must be collected to use ERA.
This section poses the general problem of approximating the impulse response
from arbitrary input–output data. Typically, one would identify reduced-order
models according to the following general procedure:

1. Collect the output in response to a pseudo-random input.

2. This information is passed through the OKID algorithm to obtain the de-
noised linear impulse response.

3. The impulse response is passed through the ERA to obtain a reduced-
order state-space system.

The output yk in response to a general input signal uk, for zero initial con-
dition x0 = 0, is given by

y0 = Ddu0, (9.48a)
y1 = CdBdu0 + Ddu1, (9.48b)
y2 = CdAdBdu0 + CdBdu1 + Ddu2, (9.48c)

...

yk = CdA
k−1
d Bdu0 + CdA

k−2
d Bdu1 + · · ·+ CdBduk−1 + Dduk. (9.48d)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

458 CHAPTER 9. BALANCED MODELS FOR CONTROL

Note that there is no C term in the expression for y0 since there is zero initial
condition x0 = 0. This progression of measurements yk may be further simpli-
fied and expressed in terms of impulse-response measurements yδk:

[
y0 y1 · · · ym

]
︸ ︷︷ ︸

S

=
[
yδ0 yδ1 · · · yδm

]
︸ ︷︷ ︸

Sδ

u0 u1 · · · um
0 u0 · · · um−1
...

...
0 0 · · · u0

︸ ︷︷ ︸
B

. (9.49)

It is often possible to invert the matrix of control inputs, B, to solve for the
Markov parameters Sδ. However, B either may be un-invertible, or inversion
may be ill conditioned. In addition,B is large for lightly damped systems, mak-
ing inversion computationally expensive. Finally, noise is not optimally filtered
by simply inverting B to solve for the Markov parameters.

The OKID method addresses each of these issues. Instead of the original
discrete-time system, we now introduce an optimal observer system:

x̂k+1 = Adx̂k + Kf (yk − ŷk) + Bduk, (9.50a)
ŷk = Cdx̂k + Dduk, (9.50b)

which may be rewritten as

x̂k+1 = (Ad −KfCd)︸ ︷︷ ︸
Ād

x̂k +
[
Bd −KfDd, Kf

]
︸ ︷︷ ︸

B̄d

[
uk
yk

]
. (9.51)

Recall from above that if, the system is observable, it is possible to place the
poles of Ad −KfCd anywhere we like. However, depending on the amount of
noise in the measurements, the magnitude of process noise, and the uncertainty
in our model, there are optimal pole locations that are given by the Kalman filter
(recall Section 8.5). We may now solve for the observer Markov parameters S̄δ of
the system in (9.51) in terms of measured inputs and outputs according to the
following algorithm from [359]:

1. Choose the number of observer Markov parameters to identify, l.

2. Construct the data matrices below:

S =
[
y0 y1 · · · yl · · · ym

]
, (9.52)

V =

u0 u1 · · · ul · · · um
0 v0 · · · vl−1 · · · vm−1
...

...
0 0 · · · v0 · · · vm−l

 , (9.53)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 459

where vi =
[
uTi yTi

]T .

The matrix V resembles B, except that it has been augmented with the
outputs yi. In this way, we are working with a system that is augmented
to include a Kalman filter. We are now identifying the observer Markov
parameters of the augmented system, S̄δ, using the equation S = S̄δV . It
will be possible to identify these observer Markov parameters from the
data and then extract the impulse response (Markov parameters) of the
original system.

3. Identify the matrix S̄δ of observer Markov parameters by solving S =
S̄δV for S̄δ using the right pseudo-inverse of V (i.e., SVD).

4. Recover system Markov parameters, Sδ, from the observer Markov pa-
rameters, S̄δ:
(a) Order the observer Markov parameters S̄δ as

S̄δ0 = D, (9.54)

S̄δk =
[
(S̄δ)(1)

k (S̄δ)(2)
k

]
for k ≥ 1, (9.55)

where (S̄δ)(1)
k ∈ Rp×q, (S̄δ)(2)

k ∈ Rp×p, and yδ0 = S̄δ0 = D.

(b) Reconstruct system Markov parameters as

yδk = (S̄δ)(1)
k +

k∑

i=1

(S̄δ)(2)
i yδk−i for k ≥ 1. (9.56)

Thus, the OKID method identifies the Markov parameters of a system aug-
mented with an asymptotically stable Kalman filter. The system Markov pa-
rameters are extracted from the observer Markov parameters by (9.56). These
system Markov parameters approximate the impulse response of the system,
and may be used directly as inputs to the ERA algorithm. A code to compute
OKID is provided in both MATLAB and Python on the book’s GitHub.

ERA/OKID has been widely applied across a range of system identification
tasks, including to identify models of aeroelastic structures and fluid dynamic
systems. There are numerous extensions of the ERA/OKID methods. For ex-
ample, there are generalizations for linear parameter varying (LPV) systems
and systems linearized about a limit cycle.

Combining ERA and OKID

Here we demonstrate ERA and OKID on the same model system from Sec-
tion 9.2. Because ERA yields the same balanced models as BPOD, the reduced
system responses should be the same.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

460 CHAPTER 9. BALANCED MODELS FOR CONTROL

First, Code 9.3 computes an impulse response of the full system, and uses
this as an input to ERA.

Code 9.3: [MATLAB] Compute impulse response and use ERA to generate
model.

%% Obtain impulse response of full system
[yFull,t] = impulse(sysFull,0:1:(r*5)+1);
YY = permute(yFull,[2 3 1]); % Reorder to be size p x q x m

% (default is m x p x q)

%% Compute ERA from impulse response
mco = floor((length(yFull)-1)/2); % m_c = m_o = (m-1)/2
[Ar,Br,Cr,Dr,HSVs] = ERA(YY,mco,mco,numInputs,numOutputs,r);
sysERA = ss(Ar,Br,Cr,Dr,-1);

Code 9.3: [Python] Compute impulse response and use ERA to generate model.
for qi in range(q):

yFull[:,:,qi],t = impulse(sysFull,T=tspan,input=qi)
YY = np.transpose(yFull,axes=(1,2,0)) # reorder to p x q x m

Compute ERA from impulse response
mco = int(np.floor((yFull.shape[0]-1)/2)) # m_c=m_o=(m-1)/2
Ar,Br,Cr,Dr,HSVs = ERA(YY,mco,mco,q,p,r)
sysERA = ss(Ar,Br,Cr,Dr,1)

Next, if an impulse response is unavailable, it is possible to excite the system
with a random input signal and use OKID to extract an impulse response. This
impulse response is then used by ERA to extract the model, as in Code 9.4.

Code 9.4: [MATLAB] Approximate impulse response with OKID and use ERA
to generate model.

%% Compute random input simulation for OKID
uRandom = randn(numInputs,200); % Random forcing input
yRandom = lsim(sysFull,uRandom,1:200)’; % Output

%% Compute OKID and then ERA
H = OKID(yRandom,uRandom,r);
mco = floor((length(H)-1)/2); % m_c = m_o
[Ar,Br,Cr,Dr,HSVs] = ERA(H,mco,mco,numInputs,numOutputs,r);
sysERAOKID = ss(Ar,Br,Cr,Dr,-1);

Code 9.4: [Python] Approximate impulse response with OKID and use ERA to
generate model.

Compute random input simulation for OKID
uRandom = np.random.randn(q,200) # Random forcing input

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 461

0 50 100 150 200

t

-3

-2

-1

0

1

2

3

u
u

1

u
2

0 50 100 150 200

t

-50

0

50

y

y
1

y
2

Figure 9.6: Input–output data used by OKID.

yRandom = lsim(sysFull,uRandom,range(200))[0].T # Output

Compute OKID and then ERA
H = OKID(yRandom,uRandom,r)
mco = int(np.floor((H.shape[2]-1)/2)) # m_c = m_o
Ar,Br,Cr,Dr,HSVs = ERA(H,mco,mco,q,p,r)
sysERAOKID = ss(Ar,Br,Cr,Dr,1)

Figure 9.6 shows the input–output data used by OKID to approximate the
impulse response. The impulse responses of the resulting systems are com-
puted as in Code 9.5.

Code 9.5: [MATLAB] Plot impulse responses of various models.
[y1,t1] = impulse(sysFull,0:1:200);
[y2,t2] = impulse(sysERA,0:1:100);
[y3,t3] = impulse(sysERAOKID,0:1:100);

Code 9.5: [Python] Plot impulse responses of various models.
for qi in range(q):

y1[:,:,qi],t1 = impulse(sysFull,np.arange(200),input=qi)
y2[:,:,qi],t2 = impulse(sysERA,np.arange(100),input=qi)
y3[:,:,qi],t3 = impulse(sysERAOKID,np.arange(100),input=

qi)

Finally, the system responses can be seen in Fig. 9.7. The low-order ERA and
ERA/OKID models closely match the full model and have similar performance
to the BPOD models described above. Because ERA and BPOD are mathe-
matically equivalent, this agreement is not surprising. However, the ability of
ERA/OKID to extract a reduced-order model from the random input data in
Fig. 9.6 is quite remarkable. Moreover, unlike BPOD, these methods are readily

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

462 CHAPTER 9. BALANCED MODELS FOR CONTROL

0 20 40 60
-5

0

5

10
y

1

u
1

0 20 40 60
-5

0

5

10
u

2

0 20 40 60

t

-10

-5

0

5

y
2

0 20 40 60

t

-4

-2

0

2

4

6

Full model, n=100

ERA, r=10

ERA/OKID, r=10

Figure 9.7: Impulse response of full-state model with n = 100 and p = q = 2,
along with ERA and ERA/OKID models with r = 10.

applicable to experimental measurements, as they do not require non-physical
adjoint equations.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 463

Suggested Reading

Papers and reviews

(1) Principal component analysis in linear systems: Controllability, observ-
ability, and model reduction, by B. C. Moore, IEEE Transactions on Auto-
matic Control, 1981 [509].

(2) Identification of linear parameter varying models, by B. Bamieh and L.
Giarré, International Journal of Robust and Nonlinear Control, 2002 [47].

(3) Balanced model reduction via the proper orthogonal decomposition, by
K. Willcox and J. Peraire, AIAA Journal, 2002 [755].

(4) Model reduction for fluids using balanced proper orthogonal decompo-
sition, by C. W. Rowley, International Journal of Bifurcations and Chaos, 2005
[608].

(5) An eigensystem realization algorithm for modal parameter identification
and model reduction, by J. N. Juang and R. S. Pappa, Journal of Guidance,
Control, and Dynamics, 1985 [358].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

464 CHAPTER 9. BALANCED MODELS FOR CONTROL

Homework

Exercise 9-1. Generate a random state-space system, as in the example used to
generate Fig. 9.4. For various model orders r, compute the exact balanced trun-
cation model at this order. Compute the relative error between the truncated
model and the full model in at least two different system norms; there are sev-
eral system norms, such as the 2-norm and the infinity-norm. Plot the various
relative error norms versus the model order r.

Now compute the relative Frobenius norm error of the truncated model im-
pulse response compared to the impulse response of the full model; to compute
the Frobenius norm, simply vectorize the impulse-response data and compute
the 2-norm of the resulting vector. Plot the relative Frobenius norm error versus
the model order r, and compare the with the system norms above.

Exercise 9-2. For the exercise above, we will now compare balanced truncation
with output truncation, input truncation, and truncation based on the eigen-
values of the A matrix.

For output truncation, you will compute the truncated projection basis by com-
puting the SVD of the observability matrix and retaining the states correspond-
ing to the first r singular vectors; alternatively, you may use the first r leading
eigenvectors of the observability Gramian. For input truncation, you will do
the same thing, but for the controllability matrix (respectively, controllability
Gramian). For truncation based on the eigenvalues of A, you will compute a
truncated projection basis using the eigenvectors of A, with the retained states
corresponding to the r least-damped eigenvalues (i.e., the eigenvalues with the
most positive or least negative real part for continuous-time dynamics, or the
eigenvalues with the largest radius for discrete-time dynamics). In this case,
you may want to manually order the eigenvalues and eigenvectors.

In all cases above, for a given model order r, you will use the computed basis to
truncate the system. Reproduce Fig. 9.4 with these new forms of truncation and
discuss the results. Also create a plot of the relative error between the truncated
models and the full model versus model order r.

Exercise 9-3. This exercise will explore balanced residualization, which is an al-
ternative to balanced truncation.

(a) First, create a single-input, single-output random state-space system with
n = 100. Now, plot the frequency response (i.e., Bode plot) of the full
model and the balanced truncation models for various model orders r.
Comment on how they agree and disagree.

(b) In balanced residualization, instead of truncating the zt state in (9.25) en-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

9.3. SYSTEM IDENTIFICATION 465

tirely, the equation żt = 0 is solved for zt, and this is substituted into the
x̃ and y equations.

(c) Write down the balanced residualization equations based on (9.25). Use
this formulation to compute the balanced residualization model of order
r = 10 and reproduce Fig. 9.4 with this new residualized model. You can
also use the “MatchDC” option in MATLAB to check your results.

(d) Plot the frequency response of the full model and the balanced residual-
ization models for various model orders r. Discuss how these differ from
the balanced truncation models.

Exercise 9-4. This exercise will explore the ERA/OKID procedure for model
identification, including how different input forcing signals affect the ability of
ERA/OKID to identify a model.

(a) First, reproduce the ERA/OKID results in Fig. 9.7 for model order r = 10.
Now, compute the relative Frobenius norm error between the full model
and each of the ERA and ERA/OKID models for all model orders r be-
tween r = 1 and r = 10, as well as model orders r = 20, r = 30, r = 40, and
r = 50. To compute the Frobenius norm of the multiple-input, multiple-
output impulse response, simply vectorize the impulse-response data and
compute the 2-norm of the vector. Plot the relative error versus model or-
der.

(b) Now, add a small amount of Gaussian white noise to the randomly forced
data that is input to the ERA/OKID procedure. How does the noise mag-
nitude affect the fidelity of the models of various order?

(c) Repeat the ERA/OKID results in Fig. 9.7 for model order r = 10, but in-
stead of Gaussian white noise forcing for u, use a quadratic chirp signal as
in (2.51). Compare the impulse response of the ERA/OKID system with
that of the full model.

(d) Repeat part (c) above, but using a pseudo-random sequence of step func-
tions in the control u; i.e., the control input steps to different random val-
ues at randomly timed spacing with minimum time between changes of
5. Does the model fidelity change when the sequence of step functions
can have different amplitudes versus when they are constrained to have
the same amplitude of either 0 or 1?

(e) Repeat part (c) above using a pure tone sine wave for the control u. Now,
instead of a pure tone sine wave, use a square-wave pulse train with the
same frequency. Explain the similarities or differences in the identified
models. Compute Bode plots for each identified model and compare with
the true Bode plot.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

466 CHAPTER 9. BALANCED MODELS FOR CONTROL

Exercise 9-5. Download a system matrix from the SLICOT benchmark website
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction.
Repeat all of Exercise 9-4 above on this test system.

Exercise 9-6. In this exercise, we will explore how ERA handles spatio-temporal
data, such as a decaying traveling wave.

Generate data for a traveling, decaying wave pulse

f(x, t) = eλt exp−(x−ct)2

sin(ωx),

shown below. Begin with the parameters λ = −0.05, c = 1, and ω = 20. Use
a spatial domain of x ∈ [−5, 15] with ∆x = 0.05 and a temporal domain of
t ∈ [0, 10] with ∆t = 0.05. Plot this data, either as a movie or as a waterfall plot.

-5 0 5 10 15

-1

0

1

Now, use this data to train ERA models of various orders. Explore the perfor-
mance of these models at different orders. Explain your results.

Exercise 9-7. Describe the connections between ERA and DMDc. How are the
algorithms connected?

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

Part IV

Advanced Data-Driven Modeling
and Control

467

Chapter 10

Data-Driven Control

As described in Chapter 8, control design often begins with a model of the sys-
tem being controlled. Notable exceptions include model-free adaptive control
strategies, reinforcement learning, and many uses of proportional–integral–
derivative (PID) control. For mechanical systems of moderate dimension, it
may be possible to write down a model (e.g., based on the Newtonian, La-
grangian, or Hamiltonian formalism) and linearize the dynamics about a fixed
point or periodic orbit. However, for modern systems of interest, as are found
in neuroscience, turbulence, epidemiology, climate, and finance, typically there
are no simple models suitable for control design. Chapter 9 described tech-
niques to obtain control-oriented reduced-order models for high-dimensional
systems from data, but these approaches are limited to linear systems. Real-
world systems are usually nonlinear and the control objective is not readily
achieved via linear techniques. Nonlinear control can still be posed as an op-
timization problem with a high-dimensional, non-convex cost function land-
scape with multiple local minima. Modern data-driven methods, such as ma-
chine learning, are complementary, as they constitute a growing set of tech-
niques that may be broadly described as performing nonlinear optimization in
a high-dimensional space from data.

This chapter describes data-driven control techniques that are specifically
designed for systems that lack a principled model. Thus, we describe emerging
techniques that use machine learning to characterize and control strongly non-
linear, high-dimensional, and multi-scale systems, leveraging the increasing
availability of high-quality measurement data. Machine learning techniques
may be used (1) to characterize a system for later use with model-based control,
or (2) to directly characterize a control law that effectively interacts with a sys-
tem. This is illustrated schematically in Fig. 10.1, where data-driven techniques
may be applied to either the System or Controller blocks. Related methods may
also be used to identify good sensors and actuators, as discussed previously in
Section 3.8. Section 10.1 will introduce model predictive control (MPC), which
is a powerful and flexible approach for controlling nonlinear systems with con-

469

470 CHAPTER 10. DATA-DRIVEN CONTROL

System

Controller

Sensors
y

Actuators
u

Figure 10.1: In the standard control framework from Chapter 8, machine learn-
ing may be used (1) to develop a model of the system or (2) to learn a controller.

straints and uncertainty. However, MPC relies on a system model, and so Sec-
tion 10.2 demonstrates how to use machine learning and system identification
to learn nonlinear input–output models that may be used with MPC. In Sec-
tion 10.3 we explore machine learning techniques to directly identify controllers
from input–output data. Here we explore the use of genetic algorithms to learn
control laws, as demonstrated on a simple example of tuning a PID controller.
It is important to emphasize the breadth and depth of this field, and there are
many powerful methods, including reinforcement learning, which is the sub-
ject of Chapter 11. Finally, in Section 10.4 we describe the adaptive extremum-
seeking control strategy, which optimizes the control signal based on how the
system responds to perturbations.

10.1 Model Predictive Control (MPC)

Model predictive control (MPC) [149, 231, 262, 263, 434, 512, 573, 574, 587] has
become a cornerstone of modern process control and is ubiquitous in the in-
dustrial landscape. MPC is used to control strongly nonlinear systems with
constraints, time delays, non-minimum-phase dynamics, and instability. Most
industrial applications of MPC use empirical models based on linear system
identification (see Chapter 8), neural networks (see Chapter 6), Volterra series
[102, 118], and autoregressive models [8] (e.g., ARX, ARMA, NARX, and NAR-
MAX). Recently, deep learning and reinforcement learning have been com-
bined with MPC [438, 773] with impressive results. However, deep learning
requires large volumes of data and may not be readily interpretable. A com-
plementary line of research seeks to identify models for MPC based on lim-
ited data to characterize systems in response to abrupt changes. For example,
Kaiser et al. [366] recently showed that it is possible to rapidly identify DMD
and SINDy models from Chapter 7, based on limited data, and then use these

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.1. MODEL PREDICTIVE CONTROL (MPC) 471

Model
predictive
controller

System
rj uj yj = xk

Measurement

Surrogate
model

x̂k+1 = F̂(x̂j,uj)

MPC
optimizer

xj

rj
uj

Figure 10.2: Schematic of model predictive control, where a surrogate model is
used to run an optimization directly inside the control loop. This diagram as-
sumes full-state measurements y = x for simplicity, although this is not strictly
necessary for MPC.

for MPC.
Model predictive control is shown schematically in Fig. 10.2. MPC deter-

mines the next immediate control action by solving a constrained optimal con-
trol problem over a receding horizon. In particular, the open-loop actuation
signal u is optimized on a receding time horizon tc = mc∆t to minimize a cost
J over some prediction horizon tp = mp∆t. The control horizon is typically less
than or equal to the prediction horizon, and the control is held constant be-
tween tc and tp. The cost function is typically of a form similar to an LQR cost
function

J(xj) =

mp−1∑

k=0

‖x̂j+k − rj+k‖2
Q +

mc−1∑

k=1

(‖uj+k‖2
R + ‖∆uj+k‖2

R∆
), (10.1)

where rj is the reference trajectory to be tracked by the MPC, x̂ is the predicted

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

472 CHAPTER 10. DATA-DRIVEN CONTROL

state, ‖x‖2
Q = xTQx, and there is an additional penalty on large changes in

the control, i.e., on ∆uj = uj − uj−1. Note that the weight matrix Q must be
positive semi-definite, and R and R∆ must be positive semi-definite, as in LQR.
It is also possible to add a terminal cost on the final state. This cost function is
then optimized over the control sequences {uj+1, . . . ,uj+k, . . . ,uj+mc} subject
to a surrogate model

x̂k+1 = F̂(x̂j,uj) (10.2)

with constraints on the inputs uj ,

umin ≤ uj ≤ umax, (10.3)

and on ∆uj ,

∆umin ≤ ∆uj ≤ ∆umax. (10.4)

The optimal control is then applied for one time-step, and the procedure is re-
peated and the receding horizon control re-optimized at each subsequent time-
step. This results in the control law

K(xj) = uj+1(xj), (10.5)

where uj+1 is the first time-step of the optimized actuation starting at xj . This
is illustrated in Fig. 10.3. For more details, see Kaiser et al. [366] and Fonzi et al.
[247].

It is possible to optimize highly customized cost functions, subject to nonlin-
ear dynamics, with constraints on the actuation and state. However, the com-
putational requirements of re-optimizing at each time-step are considerable,
putting limits on the complexity of the model and optimization techniques. For-
tunately, rapid advances in computing power and optimization are enabling
MPC for real-time nonlinear control.

There have been tremendous recent advances in MPC, especially deep MPC,
which uses deep learning for the surrogate model [438]. Deep MPC has been
used in a wide range of applications, including for vision-based driving sys-
tems [212], controlling laser systems [58], fluid flows [84, 513], and aeroelastic
systems [247]. Tube MPC is a robust strategy that keeps the system within a
tube around the reference trajectory [242, 458], which is useful for safety-critical
systems with model error and disturbances. More generally, developing robust
and distributed MPC algorithms with guarantees [600, 601] is a major avenue
of research in autonomy and robotics. MPC may also be used for model-based
reinforcement learning [756], essentially codifying the MPC controller into a re-
inforcement learning policy. Finally, recent years have seen efforts to combine
differentiable programming, which is a key enabler of modern neural network
training, with MPC, resulting in differentiable predictive control [13, 213]

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.2. NONLINEAR SYSTEM IDENTIFICATION FOR CONTROL 473

Past Future

Prediction horizon

Control horizon

Moving horizon window

Set point

j j+1 j+mc−1

j+mp−1

Figure 10.3: Illustration of model predictive control used to track a set point,
where the actuation input u is iteratively optimized over a receding horizon.
Reproduced with permission from Kaiser et al. [366].

10.2 Nonlinear System Identification for Control

The data-driven modeling and control of complex systems is undergoing a rev-
olution, driven by the rise of big data, advanced algorithms in machine learning
and optimization, and modern computational hardware. Despite the increasing
use of equation-free and adaptive control methods, there remains a wealth of
powerful model-based control techniques, such as linear optimal control (see
Chapter 8) and model predictive control (MPC) [149, 262]. Increasingly, these
model-based control strategies are aided by data-driven techniques that char-
acterize the input–output dynamics of a system of interest from measurements
alone, without relying on first-principles modeling. Broadly speaking, this is
known as system identification, which has a long and rich history in control the-
ory going back decades to the time of Kalman. However, with increasingly
powerful data-driven techniques, such as those described in Chapter 7, non-
linear system identification is the focus of renewed interest.

The goal of system identification is to identify a low-order model of the
input–output dynamics from actuation u to measurements y. If we are able

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

474 CHAPTER 10. DATA-DRIVEN CONTROL

to measure the full state x of the system, then this reduces to identifying the
dynamics f that satisfy

d

dt
x = f(x,u). (10.6)

This problem may be formulated in discrete time, since data is typically col-
lected at discrete instants in time and control laws are often implemented digi-
tally. In this case, the dynamics read

xk+1 = F(xk,uk). (10.7)

When the dynamics are approximately linear, we may identify a linear system

xk+1 = Axk + Buk, (10.8)

which is the approach taken in the dynamic mode decomposition with control
(DMDc) algorithm below.

It may also be advantageous to identify a set of measurements y = g(x), in
which the unforced nonlinear dynamics appear linear:

yk+1 = AYyk. (10.9)

This is the approach taken in the Koopman control method below. In this way,
nonlinear dynamics may be estimated and controlled using standard textbook
linear control theory in the intrinsic coordinates y [365, 404].

Finally, the nonlinear dynamics in (10.6) or (10.7) may be identified directly
using the SINDy with control algorithm. The resulting models may be used
with model predictive control for the control of fully nonlinear systems [366].

DMD with Control

Proctor et al. [570] extended the DMD algorithm to include the effect of ac-
tuation and control, in the so-called DMD with control (DMDc) algorithm. It
was observed that naively applying DMD to data from a system with actuation
would often result in incorrect dynamics, as the effects of internal dynamics are
confused with the effects of actuation. DMDc was originally motivated by the
problem of characterizing and controlling the spread of disease, where it is un-
reasonable to stop intervention efforts (e.g., vaccinations) just to obtain a char-
acterization of the unforced dynamics [568]. Instead, if the actuation signal is
measured, a new DMD regression may be formulated in order to disambiguate
the effect of internal dynamics from that of actuation and control. Subsequently,
this approach has been extended to perform DMDc on heavily subsampled or
compressed measurements by Bai et al. [41].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.2. NONLINEAR SYSTEM IDENTIFICATION FOR CONTROL 475

The DMDc method seeks to identify the best-fit linear operators A and B
that approximately satisfy the following dynamics on measurement data:

xk+1 ≈ Axk + Buk. (10.10)

In addition to the snapshot matrix X =
[
x1 x2 · · · xm

]
and the time-shifted

snapshot matrix X′ =
[
x2 x3 · · · xm+1

]
from (7.24), a matrix of the actuation

input history is assembled:

Υ =

u1 u2 · · · um

 . (10.11)

The dynamics in (10.10) may be written in terms of the data matrices:

X′ ≈ AX + BΥ. (10.12)

As in the DMD algorithm (see Section 7.2), the leading eigenvalues and
eigenvectors of the best-fit linear operator A are obtained via dimensionality
reduction and regression. If the actuation matrix B is known, then it is straight-
forward to correct for the actuation and identify the spectral decomposition of
A by replacing X′ with X′ −BΥ in the DMD algorithm:

(X′ −BΥ) ≈ AX. (10.13)

When B is unknown, both A and B must be simultaneously identified. In
this case, the dynamics in (10.12) may be recast as

X′ ≈
[
A B

] [X
Υ

]
= GΩ, (10.14)

and the matrix G =
[
A B

]
is obtained via least-squares regression:

G ≈ X′Ω†. (10.15)

The matrix Ω =
[
X∗ Υ∗

]∗ is generally a high-dimensional data matrix, which
may be approximated using the SVD:

Ω = ŨΣ̃Ṽ∗. (10.16)

The matrix Ũ must be split into two matrices, Ũ =
[
Ũ∗1 Ũ∗2

]∗
, to provide bases

for X and Υ. Unlike the DMD algorithm, Ũ provides a reduced basis for the
input space, while Û from

X′ = ÛΣ̂V̂∗ (10.17)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

476 CHAPTER 10. DATA-DRIVEN CONTROL

defines a reduced basis for the output space. It is then possible to approximate
G =

[
A B

]
by projecting onto this basis:

G̃ = Û∗G

[
Û
I

]
. (10.18)

The resulting projected matrices Ã and B̃ in G̃ are

Ã = Û∗AÛ = Û∗X′ṼΣ̃−1Ũ∗1Û, (10.19a)

B̃ = Û∗B = Û∗X′ṼΣ̃−1Ũ∗2. (10.19b)

More importantly, it is possible to recover the DMD eigenvectors Φ from the
eigendecomposition ÃW = WΛ:

Φ = X′ṼΣ̃−1Ũ∗1ÛW. (10.20)

Ambiguity in Identifying Closed-Loop Systems

For systems that are being actively controlled via feedback, with u = −Kx,

xk+1 = Axk + Buk (10.21a)
= Axk −BKxk (10.21b)
= (A−BK)xk, (10.21c)

it is impossible to disambiguate the dynamics A and the actuation BK. In this
case, it is important to add perturbations to the actuation signal u to provide
additional information. These perturbations may be a white noise process or
occasional impulses that provide a kick to the system, providing a signal to
disambiguate the dynamics from the feedback signal.

Koopman Operator Nonlinear Control

For nonlinear systems, it may be advantageous to identify data-driven coordi-
nate transformations that make the dynamics appear linear. These coordinate
transformations are related to intrinsic coordinates defined by eigenfunctions
of the Koopman operator (see Section 7.4). Koopman analysis has thus been
leveraged for nonlinear estimation [679, 680] and control [365, 404, 558].

It is possible to design estimators and controllers directly from DMD or
eDMD models, and Korda et al. [404] used model predictive control (MPC)
to control nonlinear systems with eDMD models. MPC performance is also
surprisingly good for DMD models, as shown in Kaiser et al. [366]. In addi-
tion, Peitz et al. [558] demonstrated the use of MPC for switching control be-
tween a small number of actuation values to track a reference value of lift in

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.2. NONLINEAR SYSTEM IDENTIFICATION FOR CONTROL 477

an unsteady fluid flow; for each constant actuation value, a separate eDMD
model was characterized. Surana [679] and Surana and Banaszuk [680] have
also demonstrated excellent nonlinear estimators based on Koopman Kalman
filters. However, as discussed previously, eDMD models may contain many
spurious eigenvalues and eigenvectors because of closure issues related to find-
ing a Koopman-invariant subspace. Instead, it may be advantageous to identify
a handful of relevant Koopman eigenfunctions and perform control directly in
these coordinates [365].

In Section 7.5, we described several strategies to approximate Koopman
eigenfunctions, ϕ(x), where the dynamics become linear:

d

dt
ϕ(x) = λϕ(x). (10.22)

In Kaiser et al. [365] the Koopman eigenfunction equation was extended for
control-affine nonlinear systems:

d

dt
x = f(x) + Bu. (10.23)

For these systems, it is possible to apply the chain rule to dϕ(x)/dt, yielding

d

dt
ϕ(x) = ∇ϕ(x) · (f(x) + Bu) (10.24a)

= λϕ(x) +∇ϕ(x) ·Bu. (10.24b)

Note that, even with actuation, the dynamics of Koopman eigenfunctions re-
main linear, and the effect of actuation is still additive. However, now the ac-
tuation mode ∇ϕ(x) · B may be state-dependent. In fact, the actuation will be
state-dependent unless the directional derivative of the eigenfunction is con-
stant in the B direction. Fortunately, there are many powerful generalizations
of standard Riccati-based linear control theory (e.g., LQR, Kalman filters, etc.)
for systems with a state-dependent Riccati equation.

SINDy with Control

Although it is appealing to identify intrinsic coordinates along which nonlin-
ear dynamics appear linear, these coordinates are challenging to discover, even
for relatively simple systems. Instead, it may be beneficial to directly identify
the nonlinear actuated dynamical system in (10.6) or (10.7), for use with stan-
dard model-based control. Using the sparse identification of nonlinear dynam-
ics (SINDy) method (see Section 7.3) results in computationally efficient mod-
els that may be used in real time with model predictive control [366]. More-
over, these models may be identified from relatively small amounts of train-
ing data, compared with neural networks and other leading machine learning

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

478 CHAPTER 10. DATA-DRIVEN CONTROL

methods, so that they may even be characterized online and in response to
abrupt changes to the system dynamics.

The SINDy algorithm is readily extended to include the effects of actuation
[133, 366]. In addition to collecting measurements of the state snapshots x in
the matrix X, actuation inputs u are collected in the matrix Υ from (10.11) as
in DMDc. Next, an augmented library of candidate right-hand side functions
Θ(
[
X Υ

]
) is constructed:

Θ(
[
X Υ

]
) =

[
1 X Υ X2 X⊗Υ Υ2 · · ·

]
. (10.25)

Here, X ⊗Υ denotes quadratic cross-terms between the state x and the actua-
tion u, evaluated on the data.

In SINDy with control (SINDYc), the same sparse regression is used to de-
termine the fewest active terms in the library required to describe the observed
dynamics. As in DMDc, if the system is being actively controlled via feedback
u = K(x), then it is impossible to disambiguate from the internal dynamics and
the actuation, unless an additional perturbation signal is added to the actuation
to provide additional information.

Model Predictive Control Example

In this example, we will use SINDYc to identify a model of the forced Lorenz
equations from data and then control this model using MPC. The basic code
is the same as SINDy, except that the actuation is included as a variable when
building the library Θ.

We test the SINDYc model identification on the forced Lorenz equations:

ẋ = σ(y − x) + g(u), (10.26a)
ẏ = x(ρ− z)− y, (10.26b)
ż = xy − βz. (10.26c)

In this example, we train a model using 20 time units of controlled data, and
validate it on another 20 time units, where we switch the forcing to a periodic
signal u(t) = 50 sin(10t). The SINDy algorithm does not capture the effect of
actuation, while SINDYc correctly identifies the forced model and predicts the
behavior in response to a new actuation that was not used in the training data,
as shown in Fig. 10.4.

Finally, SINDYc and neural network models of Lorenz are both used to de-
sign model predictive controllers, as shown in Fig. 10.5. Both methods identify
accurate models that capture the dynamics, although the SINDYc procedure
requires less data, identifies models more rapidly, and is more robust to noise
than the neural network model. This added efficiency and robustness are due

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.3. MACHINE LEARNING CONTROL 479

0 10 20 30 40

-20

-10

0

10

20

x

0 10 20 30 40

-20

-10

0

10

20

y

Training
Validation
SINDYc
SINDY

0 10 20 30 40
Time

0

10

20

30

40

50

z

Figure 10.4: SINDy and SINDYc predictions for the controlled Lorenz system
in (10.26). Training data consists of the Lorenz system with state feedback. For
the training period, the input is u(t) = 26 − x(t) + d(t) with a Gaussian distur-
bance d. Afterward the input u switches to a periodic signal u(t) = 50 sin(10t).
Reproduced with permission from [133].

to the sparsity-promoting optimization, which regularizes the model identifi-
cation problem. In addition, identifying a sparse model requires less data.

10.3 Machine Learning Control

Machine learning is a rapidly developing field that is transforming our ability
to describe complex systems from observational data, rather than first-principles

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

480 CHAPTER 10. DATA-DRIVEN CONTROL

5 10

0

0

20

40

60

−20

x1

x2

x3x
i

SINDYc

(a)

5

A
vg

.R
el

.E
rr

or

10

10

10

10
10

0

0

2

4

6

(b)

SINDYc NN

Population

5

10

10

10

10
10

0

0

Pr
ed

ic
ti

on
ho

ri
zo

n 1

−1

−2
(c)

60

5

10

10

10
100

1

−1

−3

Time

Tr
ai

ni
ng

Ti
m

e
[s

]

(d)

✲
Training length

Fig. 12. Crossvalidated prediction performance for increasing
length of training data (without noise): (a) time series of the
training data, (b) average relative error, (c) prediction horizon,
and (d) training time in seconds.

5 Discussion and Conclusions
In conclusion, we have demonstrated the effective

integration of data-driven sparse model discovery for
model predictive control in the low-data limit. The sparse
identification of nonlinear dynamics (SINDY) algorithm
has been extended to discover nonlinear models with
actuation and control, resulting in interpretable and par-
simonious models. Moreover, because SINDY only iden-
tifies the few active terms in the dynamics, it requires
less data than many other leading machine learning tech-
niques, such as neural networks, and prevents overfitting.
When integrated with model predictive control, SINDY
provides computationally tractable and accurate mod-
els that can be trained on very little data. The resulting
SINDY-MPC framework is capable of controlling strongly
nonlinear systems, purely from measurement data, and
the model identification is fast enough to discover models
in real-time, even in response to abrupt changes to the
model. The SINDY-MPC approach is compared with MPC
based on data-driven linear models and neural network

SINDYc NN

10

101010

5

1 2 3

C
os

t
J

T
=

3

Length of Training Data

(a)

η = 0.05

0
-5

-10

x
1

0
-10x

2

-20

0

x
3 20

20

40

×10

1
2
3

4

20 21 22 23

Time

C
os

t

(b)

JT=3

Fig. 13. Control performance for increasing length of noise-cor-
rupted training data: (a) terminal cumulative cost over 3 time
units, and (b) time series of states and cost of the best model for
each model type (mSINDY c

train = 38, mNN
train = 40). Note that from

mtrain = 400 onwards, SINDY identifies the best performing
models.

models on two nonlinear dynamical systems.
The relative strengths and weaknesses of each method

are summarized in Tab. 1. By nearly every metric, linear
DMDc models and nonlinear SINDYc models outper-
form neural network models (NN). In fact, DMDc may be
seen as the limit of SINDYc when the library of candidate
terms is restricted to linear terms. SINDY-MPC provides
the highest performance control and requires significantly
less training data and execution time compared with NN.
However, for very low amounts of training data, DMDc
provides a useful model until the SINDYc algorithm has
enough data to characterize the dynamics. Thus, we advo-
cate the SINDY-MPC framework for effective and efficient
nonlinear control, with DMDc as a stopgap after abrupt
changes until a new SINDYc model can be identified.

This work motivates a number of future extensions
and investigations. Although the preliminary application
of SINDYc for MPC is encouraging, this study does not
leverage many of the powerful new techniques in sparse

11

5 10

0

0

20

40

60

−20

x1

x2

x3x
i

SINDYc

(a)

5

A
vg

.R
el

.E
rr

or

10

10

10

10
10

0

0

2

4

6

(b)

SINDYc NN

Population

5

10

10

10

10
10

0

0

Pr
ed

ic
ti

on
ho

ri
zo

n 1

−1

−2
(c)

60

5

10

10

10
100

1

−1

−3

Time

Tr
ai

ni
ng

Ti
m

e
[s

]

(d)

✲
Training length

Fig. 12. Crossvalidated prediction performance for increasing
length of training data (without noise): (a) time series of the
training data, (b) average relative error, (c) prediction horizon,
and (d) training time in seconds.

5 Discussion and Conclusions
In conclusion, we have demonstrated the effective

integration of data-driven sparse model discovery for
model predictive control in the low-data limit. The sparse
identification of nonlinear dynamics (SINDY) algorithm
has been extended to discover nonlinear models with
actuation and control, resulting in interpretable and par-
simonious models. Moreover, because SINDY only iden-
tifies the few active terms in the dynamics, it requires
less data than many other leading machine learning tech-
niques, such as neural networks, and prevents overfitting.
When integrated with model predictive control, SINDY
provides computationally tractable and accurate mod-
els that can be trained on very little data. The resulting
SINDY-MPC framework is capable of controlling strongly
nonlinear systems, purely from measurement data, and
the model identification is fast enough to discover models
in real-time, even in response to abrupt changes to the
model. The SINDY-MPC approach is compared with MPC
based on data-driven linear models and neural network

SINDYc NN

10

101010

5

1 2 3

C
os

t
J

T
=

3

Length of Training Data

(a)

η = 0.05

0
-5

-10

x
1

0
-10x

2

-20

0

x
3 20

20

40

×10

1
2
3

4

20 21 22 23

Time

C
os

t

(b)

JT=3

Fig. 13. Control performance for increasing length of noise-cor-
rupted training data: (a) terminal cumulative cost over 3 time
units, and (b) time series of states and cost of the best model for
each model type (mSINDY c

train = 38, mNN
train = 40). Note that from

mtrain = 400 onwards, SINDY identifies the best performing
models.

models on two nonlinear dynamical systems.
The relative strengths and weaknesses of each method

are summarized in Tab. 1. By nearly every metric, linear
DMDc models and nonlinear SINDYc models outper-
form neural network models (NN). In fact, DMDc may be
seen as the limit of SINDYc when the library of candidate
terms is restricted to linear terms. SINDY-MPC provides
the highest performance control and requires significantly
less training data and execution time compared with NN.
However, for very low amounts of training data, DMDc
provides a useful model until the SINDYc algorithm has
enough data to characterize the dynamics. Thus, we advo-
cate the SINDY-MPC framework for effective and efficient
nonlinear control, with DMDc as a stopgap after abrupt
changes until a new SINDYc model can be identified.

This work motivates a number of future extensions
and investigations. Although the preliminary application
of SINDYc for MPC is encouraging, this study does not
leverage many of the powerful new techniques in sparse

11

DMDc SINDYc NN

10

10

10

10

1010101 2 3

4

5

6

7

C
os

t
J

T
=

2
0

Length of Training Data

(a)

η = 0.05

100

80Pr
ey

DMDc

10

20

Pr
ed

at
or

200 205 210 215 220
7 ·103

8 ·103

9 ·103

Time

C
os

t

(b)

JT=20

Fig. 9. Control performance for increasing length of noise–
corrupted training data with η = 0.5: (a) terminal cumula-
tive cost over 20 time units, and (b) time series of states and
cost of the best model for each model type (mDMDc

train = 12,
mSINDY c

train = 1250, mNN
train = 65). From Mtrain = 200 on-

wards, SINDYc yields comparable models, outperforming all
other models.

well. SINDYc models require slightly more data than
DMDc, but result in the best overall performance. An
order of magnitude more data is required to train com-
parably performing neural network models. SINDYc’s
intrinsic robustness to overfitting renders all models from
mtrain = 14 on as having the best control performance
compared with the overall best performing DMDc and
neural network models. In contrast, DMDc shows a slight
decrease in performance due to overfitting and the neu-
ral network’s dependency on the initial network weights
detrimentally affects its performance. It is interesting to
note that the control performance is generally less sen-
sitive than the long-term prediction performance shown
in Fig. 7. Even a model with moderately low predictive
accuracy may perform well in MPC.

In Fig. 9 we show the same analysis but with noise-
corrupted training data. We assume no noise corruption
during the control stage. For each training length, the best
model out of 50 noise realizations was tested for control.
DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise.
Note that neural network models perform significantly

5 10 15 25

Training Prediction Control

DMDc

5 10 15 25

SINDYc

Time

-40

-20

0

0

40

5 10 15

20

20 25

x
i

(a)

NN

❄

M
od

elcom
plexity

x1 x2 x3 Control

×10

20

C
os

t

Time

0

1

2

3
4

21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35

Fig. 10. Prediction and control performance for the chaotic
Lorenz system: (a) time series of the states and input (shifted to
−25 and scaled by 10 to improve readability) during training,
validation, and control stage, and (b) cumulative cost and execu-
tion time of the MPC optimization.

worse when trained on noise-corrupted data.

4 Lorenz system
In this section, we demonstrate the SINDY-MPC archi-

tecture on the chaotic Lorenz system, a prototypical exam-
ple of chaos in dynamical systems. The Lorenz system rep-
resents the Rayleigh-Bénard convection in fluid dynamics
as proposed by Lorenz [29], but has also been associated
with lasers, dynamos, and chemical reaction systems [?].
The Lorenz dynamics are given by

ẋ1 = σ(x2 − x1) + u (19a)
ẋ2 = x1(ρ − x3) − x2 (19b)
ẋ3 = x1x2 − βx3 (19c)

with system parameters σ = 10, β = 8/3, ρ = 28, and
control input u affecting only the first state. A typical tra-
jectory oscillates alternately around the two weakly unsta-

8

DMDc SINDYc NN

10

10

10

10

1010101 2 3

4

5

6

7

C
os

t
J

T
=

2
0

Length of Training Data

(a)

η = 0.05

100

80Pr
ey

DMDc

10

20

Pr
ed

at
or

200 205 210 215 220
7 ·103

8 ·103

9 ·103

Time

C
os

t

(b)

JT=20

Fig. 9. Control performance for increasing length of noise–
corrupted training data with η = 0.5: (a) terminal cumula-
tive cost over 20 time units, and (b) time series of states and
cost of the best model for each model type (mDMDc

train = 12,
mSINDY c

train = 1250, mNN
train = 65). From Mtrain = 200 on-

wards, SINDYc yields comparable models, outperforming all
other models.

well. SINDYc models require slightly more data than
DMDc, but result in the best overall performance. An
order of magnitude more data is required to train com-
parably performing neural network models. SINDYc’s
intrinsic robustness to overfitting renders all models from
mtrain = 14 on as having the best control performance
compared with the overall best performing DMDc and
neural network models. In contrast, DMDc shows a slight
decrease in performance due to overfitting and the neu-
ral network’s dependency on the initial network weights
detrimentally affects its performance. It is interesting to
note that the control performance is generally less sen-
sitive than the long-term prediction performance shown
in Fig. 7. Even a model with moderately low predictive
accuracy may perform well in MPC.

In Fig. 9 we show the same analysis but with noise-
corrupted training data. We assume no noise corruption
during the control stage. For each training length, the best
model out of 50 noise realizations was tested for control.
DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise.
Note that neural network models perform significantly

5 10 15 25

Training Prediction Control

DMDc

5 10 15 25

SINDYc

Time

-40

-20

0

0

40

5 10 15

20

20 25

x
i

(a)

NN

❄

M
od

elcom
plexity

x1 x2 x3 Control

×10

20

C
os

t

Time

0

1

2

3
4

21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35

Fig. 10. Prediction and control performance for the chaotic
Lorenz system: (a) time series of the states and input (shifted to
−25 and scaled by 10 to improve readability) during training,
validation, and control stage, and (b) cumulative cost and execu-
tion time of the MPC optimization.

worse when trained on noise-corrupted data.

4 Lorenz system
In this section, we demonstrate the SINDY-MPC archi-

tecture on the chaotic Lorenz system, a prototypical exam-
ple of chaos in dynamical systems. The Lorenz system rep-
resents the Rayleigh-Bénard convection in fluid dynamics
as proposed by Lorenz [29], but has also been associated
with lasers, dynamos, and chemical reaction systems [?].
The Lorenz dynamics are given by

ẋ1 = σ(x2 − x1) + u (19a)
ẋ2 = x1(ρ − x3) − x2 (19b)
ẋ3 = x1x2 − βx3 (19c)

with system parameters σ = 10, β = 8/3, ρ = 28, and
control input u affecting only the first state. A typical tra-
jectory oscillates alternately around the two weakly unsta-

8

SINDYc NN

0.01 0.1 0.2 0.3 0.4 0.5

-3

-1

110

10

10
η

Pr
ed

ic
ti

on
ho

ri
zo

n

(a)

0.01 0.1 0.2 0.3 0.4 0.5

-50

50

η = 0.01

-50

50

η = 0.1

-50

50

η = 0.25

SIN
D

Y
c

-50

50

Time30 40

(b)

x1

x2

x3

✲
Increasing noise

-50

50

-50

50

N
N

Fig. 11. Crossvalidated prediction performance with increasing measurement noise for the Lorenz system: (a) prediction horizon in
time units, and (b) time series with 50 (median as thick colored line) and 25–75 (colored shaded region) percentiles. Statistics are
shown for 50 noise realizations each.

ble fixed points (±
√

72, ±
√

72, 27)T . The chaotic motion of
the system implies a strong sensitivity to initial conditions,
i.e. small uncertainties in the state will grow exponentially
with time. This represents a particularly challenging prob-
lem for model identification and subsequent control, as an
uncertainty in the measurement of the state will lead in-
evitably to a completely different behavior of the forecast
in the long run, despite having the true model. Discov-
ering the model from (possibly noisy) measurements ren-
ders this issue more severe as model uncertainties also af-
fect the forecast accuracy.

The control objective is to stabilize one of these
fixed points. In all examples, the timestep of the sys-
tem is ∆tsys = 0.001 and the timestep of the model is
∆tmodel = 0.01. The next control input from SINDY-MPC
is determined every 10 system timesteps over which the
control is kept constant. In general, the timestep of the
model is chosen to maximize the control horizon and
minimize the length of the sequence of control inputs to
be optimized, while assuring the model is as predictive
as possible for the given timestep. The weight matrices
are Q = (

1 0 0
0 1 0
0 0 1

), Ru = R∆u = 0.001, and the actuation
input is limited to u ∈ [−50, 50]. The control and predic-
tion horizon is mp = mc = 10 and the sparsity-promoting
parameter in SINDYc is λ = 0.1, unless otherwise noted.
For all models we assume access to full-state information.

We compare the prediction and control performance
of the SINDYc model with DMDc and a neural network
(NN) model. DMDc is used to model the deviation from
the goal state by constructing the regression model based
on data from which the goal state has been subtracted.
A less naïve approach would partition the trajectory into
two bins, e.g. based on negative and positive values of x1,
and estimate two models for each goal state separately.
The neural network consists of 1 hidden layer with 10
neurons and employs hyperbolic tangent sigmoid acti-
vation functions. The training of the neural network is
performed using the Levenberg-Marquardt algorithm. If
the data is corrupted by noise, a Bayesian regularization

is employed, which requires more training time but yields
more robust models.

Cross-validated prediction and control performance
for the Lorenz system are displayed in Fig. 10. The first
10 time units are used to train with a Schroeder sweep,
after which the models are validated on the next 10 time
units using a sinusoidally-based high-frequency forcing,
u(t) = (5 sin(30t))3. MPC is then applied for the last 5 time
units. SINDYc exhibits the best prediction and control per-
formance. The neural network shows comparable perfor-
mance, although the prediction horizon is much shorter
but still sufficient for MPC. Surprisingly, DMDc is able to
stabilize the fixed point, despite poor predictions based on
a linear model. As DMDc shows negligible predictive ca-
pability, we will not present more DMDc results, but in-
stead focus on the comparison between SINDYc and the
neural network. As in the previous example, while the
neural network exhibits similar control performance, the
control execution of SINDYc is 21 times faster.

Figure 11 examines the crossvalidated prediction per-
formance of SINDYc and neural network models based
on noisy state measurements for increasing noise magni-
tude η = σ/ max(std(xi)) ∈ (0.01, 0.5). The performance
of both models decreases with increasing noise level,
although SINDY generally outperforms the neural net-
work. Unlike the Lotka-Volterra model, the average rela-
tive error is misleading in this case. With increasing noise
magnitude the neural network converges to a fixed point,
having no predictive power, while SINDY still exhibits
the correct statistics beyond the prediction horizon; how-
ever phase drift leads to a larger average relative error.
This can be observed in Fig. 11(b), which shows the me-
dian (thick colored line) and the 25–75 percentile region
(colored shaded area) of the prediction for three different
noise levels. Thus, a better metric for prediction perfor-
mance is the prediction horizon itself (see Fig. 11(a)). The
prediction horizon, measured in time units, is estimated
as the time instant when the error ball is larger than a
radius of ε = 3, i.e. a model is considered predictive if

9

SINDYc NN

0.01 0.1 0.2 0.3 0.4 0.5

-3

-1

110

10

10
η

Pr
ed

ic
ti

on
ho

ri
zo

n

(a)

0.01 0.1 0.2 0.3 0.4 0.5

-50

50

η = 0.01

-50

50

η = 0.1

-50

50

η = 0.25

SIN
D

Y
c

-50

50

Time30 40

(b)

x1

x2

x3

✲
Increasing noise

-50

50

-50

50

N
N

Fig. 11. Crossvalidated prediction performance with increasing measurement noise for the Lorenz system: (a) prediction horizon in
time units, and (b) time series with 50 (median as thick colored line) and 25–75 (colored shaded region) percentiles. Statistics are
shown for 50 noise realizations each.

ble fixed points (±
√

72, ±
√

72, 27)T . The chaotic motion of
the system implies a strong sensitivity to initial conditions,
i.e. small uncertainties in the state will grow exponentially
with time. This represents a particularly challenging prob-
lem for model identification and subsequent control, as an
uncertainty in the measurement of the state will lead in-
evitably to a completely different behavior of the forecast
in the long run, despite having the true model. Discov-
ering the model from (possibly noisy) measurements ren-
ders this issue more severe as model uncertainties also af-
fect the forecast accuracy.

The control objective is to stabilize one of these
fixed points. In all examples, the timestep of the sys-
tem is ∆tsys = 0.001 and the timestep of the model is
∆tmodel = 0.01. The next control input from SINDY-MPC
is determined every 10 system timesteps over which the
control is kept constant. In general, the timestep of the
model is chosen to maximize the control horizon and
minimize the length of the sequence of control inputs to
be optimized, while assuring the model is as predictive
as possible for the given timestep. The weight matrices
are Q = (

1 0 0
0 1 0
0 0 1

), Ru = R∆u = 0.001, and the actuation
input is limited to u ∈ [−50, 50]. The control and predic-
tion horizon is mp = mc = 10 and the sparsity-promoting
parameter in SINDYc is λ = 0.1, unless otherwise noted.
For all models we assume access to full-state information.

We compare the prediction and control performance
of the SINDYc model with DMDc and a neural network
(NN) model. DMDc is used to model the deviation from
the goal state by constructing the regression model based
on data from which the goal state has been subtracted.
A less naïve approach would partition the trajectory into
two bins, e.g. based on negative and positive values of x1,
and estimate two models for each goal state separately.
The neural network consists of 1 hidden layer with 10
neurons and employs hyperbolic tangent sigmoid acti-
vation functions. The training of the neural network is
performed using the Levenberg-Marquardt algorithm. If
the data is corrupted by noise, a Bayesian regularization

is employed, which requires more training time but yields
more robust models.

Cross-validated prediction and control performance
for the Lorenz system are displayed in Fig. 10. The first
10 time units are used to train with a Schroeder sweep,
after which the models are validated on the next 10 time
units using a sinusoidally-based high-frequency forcing,
u(t) = (5 sin(30t))3. MPC is then applied for the last 5 time
units. SINDYc exhibits the best prediction and control per-
formance. The neural network shows comparable perfor-
mance, although the prediction horizon is much shorter
but still sufficient for MPC. Surprisingly, DMDc is able to
stabilize the fixed point, despite poor predictions based on
a linear model. As DMDc shows negligible predictive ca-
pability, we will not present more DMDc results, but in-
stead focus on the comparison between SINDYc and the
neural network. As in the previous example, while the
neural network exhibits similar control performance, the
control execution of SINDYc is 21 times faster.

Figure 11 examines the crossvalidated prediction per-
formance of SINDYc and neural network models based
on noisy state measurements for increasing noise magni-
tude η = σ/ max(std(xi)) ∈ (0.01, 0.5). The performance
of both models decreases with increasing noise level,
although SINDY generally outperforms the neural net-
work. Unlike the Lotka-Volterra model, the average rela-
tive error is misleading in this case. With increasing noise
magnitude the neural network converges to a fixed point,
having no predictive power, while SINDY still exhibits
the correct statistics beyond the prediction horizon; how-
ever phase drift leads to a larger average relative error.
This can be observed in Fig. 11(b), which shows the me-
dian (thick colored line) and the 25–75 percentile region
(colored shaded area) of the prediction for three different
noise levels. Thus, a better metric for prediction perfor-
mance is the prediction horizon itself (see Fig. 11(a)). The
prediction horizon, measured in time units, is estimated
as the time instant when the error ball is larger than a
radius of ε = 3, i.e. a model is considered predictive if

9

DMDc SINDYc NN

10

10

10

10

1010101 2 3

4

5

6

7

C
os

t
J

T
=

2
0

Length of Training Data

(a)

η = 0.05

100

80Pr
ey

DMDc

10

20

Pr
ed

at
or

200 205 210 215 220
7 ·103

8 ·103

9 ·103

Time

C
os

t

(b)

JT=20

Fig. 9. Control performance for increasing length of noise–
corrupted training data with η = 0.5: (a) terminal cumula-
tive cost over 20 time units, and (b) time series of states and
cost of the best model for each model type (mDMDc

train = 12,
mSINDY c

train = 1250, mNN
train = 65). From Mtrain = 200 on-

wards, SINDYc yields comparable models, outperforming all
other models.

well. SINDYc models require slightly more data than
DMDc, but result in the best overall performance. An
order of magnitude more data is required to train com-
parably performing neural network models. SINDYc’s
intrinsic robustness to overfitting renders all models from
mtrain = 14 on as having the best control performance
compared with the overall best performing DMDc and
neural network models. In contrast, DMDc shows a slight
decrease in performance due to overfitting and the neu-
ral network’s dependency on the initial network weights
detrimentally affects its performance. It is interesting to
note that the control performance is generally less sen-
sitive than the long-term prediction performance shown
in Fig. 7. Even a model with moderately low predictive
accuracy may perform well in MPC.

In Fig. 9 we show the same analysis but with noise-
corrupted training data. We assume no noise corruption
during the control stage. For each training length, the best
model out of 50 noise realizations was tested for control.
DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise.
Note that neural network models perform significantly

5 10 15 25

Training Prediction Control

DMDc

5 10 15 25

SINDYc

Time

-40

-20

0

0

40

5 10 15

20

20 25

x
i

(a)

NN

❄

M
od

elcom
plexity

x1 x2 x3 Control

×10

20

C
os

t

Time

0

1

2

3
4

21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35

Fig. 10. Prediction and control performance for the chaotic
Lorenz system: (a) time series of the states and input (shifted to
−25 and scaled by 10 to improve readability) during training,
validation, and control stage, and (b) cumulative cost and execu-
tion time of the MPC optimization.

worse when trained on noise-corrupted data.

4 Lorenz system
In this section, we demonstrate the SINDY-MPC archi-

tecture on the chaotic Lorenz system, a prototypical exam-
ple of chaos in dynamical systems. The Lorenz system rep-
resents the Rayleigh-Bénard convection in fluid dynamics
as proposed by Lorenz [29], but has also been associated
with lasers, dynamos, and chemical reaction systems [?].
The Lorenz dynamics are given by

ẋ1 = σ(x2 − x1) + u (19a)
ẋ2 = x1(ρ − x3) − x2 (19b)
ẋ3 = x1x2 − βx3 (19c)

with system parameters σ = 10, β = 8/3, ρ = 28, and
control input u affecting only the first state. A typical tra-
jectory oscillates alternately around the two weakly unsta-

8

DMDc SINDYc NN

10

10

10

10

1010101 2 3

4

5

6

7

C
os

t
J

T
=

2
0

Length of Training Data

(a)

η = 0.05

100

80Pr
ey

DMDc

10

20

Pr
ed

at
or

200 205 210 215 220
7 ·103

8 ·103

9 ·103

Time

C
os

t

(b)

JT=20

Fig. 9. Control performance for increasing length of noise–
corrupted training data with η = 0.5: (a) terminal cumula-
tive cost over 20 time units, and (b) time series of states and
cost of the best model for each model type (mDMDc

train = 12,
mSINDY c

train = 1250, mNN
train = 65). From Mtrain = 200 on-

wards, SINDYc yields comparable models, outperforming all
other models.

well. SINDYc models require slightly more data than
DMDc, but result in the best overall performance. An
order of magnitude more data is required to train com-
parably performing neural network models. SINDYc’s
intrinsic robustness to overfitting renders all models from
mtrain = 14 on as having the best control performance
compared with the overall best performing DMDc and
neural network models. In contrast, DMDc shows a slight
decrease in performance due to overfitting and the neu-
ral network’s dependency on the initial network weights
detrimentally affects its performance. It is interesting to
note that the control performance is generally less sen-
sitive than the long-term prediction performance shown
in Fig. 7. Even a model with moderately low predictive
accuracy may perform well in MPC.

In Fig. 9 we show the same analysis but with noise-
corrupted training data. We assume no noise corruption
during the control stage. For each training length, the best
model out of 50 noise realizations was tested for control.
DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise.
Note that neural network models perform significantly

5 10 15 25

Training Prediction Control

DMDc

5 10 15 25

SINDYc

Time

-40

-20

0

0

40

5 10 15

20

20 25

x
i

(a)

NN

❄

M
od

elcom
plexity

x1 x2 x3 Control

×10

20

C
os

t

Time

0

1

2

3
4

21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35

Fig. 10. Prediction and control performance for the chaotic
Lorenz system: (a) time series of the states and input (shifted to
−25 and scaled by 10 to improve readability) during training,
validation, and control stage, and (b) cumulative cost and execu-
tion time of the MPC optimization.

worse when trained on noise-corrupted data.

4 Lorenz system
In this section, we demonstrate the SINDY-MPC archi-

tecture on the chaotic Lorenz system, a prototypical exam-
ple of chaos in dynamical systems. The Lorenz system rep-
resents the Rayleigh-Bénard convection in fluid dynamics
as proposed by Lorenz [29], but has also been associated
with lasers, dynamos, and chemical reaction systems [?].
The Lorenz dynamics are given by

ẋ1 = σ(x2 − x1) + u (19a)
ẋ2 = x1(ρ − x3) − x2 (19b)
ẋ3 = x1x2 − βx3 (19c)

with system parameters σ = 10, β = 8/3, ρ = 28, and
control input u affecting only the first state. A typical tra-
jectory oscillates alternately around the two weakly unsta-

8

11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..
5 10 15 25

Training Prediction Control
DMDc

5 10 15 25

SINDYc

Time

-40
-20

0

0

20

20

40

5 10 15 25

x
i

NN

❄

M
od

elcom
plexity

x1 x2 x3 Control(a)

×10

C
os

t

Time

0

1

2

3
4

20 21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35
(c)

Figure 7. Prediction and control performance for the chaotic Lorenz system: (a) time series of the states and input (shifted

to −25 and scaled by 10 to improve readability) during training, validation, and control stage, and (b) cumulative cost,

and (c) execution time of the MPC optimization.

SINDYc NN

0.01 0.1 0.2 0.3 0.4 0.5

-3

-1

110

10

10
η

Pr
ed

ic
ti

on
ho

ri
zo

n

(a)
0.01 0.1 0.2 0.3 0.4 0.5

-50

50

η = 0.01

-50

50

η = 0.1

-50

50

η = 0.25

SIN
D

Y
c

-50

50

Time30 40

(b)

x1

x2

x3

✲
Increasing noise

-50

50

-50

50

N
N

Figure 8. Crossvalidated prediction performance with increasing measurement noise for the Lorenz system: (a) prediction

horizon in time units, and (b) time series with 50 (median as thick colored line) and 25–75 (colored shaded region)

percentiles. Statistics are shown for 50 noise realizations each.

the control performance is generally less sensitive than the long-term prediction performance
shown in Fig. 5(b-c). Even a model with moderately low predictive accuracy may perform well in
MPC.

In Fig. 6(c-d) we show the same analysis but with noise-corrupted training data. We assume
no noise corruption during the control stage. For each training length, the best model out of 50

noise realizations was tested for control. DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise. Note that neural network models perform
significantly worse when trained on noise-corrupted data.

11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

5 10 15 25

Training Prediction Control
DMDc

5 10 15 25

SINDYc

Time

-40
-20

0

0

20

20

40

5 10 15 25

x
i

NN

❄

M
od

elcom
plexity

x1 x2 x3 Control(a)

×10

C
os

t

Time

0

1

2

3
4

20 21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35
(c)

Figure 7. Prediction and control performance for the chaotic Lorenz system: (a) time series of the states and input (shifted

to −25 and scaled by 10 to improve readability) during training, validation, and control stage, and (b) cumulative cost,

and (c) execution time of the MPC optimization.

SINDYc NN

0.01 0.1 0.2 0.3 0.4 0.5

-3

-1

110

10

10
η

Pr
ed

ic
ti

on
ho

ri
zo

n

(a)
0.01 0.1 0.2 0.3 0.4 0.5

-50

50

η = 0.01

-50

50

η = 0.1

-50

50

η = 0.25

SIN
D

Y
c

-50

50

Time30 40

(b)

x1

x2

x3

✲
Increasing noise

-50

50

-50

50

N
N

Figure 8. Crossvalidated prediction performance with increasing measurement noise for the Lorenz system: (a) prediction

horizon in time units, and (b) time series with 50 (median as thick colored line) and 25–75 (colored shaded region)

percentiles. Statistics are shown for 50 noise realizations each.

the control performance is generally less sensitive than the long-term prediction performance
shown in Fig. 5(b-c). Even a model with moderately low predictive accuracy may perform well in
MPC.

In Fig. 6(c-d) we show the same analysis but with noise-corrupted training data. We assume
no noise corruption during the control stage. For each training length, the best model out of 50

noise realizations was tested for control. DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise. Note that neural network models perform
significantly worse when trained on noise-corrupted data.

11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

5 10 15 25

Training Prediction Control
DMDc

5 10 15 25

SINDYc

Time

-40
-20

0

0

20

20

40

5 10 15 25

x
i

NN

❄

M
od

elcom
plexity

x1 x2 x3 Control(a)

×10

C
os

t

Time

0

1

2

3
4

20 21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35
(c)

Figure 7. Prediction and control performance for the chaotic Lorenz system: (a) time series of the states and input (shifted

to −25 and scaled by 10 to improve readability) during training, validation, and control stage, and (b) cumulative cost,

and (c) execution time of the MPC optimization.

SINDYc NN

0.01 0.1 0.2 0.3 0.4 0.5

-3

-1

110

10

10
η

Pr
ed

ic
ti

on
ho

ri
zo

n
(a)

0.01 0.1 0.2 0.3 0.4 0.5

-50

50

η = 0.01

-50

50

η = 0.1

-50

50

η = 0.25

SIN
D

Y
c

-50

50

Time30 40

(b)

x1

x2

x3

✲
Increasing noise

-50

50

-50

50

N
N

Figure 8. Crossvalidated prediction performance with increasing measurement noise for the Lorenz system: (a) prediction

horizon in time units, and (b) time series with 50 (median as thick colored line) and 25–75 (colored shaded region)

percentiles. Statistics are shown for 50 noise realizations each.

the control performance is generally less sensitive than the long-term prediction performance
shown in Fig. 5(b-c). Even a model with moderately low predictive accuracy may perform well in
MPC.

In Fig. 6(c-d) we show the same analysis but with noise-corrupted training data. We assume
no noise corruption during the control stage. For each training length, the best model out of 50

noise realizations was tested for control. DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise. Note that neural network models perform
significantly worse when trained on noise-corrupted data.

11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

5 10 15 25

Training Prediction Control
DMDc

5 10 15 25

SINDYc

Time

-40
-20

0

0

20

20

40

5 10 15 25

x
i

NN

❄

M
odelcom

plexity

x1 x2 x3 Control(a)

×10

C
os

t

Time

0

1

2

3
4

20 21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35
(c)

Figure 7. Prediction and control performance for the chaotic Lorenz system: (a) time series of the states and input (shifted

to −25 and scaled by 10 to improve readability) during training, validation, and control stage, and (b) cumulative cost,

and (c) execution time of the MPC optimization.

SINDYc NN

0.01 0.1 0.2 0.3 0.4 0.5

-3

-1

110

10

10
η

Pr
ed

ic
tio

n
ho

ri
zo

n

(a)
0.01 0.1 0.2 0.3 0.4 0.5

-50

50

η = 0.01

-50

50

η = 0.1

-50

50

η = 0.25

SIN
D

Y
c

-50

50

Time30 40

(b)

x1

x2

x3

✲
Increasing noise

-50

50

-50

50

N
N

Figure 8. Crossvalidated prediction performance with increasing measurement noise for the Lorenz system: (a) prediction

horizon in time units, and (b) time series with 50 (median as thick colored line) and 25–75 (colored shaded region)

percentiles. Statistics are shown for 50 noise realizations each.

the control performance is generally less sensitive than the long-term prediction performance
shown in Fig. 5(b-c). Even a model with moderately low predictive accuracy may perform well in
MPC.

In Fig. 6(c-d) we show the same analysis but with noise-corrupted training data. We assume
no noise corruption during the control stage. For each training length, the best model out of 50

noise realizations was tested for control. DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise. Note that neural network models perform
significantly worse when trained on noise-corrupted data.

u

Length of training data Noise magnitude

Tr
ai

ni
ng

ti
m

e
Pr

ed
.h

or
iz

on

Pr
ed

.h
or

iz
on

Figure 10.5: Model predictive control of the Lorenz system with a neural net-
work model and a SINDy model. Reproduced with permission from Kaiser et
al. [366].

modeling [91, 218, 504, 518]. Until recently, these methods have largely been
developed for static data, although there is a growing emphasis on using ma-
chine learning to characterize dynamical systems. The use of machine learning
to learn control laws (i.e., to determine an effective map from sensor outputs to
actuation inputs) is even more recent [246]. As machine learning encompasses a
broad range of high-dimensional, possibly nonlinear, optimization techniques,
it is natural to apply machine learning to the control of complex, nonlinear sys-
tems. Specific machine learning methods for control include adaptive neural
networks, genetic algorithms, genetic programming, and reinforcement learn-
ing. A general machine learning control architecture is shown in Fig. 10.6. Many
of these machine learning algorithms are based on biological principles, such
as neural networks, reinforcement learning, and evolutionary algorithms.

It is important to note that model-free control methodologies may be ap-
plied to numerical or experimental systems with little modification. All of these
model-free methods have some sort of macroscopic objective function, typi-
cally based on sensor measurements (past and present). Some challenging real-
world example objectives in different disciplines include the following.

(a) Fluid dynamics: In aerodynamic applications, the goal is often some com-
bination of drag reduction, lift increase, and noise reduction; while in
pharmaceutical and chemical engineering applications, the goal may in-
volve mixing enhancement.

(b) Finance: The goal is often to maximize profit at a given level of risk toler-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.3. MACHINE LEARNING CONTROL 481

Physical
system

w

u

Cost
z J

Machine
learning
control

y

offline learning

Figure 10.6: Schematic of machine learning control wrapped around a complex
system using noisy sensor-based feedback. The control objective is to minimize
a well-defined cost function J within the space of possible control laws. An
offline learning loop provides experiential data to train the controller. Genetic
programming provides a particularly flexible algorithm to search out effective
control laws. The vector z contains information that may factor into the cost.

ance, subject to the law.

(c) Epidemiology: The goal may be to effectively suppress a disease with
constraints of sensing (e.g., blood samples, clinics, etc.) and actuation
(e.g., vaccines, bed nets, etc.).

(d) Industry: The goal of increasing productivity must be balanced with sev-
eral constraints, including labor and work safety laws, as well as environ-
mental impact, which often have significant uncertainty.

(e) Autonomy and robotics: The goal of self-driving cars and autonomous
robots is to achieve a task while interacting safely with a complex envi-
ronment, including cooperating with human agents.

In the examples above, the objectives involve some minimization or maxi-
mization of a given quantity subject to some constraints. These constraints may
be hard, as in the case of disease suppression on a fixed budget, or they may in-
volve a complex multi-objective tradeoff. Often, constrained optimizations will
result in solutions that live at the boundary of the constraint, which may ex-
plain why many companies operate at the fringe of legality. In all of the cases,
the optimization must be performed with respect to the underlying dynamics
of the system: fluids are governed by the Navier–Stokes equations, finance is
governed by human behavior and economics, and disease spread is the result
of a complex interaction of biology, human behavior, and geography.

These real-world control problems are extremely challenging, for a num-
ber of reasons. They are high-dimensional and strongly nonlinear, often with

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

482 CHAPTER 10. DATA-DRIVEN CONTROL

millions or billions of degrees of freedom that evolve according to possibly un-
known nonlinear interactions. In addition, it may be exceedingly expensive or
infeasible to run different scenarios for system identification; for example, there
are serious ethical issues associated with testing different vaccination strategies
when human lives are at stake.

Increasingly, challenging optimization problems are being solved with ma-
chine learning, leveraging the availability of vast and increasing quantities of
data. Many of the recent successes have been on static data (e.g., image classifi-
cation, speech recognition, etc.), and marketing tasks (e.g., online sales and ad
placement). However, current efforts are applying machine learning to analyze
and control complex systems with dynamics, with the potential to revolution-
ize our ability to interact with and manipulate these systems.

The following sections describe a handful of powerful learning techniques
that are being widely applied to control complex systems where models may
be unavailable. Note that the relative importance of the following methods are
not proportional to the amount of space dedicated to them here.

Reinforcement Learning

Reinforcement learning (RL) is an important discipline at the intersection of
machine learning and control [683], and it is currently being used heavily by
companies for generalized artificial intelligence, autonomous robots, and self-
driving cars. In reinforcement learning, a control policy is refined over time,
with improved performance achieved through experience. Because this is such
an important research area, it is the topic of Chapter 11.

Iterative Learning Control

Iterative learning control (ILC) [7, 94, 115, 175, 457, 511] is a widely used tech-
nique that learns how to refine and optimize repetitive control tasks, such as
the motion of a robot arm on a manufacturing line, where the robot arm will
be repeating the same motion thousands of times. In contrast to the feedback
control methods from Chapter 8, which adjust the actuation signal in real time
based on measurements, ILC refines the entire open-loop actuation sequence
after each iteration of a prescribed task. The refinement process may be as sim-
ple as a proportional correction based on the measured error, or may involve
a more sophisticated update rule. Iterative learning control does not require
one to know the system equations and has performance guarantees for linear
systems. ILC is therefore a mainstay in industrial control for repetitive tasks
in a well-controlled environment, such as trajectory control of a robot arm or
printer-head control in additive manufacturing.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.3. MACHINE LEARNING CONTROL 483

1 1 0 0 0 0 0 1 1
1 1 0 0 0 0 1 0 0

1 1 0 0 0 1 0 1 1

1 0 1 1 0 0 1 1 1

1 1 1 1 1 0 1 0 0
1 1 1 1 1 0 0 1 1

0 1 1 1 0 0 1 0 1

0 0 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0
0 1 0 1 0 1 1 1 1

GenerationProbability
of selection

Cost
function

Generation Operation
(j)
E(1)

R(2)

C(3,5)

C(3,5)

M(6)

C(1,3)

C(1,3)

M(1)

C(2,3)

C(2,3)

Elitism

Replication

Crossover

Mutation
...

k k + 1

1 1 0 0 0 0 0 1 1

1 1 0 0 0 0 1 0 0

1 1 0 0 0 0 1 0 1

1 1 0 0 0 0 0 1 0

1 1 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 1

1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0

1 1 0 0 0 1 0 1 1

1 1 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0 1

1 1 0 1 1 1 0 1 1

1 1 1 0 0 0 1 0 0

1 1 1 1 1 0 0 1 1

1 1 0 1 1 1 0 1 1

1 1 1 0 0 0 1 0 0

1 1 1 1 1 0 0 1 1

0 0
0

0 0
1

0 1
0

0 1
1

1 0
0

1 0
1

1 1
0

1 1
1 0

0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 1 0 0 0 0 0 1 1
|{z} |{z} |{z}
KP KI KD KP

KI

KD

Figure 10.7: Depiction of parameter cube for PID control. The genetic algorithm
represents a given parameter value as a genetic sequence that concatenates the
various parameters. In this example, the parameters are expressed in binary
representation that is scaled so that 000 is the minimum bound and 111 is the
upper bound. Color indicates the cost associated with each parameter value.

Genetic Algorithms

The genetic algorithm (GA) is one of the earliest and simplest algorithms for pa-
rameter optimization, based on the biological principle of optimization through
natural selection and fitness [193, 284, 333]. GA is frequently used to tune and
adapt the parameters of a controller. In GA, a population comprising many sys-
tem realizations with different parameter values compete to minimize a given
cost function, and successful parameter values are propagated to future gener-
ations through a set of genetic rules. The parameters of a system are generally
represented by a binary sequence, as shown in Fig. 10.7 for a PID control system
with three parameters, given by the three control gains KP , KI , and KD. Next,
a number of realizations with different parameter values, called individuals, are
initialized in a population and their performance is evaluated and compared
on a given well-defined task. Successful individuals with a lower cost have a
higher probability of being selected to advance to the next generation, accord-
ing to the following genetic operations.

(a) Elitism (optional): A set number of the most fit individuals with the best
performance are advanced directly to the next generation.

(b) Replication: An individual is selected to advance to the next generation.

(c) Crossover: Two individuals are selected to exchange a portion of their
code and then advance to the next generation; crossover serves to exploit
and enhance existing successful strategies.

(d) Mutation: An individual is selected to have a portion of its code modified

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

484 CHAPTER 10. DATA-DRIVEN CONTROL

1 1 0 0 0 0 0 1 1
1 1 0 0 0 0 1 0 0

1 1 0 0 0 1 0 1 1

1 0 1 1 0 0 1 1 1

1 1 1 1 1 0 1 0 0
1 1 1 1 1 0 0 1 1

0 1 1 1 0 0 1 0 1

0 0 1 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0
0 1 0 1 0 1 1 1 1

GenerationProbability
of selection

Cost
function

Generation Operation
(j)
E(1)

R(2)

C(3,5)

C(3,5)

M(6)

C(1,3)

C(1,3)

M(1)

C(2,3)

C(2,3)

Elitism

Replication

Crossover

Mutation
...

k k + 1

1 1 0 0 0 0 0 1 1

1 1 0 0 0 0 1 0 0

1 1 0 0 0 0 1 0 1

1 1 0 0 0 0 0 1 0

1 1 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 1

1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0

1 1 0 0 0 1 0 1 1

1 1 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0 1

1 1 0 1 1 1 0 1 1

1 1 1 0 0 0 1 0 0

1 1 1 1 1 0 0 1 1

1 1 0 1 1 1 0 1 1

1 1 1 0 0 0 1 0 0

1 1 1 1 1 0 0 1 1

0 0
0

0 0
1

0 1
0

0 1
1

1 0
0

1 0
1

1 1
0

1 1
1 0

0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 1 0 0 0 0 0 1 1
|{z} |{z} |{z}

Figure 10.8: Schematic illustrating evolution in a genetic algorithm. The in-
dividuals in generation k are each evaluated and ranked in ascending order
based on their cost function, which is inversely proportional to their probabil-
ity of selection for genetic operations. Then, individuals are chosen based on
this weighted probability for advancement to generation k + 1 using the four
operations: elitism, replication, crossover, and mutation. This forms generation
k + 1, and the sequence is repeated until the population statistics converges or
another suitable stopping criterion is reached.

with new values; mutation promotes diversity and serves to increase the
exploration of parameter space.

For the replication, crossover, and mutation operations, individuals are ran-
domly selected to advance to the next generation with the probability of selec-
tion increasing with fitness. The genetic operations are illustrated for the PID
control example in Fig. 10.8. These generations are evolved until the fitness of
the top individuals converges or other stopping criteria are met.

Genetic algorithms are generally used to find nearly globally optimal pa-
rameter values, as they are capable of exploring and exploiting local wells in the
cost function. GA provides a middle ground between a brute-force search and a
convex optimization, and is an alternative to expensive Monte Carlo sampling,
which does not scale to high-dimensional parameter spaces. However, there is
no guarantee that genetic algorithms will converge to a globally optimal solu-
tion. There are also a number of hyperparameters that may affect performance,
including the size of the populations, number of generations, and relative se-
lection rates of the various genetic operations.

Genetic algorithms have been widely used for optimization and control in
nonlinear systems [246]. For example, GA was used for parameter tuning in
open-loop control [516], with applications in jet mixing [406], combustion pro-
cesses [137], wake control [259, 567], and drag reduction [270]. GA has also been

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.3. MACHINE LEARNING CONTROL 485

Control law

Sensors and constants

Functions

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

⇥
/

�

Actuation

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ?] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)

(57)

b = s1 (c2 + f2(s2)) (58)

(59)

b = f1(s2) + c1f2(s2) (60)

(61)

b = s1(c2 + s1s2) (62)

(63)

b = f1(s2) + f3(c3 + s2) (64)

(65)

c1 c2 c3 c4 (66)

(67)

s1 s2 s3 s4 (68)

(69)

f1 f2 f3 f4 (70)

(71)

+ ⇥ (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.

43

Control law

Sensors and constants

Functions
Actuationu

y1 y2 c1 c2 c3

+

−
×
\
f1

f2

f3

+

y1 ×

c3 +

c1 y2

Figure 10.9: Illustration of the function tree used to represent the control law u
in genetic programming control.

employed to tune anH∞ controller in a combustion experiment [312].

Genetic Programming

Genetic programming (GP) [409, 410] is a powerful generalization of genetic
algorithms that simultaneously optimizes both the structure and parameters
of an input–output map. Recently, genetic programming has also been used to
obtain control laws that map sensor outputs to actuation inputs, as shown in
Fig. 10.9. The function tree representation in GP is quite flexible, enabling the
encoding of complex functions of the sensor signal y through a recursive tree
structure. Each branch is a signal, and the merging points are mathematical
operations. Sensors and constants are the leaves, and the overall control signal
u is the root. The genetic operations of crossover, mutation, and replication are
shown schematically in Fig. 10.10. This framework is readily generalized to
include delay coordinates and temporal filters, as discussed in Duriez et al.
[225].

Genetic programming has been recently used with impressive results in
turbulence control experiments, led by Bernd Noack and collaborators [226,
227, 266, 525, 546, 547]. This provides a new paradigm of control for strongly
nonlinear systems, where it is now possible to identify the structure of non-
linear control laws. Genetic programming control is particularly well suited to
experiments where it is possible to rapidly evaluate a given control law, en-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

486 CHAPTER 10. DATA-DRIVEN CONTROL

Crossover, C

p(C) = 70%

p(M
)
=

20%p(
R

)
=

10
%

Replication, RMutation, M

u u u u

+ × + ×

c2 × y1 + c2 × y1 +

f1 y3 c1 × × y3 c1 f1

y2 c3 y2 c3 y2 y2

u = c2 + f1(y2)y3 u = y1(c1 + c3y2) u = c2 + c3y2y3 u = y1(c1 + f1(y2))

u u u u

+ + × ×

y1 × y1 f2 f1 f1 f1 f1

c2 × × y2 × y2 ×

y1 y2 c3 y1 c1 y1 c1 y1

u = y1 + c2y1y2 u = y1 + f2(c3y1) u = f1(y2)f1(c1y1) u = f1(y2)f1(c1y1)

Figure 10.10: Genetic operations used to advance function trees across genera-
tions in genetic programming control. The relative selection rates of replication,
crossover, and mutation are p(R) = 0.1, p(C) = 0.7, and p(M) = 0.2, respec-
tively.

abling the testing of hundreds or thousands of individuals in a short amount
of time. Current demonstrations of genetic programming control in turbulence
have produced several macroscopic behaviors, such as drag reduction and mix-
ing enhancement, in an array of flow configurations. Specific flows include the
mixing layer [226, 227, 546, 547], the backward-facing step [227, 266?], and a

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.3. MACHINE LEARNING CONTROL 487

KI

∫

KP

KD
d

dt

System
wr + ε ++

+

u y

−

Figure 10.11: Proportional–integral–derivative (PID) control schematic. PID re-
mains ubiquitous in industrial control.

turbulent separated boundary layer [227].

Example: Genetic Algorithm to Tune PID Control

In this example, we will use the genetic algorithm to tune a proportional–
integral–derivative (PID) controller. However, it should be noted that this is
just a simple demonstration of evolutionary algorithms, and such heavy ma-
chinery is not recommended to tune a PID controller in practice, as there are
far simpler techniques.

PID control is among the simplest and most widely used control architec-
tures in industrial control systems, including for motor position and velocity
control, for tuning of various subsystems in an automobile, and for the pres-
sure and temperature controls in modern espresso machines, to name only a
few of the myriad applications. As its name suggests, PID control additively
combines three terms to form the actuation signal, based on the error signal
and its integral and derivative in time. A schematic of PID control is shown in
Fig. 10.11.

In the cruise control example in Section 8.1, we saw that it was possible
to reduce reference tracking error by increasing the proportional control gain
KP in the control law u = −KP (wr − y). However, increasing the gain may
eventually cause instability in some systems, and it will not completely elim-
inate the steady-state tracking error. The addition of an integral control term,
KI

∫ t
0
(wr − y) is useful to eliminate steady-state reference tracking error while

alleviating the work required by the proportional term.
There are formal rules for how to choose the PID gains for various design

specifications, such as fast response and minimal overshoot and ringing. In this
example, we explore the use of a genetic algorithm to find effective PID gains

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

488 CHAPTER 10. DATA-DRIVEN CONTROL

to minimize a cost function. We use an LQR cost function

J =

∫ T

0

Q(wr − y)2 +Ru2 dτ,

with Q = 1 and R = 0.001 for a step response wr = 1. The system to be con-
trolled will be given by the transfer function

G(s) =
1

s4 + s
.

The first step is to write a function that evaluates a given PID controller, as
in Code 10.1. The three PID gains are stored in the variable parms.

Code 10.1: [MATLAB] Evaluate cost function for PID controller.
function J = pidtest(G,dt,parms)

s = tf(’s’);
K = parms(1) + parms(2)/s + parms(3)*s/(1+.001*s);
Loop = series(K,G);
ClosedLoop = feedback(Loop,1);
t = 0:dt:20;
[y,t] = step(ClosedLoop,t);

CTRLtf = K/(1+K*G);
u = lsim(K,1-y,t);

Q = 1; R = .001;
J = dt*sum(Q*(1-y(:)).ˆ2 + R*u(:).ˆ2)

Code 10.1: [Python] Evaluate cost function for PID controller.
def pidtest(G,dt,parms):

s = tf(1,1)
K = parms[0] + parms[1]/s + parms[2]*s/(1+0.001*s)
Loop = series(K,G)
ClosedLoop = feedback(Loop,1)
t = np.arange(0,20,dt)
y,t = step(ClosedLoop,1)

CTRLtf = K/(1+K*G)
u = lsim(K,1-y,t)[0]

Q = 1
R = 0.001
J = dt*np.sum(np.power(Q@(1-y.reshape(-1)),2) + R @ np.

power(u.reshape(-1),2))
return J

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.3. MACHINE LEARNING CONTROL 489

Generation

So
rt

ed
in

di
vi

du
al

log(J)

Figure 10.12: Cost function across generations, as GA optimizes PID gains.

Next, it is relatively simple to use a genetic algorithm to optimize the PID
control gains, as in Code 10.2. In this example, we run the GA for 10 genera-
tions, with a population size of 25 individuals per generation.

Code 10.2: [MATLAB] Genetic algorithm to tune PID controller.
dt = 0.001;
PopSize = 25;
MaxGenerations = 10;
s = tf(’s’);
G = 1/(s*(s*s+s+1));

options = optimoptions(@ga,’PopulationSize’,PopSize,’
MaxGenerations’,MaxGenerations,’OutputFcn’,@myfun);

[x,fval] = ga(@(K)pidtest(G,dt,K),3,-eye(3),zeros(3,1)
,[],[],[],[],[],options);

It is also possible to reproduce this example in Python using the distributed
evolutionary algorithms in Python (DEAP) package at https://github.com/
DEAP/deap. Python code is available on the book’s GitHub, although it is too
long to reproduce here, as there is not a simple one-line ga command, as in
MATLAB.

The results from intermediate generations may be saved using a custom
output function, as described in the myfun.m code on the book’s GitHub.

The evolution of the cost function across various generations is shown in
Fig. 10.12. As the generations progress, the cost function steadily decreases.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/DEAP/deap
https://github.com/DEAP/deap

490 CHAPTER 10. DATA-DRIVEN CONTROL

0

0

1

2

3

1

2
1.5

1
0.52

0

KP
KI

KD

Figure 10.13: PID gains generated from genetic algorithm. Red points corre-
spond to early generations while blue points correspond to later generations.
The black point is the best individual found by GA.

y

t

Figure 10.14: PID controller response from first generation of genetic algorithm.

The individual gains are shown in Fig. 10.13, with redder dots corresponding
to early generations and bluer dots corresponding to later generations. As the
genetic algorithm progresses, the PID gains begin to cluster around the optimal
solution (black circle).

Figure 10.14 shows the output in response to the PID controllers from the
first generation. It is clear from this plot that many of the controllers fail to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.4. ADAPTIVE EXTREMUM-SEEKING CONTROL 491

y

t

Figure 10.15: PID controller response from last generation of genetic algorithm.

stabilize the system, resulting in large deviations in y. In contrast, Fig. 10.15
shows the output in response to the PID controllers from the last generation.
Overall, these controllers are more effective at producing a stable step response.

The best controllers from each generation are shown in Fig. 10.16. In this
plot, the controllers from early generations are redder, while the controllers
from later generations are bluer. As the GA progresses, the controller is able to
minimize output oscillations and achieves fast rise-time.

10.4 Adaptive Extremum-Seeking Control

Although there are many powerful techniques for model-based control design,
there are also a number of drawbacks. First, in many systems, there may not be
access to a model, or the model may not be suitable for control (i.e., there may
be strong nonlinearities or the model may be represented in a non-traditional
form). Next, even after an attractor has been identified and the dynamics char-
acterized, control may invalidate this model by modifying the attractor, giving
rise to new and uncharacterized dynamics. The obvious exception is stabilizing
a fixed point or a periodic orbit, in which case effective control keeps the system
in a neighborhood where the linearized model remains accurate. Finally, there
may be slow changes to the system that modify the underlying dynamics, and
it may be difficult to measure and model these effects.

The field of adaptive control broadly addresses these challenges, by allow-
ing the control law the flexibility to modify its action based on the changing
dynamics of a system. Extremum-seeking control (ESC) [26, 415] is a particu-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

492 CHAPTER 10. DATA-DRIVEN CONTROL

J

u

y

t

Figure 10.16: Best PID controllers from each generation. Red trajectories are
from early generations, and blue trajectories correspond to the last generation.

larly attractive form of adaptive control for complex systems because it does
not rely on an underlying model and it has guaranteed convergence and stabil-
ity under a set of well-defined conditions. Extremum-seeking may be used to
track local maxima of an objective function, despite disturbances, varying sys-
tem parameters, and nonlinearities. Adaptive control may be implemented for
in-time control or used for slow tuning of parameters in a working controller.

Extremum-seeking control may be thought of as an advanced perturb-and-
observe method, whereby a sinusoidal perturbation is additively injected in the
actuation signal and used to estimate the gradient of an objective function
J that should be maximized or minimized. The objective function is gener-
ally computed based on sensor measurements of the system, although it ulti-
mately depends on the internal dynamics and the choice of the input signal.
In extremum-seeking, the control variable u may refer either to the actuation
signal or to a set of parameters that describe the control behavior, such as the
frequency of periodic forcing or the gains in a PID controller.

The extremum-seeking control architecture is shown in Fig. 10.17. This schematic
depicts ESC for a scalar input u, although the methods readily generalize for
vector-valued inputs u. A convex objective function J(u) is shown in Fig. 10.18
for static plant dynamics (i.e., for y = u). The extremum-seeking controller uses

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.4. ADAPTIVE EXTREMUM-SEEKING CONTROL 493

Physical
system Cost

y J

s
s+ωh

×k
s

+
ρξû

u

a sin(ωt) a sin(ωt− φ)

Extremum-seeking controller

Figure 10.17: Schematic illustrating an extremum-seeking controller. A sinu-
soidal perturbation is added to the best guess of the input û, and it passes
through the plant, resulting in a sinusoidal output perturbation that may be
observed in the sensor signal y and the cost J . The high-pass filter results in
a zero-mean output perturbation, which is then multiplied (demodulated) by
the same input perturbation, resulting in the signal ξ. This demodulated signal
is finally integrated into the best guess û for the optimizing input u.

an input perturbation to estimate the gradient of the objective function J and
steer the mean actuation signal towards the optimizing value.

Three distinct timescales are relevant for extremum-seeking control:

(a) slow – external disturbances and parameter variation;

(b) medium – perturbation frequency ω;

(c) fast – system dynamics.

In many systems, the internal system dynamics evolve on a fast timescale. For
example, turbulent fluctuations may equilibrate rapidly compared to actuation
timescales. In optical systems, such as a fiber laser [129], the dynamics of light
inside the fiber are extremely fast compared to the timescales of actuation.

In extremum-seeking control, a sinusoidal perturbation is added to the es-
timate of the input that maximizes the objective function, û:

u = û+ a sin(ωt). (10.27)

This input perturbation passes through the system dynamics and output, re-
sulting in an objective function J that varies sinusoidally about some mean

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

494 CHAPTER 10. DATA-DRIVEN CONTROL

û

J

û < u∗ u∗ û > u∗

Figure 10.18: Schematic illustrating extremum-seeking control on a static objec-
tive function J(u). The output perturbation (red) is in phase when the input
is left of the peak value (i.e., u < u∗) and out of phase when the input is to
the right of the peak (i.e., u > u∗). Thus, integrating the product of input and
output sinusoids moves û towards u∗.

value, as shown in Fig. 10.18. The output J is high-pass-filtered to remove the
mean (DC component), resulting in the oscillatory signal ρ. A simple high-pass
filter is represented in the frequency domain as

s

s+ ωh
, (10.28)

where s is the Laplace variable and ωh is the filter frequency. The high-pass filter
is chosen to pass the perturbation frequency ω. The high-pass-filtered output is
then multiplied by the input sinusoid, possibly with a phase shift φ, resulting
in the demodulated signal ξ:

ξ = a sin(ωt− φ)ρ. (10.29)

This signal ξ is mostly positive if the input u is to the left of the optimal value
u∗ and it is mostly negative if u is to the right of the optimal value u∗, shown
as red curves in Fig. 10.18. Thus, the demodulated signal ξ is integrated into û,
the best estimate of the optimizing value,

d

dt
û = kξ, (10.30)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.4. ADAPTIVE EXTREMUM-SEEKING CONTROL 495

so that the system estimate û is steered towards the optimal input u∗. Here, k
is an integral gain, which determines how aggressively the actuation climbs
gradients in J .

Roughly speaking, the demodulated signal ξ measures gradients in the ob-
jective function, so that the algorithm climbs to the optimum more rapidly
when the gradient is larger. This is simple to see for constant plant dynamics,
where J is simply a function of the input, J(u) = J(û + a sin(ωt)). Expanding
J(u) in the perturbation amplitude a, which is assumed to be small, yields

J(u) = J(û+ a sin(ωt)) (10.31a)

= J(û) +
∂J

∂u

∣∣∣∣
u=û

a sin(ωt) +O(a2). (10.31b)

The leading-order term in the high-pass-filtered signal is ρ ≈ ∂J/∂u|u=û a sin(ωt).
Averaging ξ = a sin(ωt− φ)ρ over one period yields

ξavg =
ω

2π

∫ 2π/ω

0

a sin(ωt− φ)ρ dt (10.32a)

=
ω

2π

∫ 2π/ω

0

∂J

∂u

∣∣∣∣
u=û

a2 sin(ωt− φ) sin(ωt) dt (10.32b)

=
a2

2

∂J

∂u

∣∣∣∣
u=û

cos(φ). (10.32c)

Thus, for the case of trivial plant dynamics, the average signal ξavg is propor-
tional to the gradient of the objective function J with respect to the input u.

In general, extremum-seeking control may be applied to systems with non-
linear dynamics relating the input u to the outputs y that act on a faster timescale
than the perturbation ω. Thus, J may be time-varying, which complicates the
simplistic averaging analysis above. The general case of extremum-seeking con-
trol of nonlinear systems is analyzed by Krstić and Wang [415], where they de-
velop powerful stability guarantees based on a separation of timescales and
a singular perturbation analysis. The basic algorithm may also be modified to
add a phase φ to the sinusoidal input perturbation in (10.29). In [415], there was
an additional low-pass filter ωl/(s + ωl) placed before the integrator to extract
the DC component of the demodulated signal ξ. There is also an extension to
extremum-seeking called slope-seeking, where a specific slope is sought [26]
instead of the standard zero slope corresponding to a maximum or minimum.
Slope-seeking is preferred when there is not an extremum, as in the case when
control inputs saturate. Extremum-seeking is often used for frequency selection
and slope-seeking is used for amplitude selection when tuning an open-loop
periodic forcing.

It is important to note that extremum-seeking control will only find local
maxima of the objective function, and there are no guarantees that this will cor-
respond to a global maximum. Thus, it is important to start with a good initial

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

496 CHAPTER 10. DATA-DRIVEN CONTROL

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

J

u

t

Figure 10.19: Extremum-seeking control response for cost function in (10.33).

condition for the optimization. In a number of studies, extremum-seeking con-
trol is used in conjunction with other global optimization techniques, such as a
genetic algorithm, or sparse representation for classification [130, 256].

Simple Example of Extremum-Seeking Control

Here we consider a simple application of extremum-seeking control to find the
maximum of a static quadratic cost function,

J(u) = 25− (5− u)2. (10.33)

This function has a single global maximum at u∗ = 5. Starting at u = 0, we
apply extremum-seeking control with a perturbation frequency of ω = 10 Hz
and an amplitude of a = 0.2. Figure 10.19 shows the controller response and
the rapid tracking of the optimal value u∗ = 5. MATLAB and Python codes that
implement extremum-seeking using a simple Butterworth high-pass filter are
provided on the book’s GitHub.

Notice that when the gradient of the cost function is larger (i.e., closer to
u = 0), the oscillations in J are larger, and the controller climbs more rapidly.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.4. ADAPTIVE EXTREMUM-SEEKING CONTROL 497

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

J

u

t

Figure 10.20: Extremum-seeking control response with a slowly changing cost
function J(u, t).

When the input u gets close to the optimum value at u∗ = 5, even though the
input perturbation has the same amplitude a, the output perturbation is nearly
zero (on the order of a2), since the quadratic cost function is flat near the peak.
Thus we achieve fast tracking far away from the optimum value and small
deviations near the peak.

To see the ability of extremum-seeking control to handle varying system
parameters, consider the time-dependent cost function given by

J(u) = 25− (5− u− sin(t))2. (10.34)

The varying parameters, which oscillate at 1/(2π) Hz, may be considered slow
compared with the perturbation frequency 10 Hz. The response of extremum-
seeking control for this slowly varying system is shown in Fig. 10.20. In this
response, the actuation signal is able to maintain good performance by oscil-
lating back and forth to approximately track the oscillating optimal u∗, which
oscillates between 4 and 6. The output function J remains close to the optimal
value of 25, despite the unknown varying parameter.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

498 CHAPTER 10. DATA-DRIVEN CONTROL

Fin J(θ, t) Fout
θ J y

High-pass
filter

×Integrator+
ρξû

u

a sin(ωt) a sin(ωt− φ)

Figure 10.21: Schematic of a specific extremum-seeking control architecture that
benefits from a wealth of design techniques [26, 178].

Challenging Example of Extremum-Seeking Control

Here we consider an example inspired by a challenging benchmark problem
in [26, Section 1.3]. This system has a time-varying objective function J(t) and
dynamics with a right half-plane zero, making it difficult to control.

In one formulation of extremum-seeking [26, 178], there are additional guide-
lines for designing the controller if the plant can be split into three blocks that
define the input dynamics, a time-varying objective function with no internal
dynamics, and the output dynamics, as shown in Fig. 10.21. In this case, there
are procedures to design the high-pass filter and integrator blocks.

In this example, the objective function is given by

J(θ) = 0.05δ(t− 10) + (θ − θ∗(t))2,

where δ is the Dirac delta function, and the optimal value θ∗(t) is given by

θ∗ = 0.01 + 0.001t.

The optimal objective is given by J∗ = 0.05δ(t − 10). The input and output
dynamics are taken from the example in [26], and are given by

Fin(s) =
s− 1

(s+ 2)(s+ 1)
and Fout(s) =

1

s+ 1
.

Using the design procedure in [26], one arrives at the high-pass filter s/(s+
5) and an integrator-like block given by 50(s− 4)/(s− 0.01). In addition, a per-
turbation with ω = 5 and a = 0.05 is used, and the demodulating perturbation
is phase-shifted by φ = 0.7955; this phase is obtained by evaluating the input
function Fin at iω. The response of this controller is shown in Fig. 10.22, along
with the Simulink implementation in Fig. 10.23. The controller is able to accu-
rately track the optimizing input, despite additive sensor noise.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.4. ADAPTIVE EXTREMUM-SEEKING CONTROL 499

0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

J

J
*

0 10 20 30 40 50 60 70 80 90 100

-0.2

-0.1

0

0.1

0.2

*

J

u

t

Figure 10.22: Extremum-seeking control response for a challenging test system
with a right half-plane zero, inspired by [26].

Sensor noise

s

s+5

High-pass filter50s-200

s-.01

"Integrator"

1

s+1

Output dynamics

s-1

s +3s+22

Input Dynamics

theta

Control knob

y

J

Perturbation
(phase shifted)

Perturbation

Product

f(u)

Fcn

Step in J

Ramp in u-star

Figure 10.23: Simulink model for extremum-seeking controller used in
Fig. 10.22.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

500 CHAPTER 10. DATA-DRIVEN CONTROL

Applications of Extremum-Seeking Control

Because of the lack of assumptions and ease of implementation, extremum-
seeking control has been widely applied to a number of complex systems. Al-
though ESC is generally applicable for in-time control of dynamical systems, it
is also widely used as an online optimization algorithm that can adapt to slow
changes and disturbances. Among the many uses of extremum-seeking control,
here we highlight only a few.

Extremum-seeking has been used widely for maximum power point track-
ing algorithms in photovoltaics [106, 125, 237, 439], and wind energy conver-
sion [517]. In the case of photovoltaics, the voltage or current ripple in power
converters due to pulse-width modulation is used for the perturbation signal;
and in the case of wind, turbulence is used as the perturbation. Atmospheric
turbulent fluctuations were also used as the perturbation signal for the opti-
mization of aircraft control [412]; in this example it is infeasible to add a per-
turbation signal to the aircraft control surfaces, and a natural perturbation is
required. ESC has also been used in optics and electronics for laser pulse shap-
ing [599], for tuning high-gain fiber lasers [129, 130], and for beam control in
a reconfigurable holographic metamaterial antenna array [349]. Other applica-
tions include formation flight optimization [87], bioreactors [741], PID [384] and
PI [416] tuning, active braking systems [771], and control of Tokamaks [541].

Extremum-seeking has also been broadly applied in turbulent flow control.
Despite the ability to control dynamics in-time with ESC, it is often used as
a slow feedback optimization to tune the parameters of a working open-loop
controller. This slow feedback has many benefits, such as maintaining perfor-
mance despite slow changes to environmental conditions. Extremum-seeking
has been used to control an axial flow compressor [742], to reduce drag over
a bluff body in an experiment [61, 62] using a rotating cylinder on the upper
trailing edge of the rear surface, and for separation control in a high-lift airfoil
configuration [63] using pressure sensors and pulsed jets on the leading edge
of a single-slotted flap. There have also been impressive industrial-scale uses of
extremum-seeking control, for example to control thermoacoustic modes across
a range of frequencies in a 4 MW gas turbine combustor [48, 50]. It has also been
utilized for separation control in a planar diffusor that is fully turbulent and
stalled [49], and to control jet noise [493].

There are numerous extensions to extremum-seeking that improve perfor-
mance. For example, extended Kalman filters were used as the filters in [272] to
control thermoacoustic instabilities in a combustor experiment, reducing pres-
sure fluctuations by nearly 40 dB. Kalman filters were also used with ESC to
reduce the flow separation and increase the pressure ratio in a high-pressure
axial fan using an injected pulsed air stream [752]. Including the Kalman filter
improved the controller bandwidth by a factor of 10 over traditional ESC.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

10.4. ADAPTIVE EXTREMUM-SEEKING CONTROL 501

Suggested Reading

Texts

(1) Real-time optimization by extremum-seeking control, by K. B. Ariyur and
M. Krstić, 2003 [26].

(2) Machine learning control: Taming nonlinear dynamics and turbulence,
by T. Duriez, S. L. Brunton, and B. R. Noack, 2016 [225].

(3) Model predictive control, by E. F. Camacho and C. B. Alba, 2013 [149].

Papers and reviews

(1) Stability of extremum seeking feedback for general nonlinear dynamic
systems, by M. Krstić and H. H. Wang, Automatica, 2000 [415].

(2) Dynamic mode decomposition with control, by J. L. Proctor, S. L. Brunton,
and J. N. Kutz, SIAM Journal on Applied Dynamical Systems, 2016 [570].

(3) Model predictive control: Theory and practice – a survey, by C. E. Garcia,
D. M. Prett, and M. Morari, Automatica, 1989 [262].

(4) Closed-loop turbulence control: Progress and challenges, by S. L. Brunton
and B. R. Noack, Applied Mechanics Reviews, 2015 [124].

(5) Sparse identification of nonlinear dynamics for model predictive control
in the low-data limit, by E. Kaiser, J. N. Kutz, and S. L. Brunton, Proceed-
ings of the Royal Society of London A, 2018 [366].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

502 CHAPTER 10. DATA-DRIVEN CONTROL

Homework

Exercise 10-1. In this exercise, we will compare DMDc, SINDYc, and a neural
network (NN) for use with MPC to control the Lorenz system, following Kaiser
et al. [366].

First, generate training data by simulating the forced Lorenz system:

ẋ = 10(y − x) + u,

ẏ = x(28− z)− y,
ż = xy − (8/3)z.

Generate data using a small time-step ∆t = 0.001 from t = 0 to t = 10 with a
rich control input u(t) = (2 sin(t) + sin(0.1t))2. Use this data to train a DMDc,
SINDYc, and NN model. For the NN model, start with a single hidden layer
with 10 neurons using hyperbolic tangent sigmoid activation functions. Com-
pare the performance of all of these models to predict the response to a new
forcing u(t) = (5 sin(30t))3 for t = 10 to t = 20.

Finally, design an MPC controller based on each of these models to stabilize the
fixed point (x, y, z) = (−

√
72,−

√
72, 27).

(Bonus) Compare the prediction and control performance of the various mod-
els as a function of the amount of data used in the training phase.

Exercise 10-2. (Advanced) This exercise will develop a model predictive con-
troller for the fluid flow past a cylinder. There are several open-source codes
that can be used to simulate simple fluid flows, such as the IBPM code at
https://github.com/cwrowley/ibpm/.

(a) First, generate a training data set that simulates the vortex shedding be-
hind a stationary cylinder at a Reynolds number of 100. Compute the
mean flow field during the periodic vortex shedding portion, after initial
transients have died out. In addition, generate training data correspond-
ing to the cylinder rotating, which will be our control input. Since the
absolute angle of the cylinder is irrelevant due to symmetry, we will con-
sider the angular rate of the cylinder as the control input. For all data,
subtract the mean flow computed above.

(b) Train a DMDc model based on this data, and test the performance of this
model on a test data set of the cylinder rotating. Plot the various responses
and discuss the performance.

(c) Use this DMDc model for MPC with the goal of stabilizing a symmet-
ric configuration, where the DMDc state is equal to zero. Plot the perfor-
mance and discuss the results.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/cwrowley/ibpm/

10.4. ADAPTIVE EXTREMUM-SEEKING CONTROL 503

(d) Now, instead of using the full flow field to characterize a DMDc model,
use the lift and drag coefficients, CL and CD; you may need to build
an augmented state vector, using either these coefficients and their time
derivatives or time-delayed values. Similarly, test the performance of this
model on the test data and discuss.

(e) Use this force-based DMDc model to develop an MPC that tracks a given
reference lift value, say CL = 1 or CL = −1. See if you can make your
controller track a reference that switches between these values. What if
the reference lift is much larger, say CL = 2 or CL = 5?

(f) Use this model to develop an MPC that tracks a reference drag value, such
as CD = 0. Is it possible to simultaneously track a reference lift and drag
value? Why or why not?

Exercise 10-3. (Advanced) Repeat the exercise above, but instead of using a
DMDc model, construct a neural network model for a deep MPC. This exercise
follows the work of Morton et al. [513] and Bieker et al. [84].

Compare the results from the NN-based MPC and the DMDc-based MPC.

Exercise 10-4. Design an optimal full-state LQR controller using a genetic algo-
rithm for the spring–mass–damper system:

ẍ+ 5ẋ+ 4x = u(t).

Plot the closed-loop eigenvalues and the LQR cost J as a function of the gen-
eration. Note that you will need to specify the gain matrices Q and R to define
the cost function J .

Exercise 10-5. Design an extremum-seeking controller to find the peak of a
quartic cost function J(u) = 16− (2−u)4, similar to the example with quadratic
cost in (10.33). Do you need to modify the extremum-seeking control parame-
ters? Discuss the performance.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 11

Reinforcement Learning

Reinforcement learning (RL) is a major branch of machine learning that is con-
cerned with how to learn control laws and policies to interact with a complex
environment from experience [362, 683]. Thus, RL is situated at the growing
intersection of control theory and machine learning [589], and it is among the
most promising fields of research towards generalized artificial intelligence and
autonomy. Both machine learning and control theory fundamentally rely on op-
timization, and, likewise, RL involves a set of optimization techniques within
an experiential framework for learning how to interact with the environment.

In reinforcement learning, an agent1 senses the state of its environment and
learns to take appropriate actions to optimize future rewards. The ultimate goal
in RL is to learn an effective control strategy or set of actions through posi-
tive or negative reinforcement. This search may involve trial-and-error learn-
ing, model-based optimization, or a combination of both. In this way, reinforce-
ment learning is fundamentally biologically inspired, mimicking how animals
learn to interact with their environment through positive and negative reward
feedback from trial-and-error experience. Much of the history of reinforcement
learning, and machine learning more broadly, has been linked to studies of
animal behavior and the neurological basis of decisions, control, and learning
[194, 196, 508, 645]. For example, Pavlov’s dog is an illustration that animals
learn to associate environmental cues with a food reward [551]. The term re-
inforcement refers to the rewards, such as food, used to reinforce desirable ac-
tions in humans and animals. However, in animal systems, reinforcement is
ultimately achieved through cellular and molecular learning rules.

Multiple textbooks have been written on this topic, which spans almost a
century of progress. Major advances in deep reinforcement learning are also
rapidly changing the landscape. This chapter is not meant to be comprehensive;
rather, it aims to provide a solid foundation, to introduce key concepts and
leading approaches, and to lower the barrier to entry in this exciting field.

1Ironically, from the perspective of reinforcement learning, in The Matrix, Neo is actually the
agent learning to interact with his environment.

504

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 505

OBSERVE STATE, s

REWARD, r

ACTION, a
AGENT ENVIRONMENT

STATE

POLICY,
πθ(s, a)

PARAMETERS, θ

r1 → r2 → r3 → ⋯ → rt

s1 → s2 → s3 → ⋯ → st

→ at⋯→a2→a1

https://commons.wikimedia.org/wiki/File:Chess_board_with_chess_set_in_opening_position_2012_PD_02.jpg

Figure 11.1: Schematic of reinforcement learning, where an agent senses its en-
vironmental state s and takes actions a according to a policy π that is optimized
through learning to maximize future rewards r. In this case, a deep neural net-
work is used to represent the policy π. This is known as a deep policy network.

11.1 Overview and Mathematical Formulation

Figure 11.1 provides a schematic overview of the reinforcement learning frame-
work. An RL agent senses the state of its environment and learns to take appro-
priate actions to achieve optimal immediate or delayed rewards. Specifically,
the RL agent arrives at a sequence of different states sk ∈ S by performing
actions ak ∈ A, with the selected actions leading to positive or negative re-
wards rk used for learning. The sets S and A denote the sets of possible states
and actions, respectively. Importantly, the RL agent is capable of learning from
delayed rewards, which is critical for systems where the optimal solution in-
volves a multi-step procedure. Rewards may be thought of as sporadic and
time-delayed labels, leading to RL being considered a third major branch of
machine learning, called semi-supervised learning, which complements the other
two branches of supervised and unsupervised learning. One canonical exam-
ple is learning a set of moves, or a long-term strategy, to win a game of chess.
As is the case with human learning, RL often begins with an unstructured explo-
ration, where trial and error are used to learn the rules, followed by exploitation,
where a strategy is chosen and optimized within the learned rules.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

506 CHAPTER 11. REINFORCEMENT LEARNING

The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy π that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
the policy π(s, a),

π(s, a) = Pr(a = a | s = s), (11.1)

which is the probability of taking action a, given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, representing and learning this policy becomes
prohibitively expensive, and π must instead be represented as an approximate
function that is parameterized by a lower-dimensional vector θ:

π(s, a) ≈ π(s, a,θ). (11.2)

Often, this parameterized function will be denoted πθ(s, a). Function approx-
imation is the basis of deep reinforcement learning in Section 11.4, where it is
possible to represent these complex functions using deep neural networks.

Note that, in the literature, there is often an abuse of notation, where π(s, a)
is used to denote the action taken, rather than the probability of taking an action
a given a state observation s. In the case of a deterministic policy, such as a
greedy policy, then it may be possible to use a = π(s) to represent the action
taken. We will attempt to be clear throughout when choosing one convention
over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of a
higher-dimensional environmental state that evolves according to a stochastic,
nonlinear dynamical system. For simplicity, most introductions to RL assume
that the full state is measured and that it evolves according to a Markov de-
cision process (MDP), so that the probability of the system occurring in the
current state is determined only by the previous state. We will begin with this
simple formulation. Even when it is assumed that the state evolves according to
an MDP, it is often the case that this model is not known, motivating the use of
“model-free” RL strategies discussed in Section 11.3. Similarly, when a model is
not known, it may be possible to first learn an MDP using data-driven methods
and then use this for “model-based” reinforcement learning, as in Section 11.2.

An MDP consists of a set of states S, a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s′, s, a) = Pr(sk+1 = s′ | sk = s, ak = a), (11.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 507

and a reward function R,

R(s′, s, a) = Pr(rk+1 | sk+1 = s′, sk = s, ak = a). (11.4)

Sometimes the transition probability P (s′, s, a) will be written as P (s′ | s, a).
Again, sometimes there will be an abuse of notation, where a chosen policy π
will be used instead of the action a in the argument of either P or R above. In
this case, it is assumed that this applies a sum over states, as in

P (s′, s,π) =
∑

a∈A
π(s, a)P (s′, s, a). (11.5)

Thus, an MDP generalizes the notion of a Markov process to include ac-
tions and rewards, making it suitable for decision making and control. A sim-
ple Markov process is a set of states S and a probability of transitioning from
one state to the next. The defining property of a Markov process and an MDP is
that the probability of being in a future state is entirely determined by the cur-
rent state, and not by previous states or hidden variables. The MDP framework
is closely related to transition state theory and the Perron–Frobenius operator,
which is the adjoint of the Koopman operator from Section 7.4.

In the case of a simple Markov process with a finite set of states S, then it
is possible to let s ∈ Rn be a vector of the probability of being in each of the n
states, in which case the Markov process P (s′, s) may be written in terms of a
transition matrix, also known as a stochastic matrix, or a probability matrix, T:

s′ = Ts, (11.6)

where each column of T must add up to 1, which is a statement of conservation
of probability that, given a particular state s, something must happen after the
transition to s′. Similarly, for an MDP, given a policy π, the transition process
may be written as

s′ =
∑

a∈A
π(s, a)Tas. (11.7)

Now, for each action a, Ta is a Markov process with all columns summing to 1.
One of the defining properties of a Markov process is that the system asymp-

totically approaches a steady state µ, which is the eigenvector of T correspond-
ing to eigenvalue 1. Similarly, given a policy π, an MDP asymptotically ap-
proaches a steady state µπ =

∑
a π(s, a)µa.

This brings up another notational issue, where, for continuous processes,
s ∈ Rn describes the continuous state vector in an n-dimensional vector space,
as in Chapters 7 and 8; while, for discrete state spaces, s ∈ Rn denotes a vector
of probabilities of belonging to one of n finite states. It is important to care-
fully consider which notation is being used for a given problem, as these for-
mulations have different dynamics (i.e., differential equation versus MDP) and
interpretations (i.e., deterministic dynamics versus probabilistic transitions).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

508 CHAPTER 11. REINFORCEMENT LEARNING

The Value Function

Given a policyπ, we next define a value function that quantifies the desirability
of being in a given state:

Vπ(s) = E

(∞∑

k=0

γkrk

∣∣∣∣∣ s0 = s

)
, (11.8)

where E is the expected future reward, given a policyπ and subject to a discount
rate γ. Future rewards are discounted, reflecting the economic principle that
current rewards are more valuable than future rewards. Often, the subscript π
is omitted from the value function, in which case we refer to the value function
for the best possible policy:

V (s) = max
π

E

(∞∑

k=0

γkrk

∣∣∣∣∣ s0 = s

)
. (11.9)

One of the most important properties of the value function is that the value
at a state s may be written recursively as

V (s) = max
π

E

(
r0 +

∞∑

k=1

γkrk

∣∣∣∣ s1 = s′
)
, (11.10)

which implies that

V (s) = max
π

E(r0 + γV (s′)), (11.11)

where s′ = sk+1 is the next state after s = sk given action ak, and the expectation
is over actions selected from the optimal policy π. This expression, known as
Bellman’s equation, is a statement of Bellman’s principle of optimality, and it is
a central result that underpins modern RL.

Given the value function, it is possible to extract the optimal policy as

π = argmax
π

E(r0 + γV (s′)). (11.12)

Goals and Challenges of Reinforcement Learning

Learning the policy π, the value function V , or jointly learning both, is the cen-
tral challenge in RL. Depending on the assumed structure ofπ, the size of S and
evolution dynamics P , and the reward landscape R, determining an optimal
policy may range from a closed-form optimization to a rather high-dimensional
unstructured optimization. Thus, a large number of trials must often be evalu-
ated in order to determine an optimal policy. In practice, reinforcement learning

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 509

may be very expensive to train, and it might not be the right strategy for prob-
lems where testing a policy is expensive or potentially unsafe. Similarly, there
are often simpler control strategies than RL, such as LQR or MPC; when these
approaches are effective, they are often preferable. Reinforcement learning is,
therefore, well suited for situations where some combination of the following
are true: evaluating a policy is inexpensive, as in board games; there are suffi-
cient resources to perform a near-brute-force optimization, as in evolutionary
optimization; and/or no other control strategy works.

Although RL is typically formulated within the mathematical framework
of MDPs, many real-world applications do not satisfy these assumptions. For
a partially observed MDP (POMDP), the dynamics depend on the state history
or on hidden variables. Similarly, the evolution dynamics may be entirely de-
terministic, yet chaotic. However, as we will see, it is often possible to develop
approximate probabilistic transition state models for chaotic dynamics or to
augment the environment state to include past states for systems with mem-
ory or hidden variables. Often, the underlying MDP transition probability and
reward functions are not known a priori, and either must be learned ahead of
time through some exploration phase, or alternative model-free optimization
techniques must be used. Finally, many of the theoretical convergence results,
and indeed many of the fundamental RL algorithms, only apply to finite MDPs,
which are characterized by finite sets of actions A and states S. Games, such as
chess, fall into this category, even though the number of states may be combi-
natorially large. Continuous dynamical systems, such as a pendulum on a cart,
may be approximated by a finite MDP through a discretization or quantization
process.

There is typically much less supervisory information available to an RL
agent than is available in classical supervised learning. One of the central chal-
lenges of reinforcement learning is that rewards are often extremely rare and
may be significantly delayed from a sequence of good control actions. This chal-
lenge leads to the so-called credit assignment problem, coined by Minsky [503]
to describe the challenge of knowing what action sequence was responsible for
the reward ultimately received. These sparse and delayed rewards have been
a central challenge in RL for six decades, and they are still a focus of research
today. The resulting optimization problem is computationally expensive and
data-intensive, requiring considerable trial and error.

Today, reinforcement learning is being used to learn sophisticated control
policies for complex open-world problems in autonomy and propulsion (e.g.,
self-driving cars, learning to swim and fly, etc.) and as a general learning envi-
ronment for rule-constrained games (e.g., checkers, backgammon, chess, go,
Atari video games, etc.). Much of the history of RL may be traced through
the success on increasingly challenging board games, from checkers [616] to
backgammon [700] and more recently to chess and go [659]. These games serve

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

510 CHAPTER 11. REINFORCEMENT LEARNING

Figure 11.2: Reinforcement learning is inspired by biological learning with
sparse rewards. Mordecai was trained to balance a treat on his nose until a
command is given, after which he catches it in the air. Credit: Bing Brunton for
image and training.

to illustrate many of the central challenges that are still faced in RL, including
the curse of dimensionality and the credit assignment problem.

Motivating Examples

It is helpful to understand RL through simple examples. Consider a mouse in
a maze. The mouse is the agent, and the environment is the maze. The mouse
measures the local state in its environment; it does not have access to a full top-
down view of the maze, but instead it knows its current local environment and
what past actions it has taken. The mouse has agency to take some action about
what to do next, for example, whether to turn left, turn right, or go forward.
Typically, the mouse does not receive a reward until the end of the maze. If
the mouse received a reward after each correct turn, it would have a much
simpler supervised learning task. Setting such a curriculum is a strategy to help
teach animals, whereby initially dense rewards are sparsified throughout the
learning process.

More generally, RL may be used to understand animal behavior, ranging
from semi-supervised training to naturalistic behaviors. Figure 11.2 shows a
trained behavior where a treat is balanced on Mordecai’s nose until a com-
mand is given, after which he is able to catch it out of the air. Often, training
animals to perform complex tasks involves expert human guidance to provide
intermediate rewards or secondary reinforcers, such as using a clicker to in-
dicate a future reward. In animal training and in RL, the more proximal the
reward is in time to the action, the easier it is to learn the task. The connection
between learning and temporal proximity is the basis of temporal difference (TD)
learning, which is a powerful concept in RL, and this is also important to our
understanding of the chemical basis for addiction [593].

It is also helpful to consider two-player games, such as tic-tac-toe, check-
ers, backgammon, chess, and go. In these games, the agent is one of the play-
ers, and the environment encompasses the rules of the game along with an
adversarial opponent. These examples are also interesting because there is an
element of randomness or stochasticity in the environment, either because of

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 511

the fundamental rules (e.g., a dice roll in backgammon) or because of an oppo-
nent’s probabilistic strategy. Thus, it may be advantageous for the agent to also
adopt a probabilistic policy, in contrast to much of the theory of classical control
for deterministic systems. Similarly, a probabilistic strategy may be important
when learning how to play.

In most games, the reward signal comes at the end of the game after the
agent has won or lost. Again, this makes the learning process exceedingly chal-
lenging, as it is initially unclear which sub-sequence of actions were particu-
larly important in driving the outcome. For example, an agent may play an
excellent chess opening and mid-game and then lose at the end because of a
few bad moves. Should the agent discard the entire first half of the game, or,
worse yet, attribute this to a negative reward? Thus, it is clear that a major part
of learning an effective policy is understanding the value of being in a given
state s. In a game like chess, where the number of states is combinatorially
large, there are too many states to count, and it is intractable to map out the ex-
act value of all board states. Instead, players create simple heuristic rules about
what are good board positions, e.g., assigning points to the various pieces to
keep track of a rough score. This intermediate score provides a denser reward
structure throughout the game. However, these heuristics are sub-optimal and
may be susceptible to gambits, where the opponent sacrifices a piece for an im-
mediate point loss in order to eventually move to a more favorable global state
s. In backgammon, an intermediate point total may be more explicitly com-
puted as the total number of pips, or points that a player must roll to move all
pieces home and off the board. Although this makes it relatively simple to es-
timate the strength of a board position, the discrete nature of the die roll and
game mechanics makes this a sub-optimal approximation, and the number of
required dice rolls or turns may be a more useful measure.

Thinking through games like these illustrates many of the modern strategies
to improve the learning rates and sample efficiency of RL, including hindsight
replay, temporal difference learning, look ahead, and reward shaping, which
we will discuss in the following sections. For example, playing against a skilled
teacher can dramatically improve the learning rate, as the teacher provides
guidance about whether or not a move is good, and why, adding information to
help shape proxy metrics that can be used as intermediate rewards and models
that can accelerate the learning process.

Categorization of RL Techniques

Nearly all problems in machine learning and control theory involve challeng-
ing optimization problems. In the case of machine learning, the parameters of
a model are optimized to best fit the training data, as measured by a loss func-
tion. In the case of control, a set of control performance metrics are optimized

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

512 CHAPTER 11. REINFORCEMENT LEARNING

Actor
Critic

Policy Iteration

Value Iteration

502 CHAPTER 11. REINFORCEMENT LEARNING

The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy ⇡ that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
a policy ⇡(s, a),

⇡(s, a) = Pr (a = a | s = s) , (11.1)

which is a probability of taking action a given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, this becomes prohibitively expensive, and⇡must
be represented as an approximate function that is parameterized by ✓:

⇡(s, a) ⇡ ⇡(s, a,✓). (11.2)

Often, this parameterized function will be denoted ⇡✓(s, a). Function approxi-
mation is the basis of deep reinforcement learning in Sec. 11.4, where it is pos-
sible to represent these complex functions using deep neural networks.

Note that in the literature, there is often an abuse of notation, where ⇡(s, a)
is used to denote the action taken, rather than the probability density of taking
an action a given a state observation s. In the case of a deterministic policy,
such as a greedy policy, then it may be possible to use a = ⇡(s) to represent
the action taken. We will attempt to be clear throughout when choosing one
convention over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of a
higher-dimensional environmental state that evolves according to a stochastic,
nonlinear dynamical system. However, for simplicity, most introductions to RL
assume that the state evolves according to a Markov decision process (MDP),
so that the probability of the system occurring in the current state is determined
only by the previous state. We will begin with this simple formulation, as it is
easier to understand many key principles, although we note that this can and
should be generalized. However, even though it is often assumed that the state
evolves according to an MDP, it is often the case that this model is not known,
leading to model-free RL strategies. Similarly, when a model is not known, it
may be possible to first learn an MDP using data-driven methods and then use
this for model-based reinforcement learning.

An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s0 | sk = s, ak = a) , (11.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

502 CHAPTER 11. REINFORCEMENT LEARNING

The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy ⇡ that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
a policy ⇡(s, a),

⇡(s, a) = Pr (a = a | s = s) , (11.1)

which is a probability of taking action a given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, this becomes prohibitively expensive, and⇡must
be represented as an approximate function that is parameterized by ✓:

⇡(s, a) ⇡ ⇡(s, a,✓). (11.2)

Often, this parameterized function will be denoted ⇡✓(s, a). Function approxi-
mation is the basis of deep reinforcement learning in Sec. 11.4, where it is pos-
sible to represent these complex functions using deep neural networks.

Note that in the literature, there is often an abuse of notation, where ⇡(s, a)
is used to denote the action taken, rather than the probability density of taking
an action a given a state observation s. In the case of a deterministic policy,
such as a greedy policy, then it may be possible to use a = ⇡(s) to represent
the action taken. We will attempt to be clear throughout when choosing one
convention over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of a
higher-dimensional environmental state that evolves according to a stochastic,
nonlinear dynamical system. However, for simplicity, most introductions to RL
assume that the state evolves according to a Markov decision process (MDP),
so that the probability of the system occurring in the current state is determined
only by the previous state. We will begin with this simple formulation, as it is
easier to understand many key principles, although we note that this can and
should be generalized. However, even though it is often assumed that the state
evolves according to an MDP, it is often the case that this model is not known,
leading to model-free RL strategies. Similarly, when a model is not known, it
may be possible to first learn an MDP using data-driven methods and then use
this for model-based reinforcement learning.

An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s0 | sk = s, ak = a) , (11.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

504 CHAPTER 11. REINFORCEMENT LEARNING

The Value Function

Given a policy ⇡, it is possible to define a value function that quantifies the
desirability of being in a given state:

V⇡(s) = E

 X

k

�krk | s0 = s

!
, (11.8)

where E is the expected reward over the time steps k, subject to a discount rate
�. Often, the subscript ⇡ is omitted from the value function, in which case we
refer to the value function for the best possible policy:

V (s) = max
⇡

E

 1X

k=0

�krk | s0 = s

!
. (11.9)

One of the most important properties of the value function is that the value
at a state s may be written recursively as

V (s) = max
⇡

E

r0 +

1X

k=1

�krk | s1 = s0
!

(11.10)

which implies that

V (s) = max
⇡

E (r0 + �V (s0)) , (11.11)

where s0 is the next state after s. This is true for s0 = sk+1 and s = sk for all k.
This is known as Bellman’s equation, and is a statement of Bellman’s principle of
optimality, which is a central result that enables modern RL. Given the value
function, it is possible to extract the optimal policy as

⇡ = argmax
⇡

E (r0 + �V (s0)) , (11.12)

Goals and Challenges of Reinforcement Learning

Learning the policy ⇡, the value function V , or jointly learning both, is a cen-
tral challenge in RL. Depending on the assumed structure of ⇡, the size and
evolution dynamics of S , and the reward landscape R, determining an optimal
policy may range from a closed form optimization to a rather high-dimensional
unstructured optimization. Thus a large number of trials must be evaluated in
order to determine an optimal policy.

Although RL is typically formulated within the mathematical framework
of MDPs, many real world applications do not satisfy these assumptions, so
that the state evolution depends on the past history of the state or on hidden

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Markov Decision Process

Model-based RL Model-free RL
Gradient free

Off Policy

Dynamic programming
& Bellman optimality Q Learning

On Policy

SARSA

TD(0)

TD() MC∞ ≡
TD-λ

11.2. MODEL-BASED OPTIMIZATION AND CONTROL 511

with zeros or at random. Then, for all states s 2 S , the value function is updated
by returning the maximum value at that state across all actions a 2 A, holding
the value function fixed at all other states s0 2 S\s:

V (s) = max
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.15)

This iteration is repeated until a convergence criterion is met.
After the value function converges, it is possible to extract the optimizing

policy ⇡:

⇡(s, a) = argmax
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.16)

Although value iteration typically requires less steps per iteration, policy
iteration often converges in less iterations. This may be due to the fact that the
value function is often more complex than the policy function, requiring more
parameters to optimize over.

Note that the value function in RL typically refers to a discounted sum of
future rewards that should be maximized, while in nonlinear control it refers
to an integrated cost that should be minimized. The phrase value function is
particularly intuitive when referring to accumulated rewards in the economic
sense, as it quantifies the value of being in a given state. However, in the case
of nonlinear control theory, the value function is more accurately thought of as
quantifying the numerical value of the cost function evaluated on the optimal
trajectory. This notation can be confusing, and is worth careful consideration
depending on the context.

Quality function

Both policy iteration and value iteration rely on the quality function Q(s, a),
which is defined as

Q(s, a) = E (R(s0, s, a) + �V (s0)) (11.17a)

=
X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.17b)

In a sense, the optimal policy ⇡(s, a) and the optimal value function V (s, a)
contain redundant information, as one can be determined from the other via
the quality function Q(s, a):

⇡(s, a) = argmax
a

Q(s, a) (11.18a)

V (s) = max
a

Q(s, a). (11.18b)

This formulation will be used for model-free Q-learning [757, 734, 244] in Sec-
tion 11.3.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Deep RL

⋮DQN

Optimal Control & HJB

530 CHAPTER 11. REINFORCEMENT LEARNING

Hamilton-Jacobi-Bellman equation

In optimal control, the goal is often to find a control input u(t) to drive a dy-
namical system

d

dt
x = f(x(t),u(t), t) dt (11.42)

to follow a trajectory x(t) that minimizes a cost function

J(x(t),u(t), t0, tf) =

Z tf

t0

L(x(⌧),u(⌧) d⌧ + Q(x(tf), tf). (11.43)

Note that this formulation in (11.43) generalizes the LQR cost function in (8.47);
now the immediate cost function L(x,u) and the terminal cost Q(x(tf), tf) may
be non-quadratic functions. Often there are also constraints on the state x and
control u, which determine what solutions are admissible.

Given an initial state x0 = x(t0) at t0, an optimal control u(t) will result in
an optimal cost function J . We may define a value function V (x, t0, tf) that de-
scribes the total integrated cost starting at this position x assuming the control
law is optimal:

V (x(t0), t0, tf) = min
u(t)

J(x(t),u(t), t0, tf) (11.44)

where x(t) is the solution to (11.42) for the optimal u(t). Notice that the value
function is no longer a function of the control u(t), as this has been optimized
over, and it is also not a function of a trajectory x(t), but rather of an initial
state x0, as the remainder of the trajectory is entirely specified by the dynamics
and the optimal control law. The value function is often called the cost-to-go in
control theory, as the value function evaluated at any point x(t) on an optimal
trajectory will represent the remaining cost associated with continuing to enact
this optimal policy until the final time tf . In fact, this is a statement of Bellman’s
optimality principle, that the value function V remains optimal starting with
any point on an optimal trajectory.

The Hamilton-Jacobi-Bellman3 (HJB) equation establishes a partial differen-
tial equation that must be satisfied by the value function V (x(t), t, tf) at every
intermediate time t 2 [t0, tf]:

�@V
@t

= min
u(t)

 ✓
@V

@x

◆T

f(x(t),u(t)) + L(x(t),u(t))

!
. (11.45)

3Kalman recognized that the Bellman optimal control formulation was a generalization of
the Hamilton-Jacobi equation from classical mechanics to handle stochastic input–output sys-
tems. These formulations all involve the calculus of variations, which traces its roots back to
the Brachistichrone problem of Johann Bernoulli.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Nonlinear Dynamics
Deep
MPC

Gradient based

11.4. DEEP REINFORCEMENT LEARNING 519

respect to ✓

r✓R⌃,✓ =
X

s2S
µ✓(s)

X

a2A
Q(s, a)r✓⇡✓(s, a) (11.34a)

=
X

s2S
µ✓(s)

X

a2A
⇡✓(s, a)Q(s, a)

r✓⇡✓(s, a)

⇡✓(s, a)
(11.34b)

=
X

s2S
µ✓(s)

X

a2A
⇡✓(s, a)Q(s, a)r✓ log (⇡✓(s, a)) (11.34c)

= E (Q(s, a)r✓ log (⇡✓(s, a))) . (11.34d)

Then the policy parameters may be updated as

✓new = ✓old + ↵r✓R⌃,✓, (11.35)

where ↵ is a the learning weight; note that ↵ may be replaced with a vector
of learning weights for each component of ✓. There are several approaches to
approximating this gradient, including through finite differences, the REIN-
FORCE algorithm [770], and natural policy gradients [377].

11.4 Deep Reinforcement Learning

Deep reinforcement learning is one of the most exciting areas of machine learn-
ing and of control theory, and it is one of the most promising avenues of re-
search towards generalized artificial intelligence. Deep learning has revolu-
tionized our ability to represent complex functions from data, providing a set
of architectures for achieving human level performance in complex tasks such
as image recognition and natural language processing. Classic reinforcement
learning suffers from a representation problem, as many of the relevant func-
tions, such as the policy ⇡, the value function V , and the quality function Q,
may be exceedingly complex functions defined over a very high dimensional
state and action space. Indeed, even for simple games, such as the 1972 Atari
game Pong, the black and white screen at standard resolution 336 ⇥ 240 has
over 1024,000 possible discrete states, making it infeasible to represent any of
these functions exactly without approximation. Thus, deep learning provides
a powerful tool for improving these representations. It is possible to use deep
learning in several different ways to approximate the various functions used
in RL, or to model the environment more generally. Typically the central chal-
lenge is in identifying and representing key features in a high-dimensional state
space. For example, the policy a, s may now be approximated by

⇡(s, a) ⇡ ⇡(s, a,✓), (11.36)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Policy Gradient Optimization

Deep
Policy

Network

Figure 11.3: Rough categorization of reinforcement learning techniques. This
organization is not comprehensive, and some of the lines are becoming blurred.
The first major dichotomy is between model-based and model-free RL tech-
niques. Next, within model-free RL, there is a dichotomy between gradient-
based and gradient-free methods. Finally, within gradient-free methods, there
is a dichotomy between on-policy and off-policy methods.

subject to the constraints of the dynamics. Reinforcement learning is no differ-
ent, as it is at the intersection of machine learning and control theory.

There are many approaches to learn an optimal policy π, which is the ulti-
mate goal of RL. A major dichotomy in reinforcement learning is that of model-
based RL versus model-free RL. When there is a known model for the environ-
ment, there are several strategies for learning either the optimal policy or value
function through what is known as policy iteration or value iteration, which are
forms of dynamic programming using the Bellman equation. When there is
no model for the environment, alternative strategies, such as Q-learning, must
be employed. The reinforcement learning optimization problem may be par-
ticularly challenging for high-dimensional systems with unknown, nonlinear,
stochastic dynamics, and sparse and delayed rewards. All of these techniques
may be combined with function approximation techniques, such as neural net-
works, for approximating the policy π, the value function V , or the quality
function Q (discussed in subsequent sections), making them more useful for
high-dimensional systems. These model-based, model-free, and deep learning
approaches will be discussed below. Figure 11.3 summarizes the main organi-
zation of these RL techniques.

Note that this section only provides a glimpse of the many optimization
approaches used to solve RL problems, as this is a vast and rapidly growing
field.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.2. MODEL-BASED OPTIMIZATION AND CONTROL 513

11.2 Model-Based Optimization and Control

This section provides a high-level overview of some essential model-based op-
timization and control techniques. Some people do not consider these tech-
niques to be reinforcement learning, as they do not involve learning an opti-
mal strategy through trial-and-error experience. However, the techniques are
closely related. It is possible to learn a model through trial and error, and then
use this model with these techniques, which would be considered RL.

For the simplified case of a known model that is a finite MDP, it is possible
to learn either the optimal policy or value function through what is known as
policy iteration or value iteration, which are forms of dynamic programming us-
ing the Bellman equation. Dynamic programming [69, 70, 80, 81, 82, 606, 723]
is a powerful approach that is used for general optimal nonlinear control and
reinforcement learning, among other tasks. These algorithms provide a math-
ematically simplified optimization framework that helps to introduce essential
concepts used throughout.

More generally, dynamic programming and RL optimization are related to
the field of optimal nonlinear control, which has deep roots in variational the-
ory going back to Bernoulli and the brachistochrone problem nearly four cen-
turies ago. We will explore this connection to nonlinear control theory in Sec-
tion 11.6.

Dynamic Programming

Dynamic programming is a mathematical framework introduced by Richard
E. Bellman [69, 70] to solve large multi-step optimization problems, such as
those found in decision making and control. Policy iteration and value itera-
tion, discussed below, are two examples of the use of dynamic programming
in reinforcement learning. To solve these multi-step optimizations, dynamic
programming reformulates the large optimization problem as a recursive opti-
mization in terms of smaller sub-problems, so that only a local decision need
be optimized. This approach relies on Bellman’s principle of optimality, which
states that a large multi-step control policy must also be locally optimal in every
sub-sequence of steps.

The Bellman equation in (11.11) indicates that the large optimization prob-
lem over an entire state–action trajectory (sk, ak) may be broken into a recursive
optimization at each point along the trajectory. As long as the value function is
known at the next point s′, it is possible to solve the optimization at point s
simply by optimizing the policy π(s, a) at this point. Of course, this assumes
that the value function is known at all possible next states s′ = sk+1, which is
a function of the current state sk, the current action ak, and the dynamics gov-
erning the system. This becomes even more complex for non-MDP dynamics,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

514 CHAPTER 11. REINFORCEMENT LEARNING

such as the nonlinear control formulation in Section 11.6. For even moderately
large problems, this approach suffers from the curse of dimensionality, and ap-
proximate solution methods must be employed.

When tractable, dynamic programming (i.e., the process of breaking a large
problem into smaller overlapping sub-problems) provides a globally optimal
solution. There are two main approaches to dynamic programming, referred to
as top down and bottom up.

(a) Top down: The top-down approach involves maintaining a table of sub-
problems that are referred to when solving larger problems. For a new
problem, the table is checked to see if the relevant sub-problem has been
solved. If so, it is used, and, if not, the sub-problem is solved. This tabular
storage is called memoization and becomes combinatorially complex for
many problems.

(b) Bottom up: The bottom-up approach involves starting by solving the
smallest sub-problems first, and then combining these to form the larger
problems. This may be thought of as working backwards from every pos-
sible goal state, finding the best previous action to get there, then going
back two steps, then going back three steps, etc.

Although dynamic programming still represents a brute-force search through
all sub-problems, it is still more efficient than a naive brute-force search. In
some cases, it reduces the computational complexity to an algorithm that scales
linearly with the number of sub-problems, although this may still be combina-
torially large, as in the example of the game of chess. Dynamic programming
is closely related to divide-and-conquer techniques, such as quick sort, except
that divide and conquer applies to non-overlapping or non-recursive (i.e., inde-
pendent) sub-problems, while dynamic programming applies to overlapping
or recursively interdependent sub-problems.

The recursive structure of dynamic programming suggests approximate so-
lution techniques, such as the alternating directions method, where a sub-optimal
solution is initialized and the value function is iterated over. This will be dis-
cussed next.

Policy Iteration

Policy iteration is a two-step optimization procedure to simultaneously find an
optimal value function Vπ and the corresponding optimal policy π.

First, a candidate policy π is evaluated, resulting in the value function for
this fixed policy. This typically involves a brute-force calculation of the value
function for this policy starting at many or all initial states. The policy may need
to be simulated for a long time depending on the reward delay and discounting
factor γ.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.2. MODEL-BASED OPTIMIZATION AND CONTROL 515

Next, the value function is fixed, and the policy is optimized to improve the
expected rewards by taking different actions at a given state. This optimiza-
tion relies on the recursive formulation of the value function due to Bellman’s
equation (11.11):

Vπ(s) = E(R(s′, s,π(s)) + γVπ(s′)) (11.13a)

=
∑

s′

P (s′ | s,π(s))(R(s′, s,π(s)) + γVπ(s′)). (11.13b)

Note that, in this expression, we have assumed a deterministic policy a = π(s),
otherwise (11.13) would involve a second summation over a ∈ A, with the
expression multiplied by π(s, a).

It is then possible to fix Vπ(s′) and optimize over the policy in the first term.
In particular, the new deterministic optimal policy at the state s is given by

π(s) = argmax
a∈A

E(R(s′, s, a) + γVπ(s′)). (11.14)

Once the policy is updated, the process repeats, fixing this policy to up-
date the value function, and then using this updated value function to improve
the policy. The process is repeated until both the policy and the value function
converge to within a specified tolerance. It is important to note that this proce-
dure is both expensive and prone to finding local minima. It also resembles the
alternating descent method that is widely used in optimization and machine
learning.

The formulation in (11.13) makes it clear that it may be possible to optimize
backwards from a state known to give a reward with high probability. Addi-
tionally, this approach requires having a model for P and R to predict the next
state s′, making this a model-based approach.

Value Iteration

Value iteration is similar to policy iteration, except that at every iteration only
the value function is updated, and the optimal policy is extracted from this
value function at the end. First, the value function is initialized, typically either
with zeros or at random. Then, for all states s ∈ S, the value function is updated
by returning the maximum value at that state across all actions a ∈ A, holding
the value function fixed at all other states s′ ∈ S \ s:

V (s) = max
a

∑

s′

P (s′ | s, a)(R(s′, s, a) + γV (s′)). (11.15)

This iteration is repeated until a convergence criterion is met.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

516 CHAPTER 11. REINFORCEMENT LEARNING

After the value function converges, it is possible to extract the optimizing
policy π:

π(s, a) = argmax
a

∑

s′

P (s′ | s, a)(R(s′, s, a) + γV (s′)). (11.16)

Although value iteration typically requires fewer steps per iteration, policy
iteration often converges in fewer iterations. This may be due to the fact that
the value function is often more complex than the policy function, requiring
more parameters to optimize over.

Note that the value function in RL typically refers to a discounted sum of
future rewards that should be maximized, while in nonlinear control it refers
to an integrated cost that should be minimized. The phrase value function is
particularly intuitive when referring to accumulated rewards in the economic
sense, as it quantifies the value of being in a given state. However, in the case
of nonlinear control theory, the value function is more accurately thought of as
quantifying the numerical value of the cost function evaluated on the optimal
trajectory. This notation can be confusing and is worth careful consideration
depending on the context.

Quality Function

Both policy iteration and value iteration rely on the quality function Q(s, a),
which is defined as

Q(s, a) = E(R(s′, s, a) + γV (s′)) (11.17a)

=
∑

s′

P (s′ | s, a)(R(s′, s, a) + γV (s′)). (11.17b)

In a sense, the optimal policy π(s, a) and the optimal value function V (s) con-
tain redundant information, as one can be determined from the other via the
quality function Q(s, a):

π(s, a) = argmax
a

Q(s, a), (11.18a)

V (s) = max
a

Q(s, a). (11.18b)

This formulation will be used for model-free Q-learning [238, 722, 746] in Sec-
tion 11.3.

11.3 Model-Free Reinforcement Learning andQ-Learning

Both policy iteration and value iteration above rely on the quality function
Q(s, a), which describes the joint desirability of a given state–action pair. Policy

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING517

iteration (11.14) and value iteration (11.15) are both model-based reinforcement
learning strategies, where it is assumed that the MDP model is known: each it-
eration requires a one-step look ahead, or model-based prediction of the next
state s′ given the current state s and action a. Based on this model, it is possible
to forecast and maximize over all possible actions.

When a model is not available, there are several reinforcement learning ap-
proaches to learn effective decision and control policies to interact with the en-
vironment. Perhaps the most straightforward approach is to first learn a model
of the environment using some data-driven active learning strategy, and then
use the standard model-based approaches discussed earlier. However, this may
be infeasible for very large or particularly unstructured systems.

Q-learning is a leading model-free alternative, which learns the Q function
directly from experience, without requiring access to a model. Thus, it is pos-
sible to generalize many of the model-based optimization strategies above to
more unstructured settings, where a model is unavailable. The Q function has
the one-step look ahead implicitly built into its representation, without needing
to explicitly refer to a model. From this learned Q function, the optimal policy
and value function may be extracted as in (11.18).

Before discussing the mechanics of Q-learning in detail, it is helpful to in-
troduce several concepts, including Monte Carlo-based learning and temporal
difference learning.

Monte Carlo Learning

In the simplest approach to learning from experience, the value function V or
quality function Q may be learned through a Monte Carlo random sampling
of the state–action space through repeated evaluation of many policies. Monte
Carlo approaches require that the RL task is episodic, meaning that the task has
a defined start and terminates after a finite number of actions, resulting in a
total cumulative reward at the end of the episode. Games are good examples of
episodic RL tasks.

In Monte Carlo learning, the total cumulative reward at the end of the task
is used to estimate either the value function V or the quality function Q by
dividing the final reward equally among all of the intermediate states or state–
action pairs, respectively. This is the simplest possible approach to deal with the
credit assignment problem, as credit is shared equally among all intermediate
steps. However, for this reason, Monte Carlo learning is typically quite sample-
inefficient, especially for problems with sparse rewards.

Consider the case of Monte Carlo learning of the value function. Given a
new episode consisting of n steps, the cumulative discounted reward RΣ is

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

518 CHAPTER 11. REINFORCEMENT LEARNING

computed as

RΣ =
n∑

k=1

γkrk (11.19)

and used to update the value function at every state sk visited in this episode:

V new(sk) = V old(sk) +
1

n

(
RΣ − V old(sk)

)
∀ k ∈ [1, . . . , n]. (11.20)

This update, weighted by 1/n, is equivalent to waiting until the end of the
episode and then updating the value function at all states along the trajectory
with an equal share of the reward. Similarly, in the case of Monte Carlo learning
of the Q function, the discounted reward RΣ is used to update the Q function
at every state–action pair (sk, ak) visited in this episode:

Qnew(sk, ak) = Qold(sk, ak) +
1

n

(
RΣ −Qold(sk, ak)

)
∀ k ∈ [1, . . . , n]. (11.21)

In the limit of infinite data and infinite exploration, this approach will even-
tually sample all possible state–action pairs and converge to the true quality
function Q. However, in practice, this often amounts to an intractable brute-
force search.

It is also possible to discount past experiences by introducing a learning rate
α ∈ [0, 1] and using this to update the Q function:

Qnew(sk, ak) = Qold(sk, ak) + α
(
RΣ −Qold(sk, ak)

)
∀ k ∈ [1, · · · , n]. (11.22)

Larger learning rates α > 1/n will favor more recent experience.
There is a question about how to initialize the many episodes required to

learn with Monte Carlo. When possible, the episode will be initialized ran-
domly at every initial state or state–action pair, providing a random sampling;
however, this might not be possible for many learning tasks. Typically, Monte
Carlo learning is performed on-policy, meaning that the optimal policy is en-
acted, based on the current value or quality function, and the information from
this locally optimal policy is used for the update. It is also possible to pro-
mote exploration by adding a small probability of taking a random action,
rather than the action dictated by the optimal policy. Finally, there are off-policy
Monte Carlo methods, but, in general, they are quite inefficient or unfeasible.

Temporal Difference (TD) Learning

Temporal difference learning [103, 197, 682, 699, 700], known as TD learning,
is another sample-based learning strategy. In contrast to Monte Carlo learn-
ing, TD learning is not restricted to episodic tasks, but instead learns continu-
ously by bootstrapping based on current estimates of the value function V or

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING519

quality function Q, as in dynamic programming (e.g., as in value iteration in
(11.15)). TD learning is designed to mimic learning processes in animals, where
time-delayed rewards are often learned through environmental cues that act as
secondary reinforcers preceding the delayed reward; this is most popularly un-
derstood through the story of Pavlov’s dog [551]. Thus, TD learning is typically
more sample efficient than Monte Carlo learning, resulting in decreased vari-
ance, but at the cost of a bias in the learning due to the bootstrapping. We will
demonstrate TD learning of the value function, although it can also be used to
learn the quality function.

TD(0): One-Step Look Ahead

To understand TD learning, it is helpful to begin with the simplest algorithm:
TD(0). In TD(0), the estimate of the one-step-ahead future reward is used to
update the current value function.

Given a control trajectory generated through an optimal policy π, the value
function at state sk is given by

V (sk) = E(rk + γV (sk+1)). (11.23)

In the language of Bayesian statistics, rk + γV (sk+1) is an unbiased estimator for
V (sk).

Instead of using a model to predict sk+1, which is required to evaluate V (sk+1),
it is possible to wait until the next step is actually taken and retroactively adjust
the value function:

V new(sk) = V old(sk) + α

TD error︷ ︸︸ ︷(
rk + γV old(sk+1)︸ ︷︷ ︸
TD target estimates RΣ

−V old(sk)

)
. (11.24)

For non-optimal policies π, this same idea may be used to update the value
function based on the value function one step in the future. Notice that this is
very similar to optimization of the Bellman equation using dynamic program-
ming but with retroactive updates based on sampled data rather than proactive
updates based on a model prediction.

In the TD(0) update above, the expression RΣ = rk + γV (sk+1) is known
as the TD target, as it is the estimate for the future reward, analogous to RΣ in
Monte Carlo learning of the Q function in (11.22). The difference between this
target and the previous estimate of the value function is the TD error, and it
is used to update the value function, just as in Monte Carlo learning, with a
learning rate α.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

520 CHAPTER 11. REINFORCEMENT LEARNING

TD(n): n-Step Look Ahead

Other temporal difference algorithms can be developed, based on multi-step
look-aheads into the future. For example, TD(1) uses a TD target based on two
steps into the future,

R
(1)
Σ = rk + γrk+1 + γ2V (sk+2), (11.25)

and TD(n) uses a TD target based on n+ 1 steps into the future,

R
(n)
Σ = rk + γrk+1 + γ2rk+2 + · · ·+ γnrk+n + γn+1V (sk+n+1) (11.26a)

=

(
n∑

j=0

γjrk+j

)
+ γn+1V (sk+n+1). (11.26b)

Again, there does not need to be a model for these future states, but, instead,
the value function may be retroactively adjusted based on the actual sampled
trajectory and rewards. Note that in the limit that an entire episode is used,
TD(n) converges to the Monte Carlo learning approach.

TD-λ: Weighted Look Ahead

An important variant of the TD learning family is TD-λ, which was introduced
by Sutton [682]. TD-λ creates a TD target Rλ

Σ that is a weighted average of the
various TD(n) targets R(n)

Σ . The weighting is given by

Rλ
Σ = (1− λ)

∞∑

n=1

λn−1R
(n)
Σ (11.27)

and the update equation is

V new(sk) = V old(sk) + α(Rλ
Σ − V old(sk)). (11.28)

TD-λ was used for an impressive demonstration in the game of backgammon
by Tesauro in 1995 [700].

TD learning provides one of the strongest connections between reinforcement
learning and learning in biological systems. Neural circuits are believed to es-
timate the future reward, and feedback is based on the difference between the
expected reward and the actual reward, which is closely related to the TD er-
ror. In fact, there are specific neurotransmitter feedback loops that strengthen
connections based on proximity of their firing to a dopamine reward signal
[645, 282]. The closer the proximity in time between an action and a reward,
the stronger the feedback, which has implications for addiction.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING521

Bias–Variance Tradeoff

Monte Carlo learning and TD learning exemplify the bias–variance tradeoff in
machine learning. Monte Carlo learning typically has high variance but no bias,
while TD learning has lower variance but introduces a bias because of the boot-
strapping. Although the true TD target rk + γV (sk+1) is an unbiased estimate
of V (sk) for an optimal policy π, the sampled TD target is a biased estimate,
because it uses sub-optimal actions and the current imperfect estimate of the
value function.

SARSA: State–Action–Reward–State–Action Learning

SARSA is a popular TD algorithm that is used to learn the Q function on-policy.
TheQ update equation in SARSA(0) is nearly identical to the V update equation
(11.24) in TD(0):

Qnew(sk, ak) = Qold(sk, ak) + α
(
rk + γQold(sk+1, ak+1)−Qold(sk, ak)

)
. (11.29)

There are SARSA variants for all of the TD(n) algorithms, based on the n-step
TD target:

R
(n)
Σ = rk + γrk+1 + γ2rk+2 + · · ·+ γnrk+n + γn+1Q(sk+n+1, ak+n+1) (11.30a)

=
n∑

j=0

γjrk+j + γn+1Q(sk+n+1, ak+n+1). (11.30b)

In this case, the SARSA(n) update equation is given by

Qnew(sk, ak) = Qold(sk, ak) + α
(
R

(n)
Σ −Qold(sk, ak)

)
. (11.31)

Note that this is on-policy because the actual action sequence ak, ak+1, . . . , ak+n+1

has been used to receive the rewards r and evaluate the (n+ 1)-step Q function
Q(sk+n+1, ak+n+1).

Q-Learning

We are now ready to discussQ-learning [238, 722, 746], which is one of the most
widely used approaches in model-free RL. Q-learning is essentially an off-policy
TD learning scheme for the Q function. In Q-learning, the Q update equation is

Qnew(sk, ak) = Qold(sk, ak) + α
(
rk + γmax

a
Q(sk+1, a)−Qold(sk, ak)

)
. (11.32)

Notice that the only difference betweenQ-learning and SARSA(0) is that SARSA(0)
uses Q(sk+1, ak+1) for the TD target, while Q-learning uses maxaQ(sk+1, a) for

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

522 CHAPTER 11. REINFORCEMENT LEARNING

the TD target. Thus, SARSA(0) is considered on-policy because it uses the action
ak+1 based on the actual policy: ak+1 = π(sk+1). In contrast, Q-learning is off-
policy because it uses the optimal a for the update based on the current estimate
for Q, while taking a different action ak+1 based on a different behavior policy.
Thus,Q-learning may take sub-optimal actions ak+1 to explore, while still using
the optimal action a to update the Q function.

Generally,Q-learning will learn a more optimal solution faster than SARSA,
but with more variance in the solution. However, SARSA will typically yield
more cumulative rewards during the training process, since it is on-policy. In
safety-critical applications, such as self-driving cars or other applications where
there can be catastrophic failure, SARSA will typically learn less optimal solu-
tions, but with a better safety margin, since it maximizes on-policy rewards.

Q-learning applies to discrete action spaces A and state spaces S governed
by a finite MDP. The Q function is classically represented as a table of Q values
that is updated through some iteration based on new information as a policy
is tested and evaluated. However, this tabular approach does not scale well to
large state spaces, and so typically function approximation is used to represent
the Q function, such as a neural network in deep Q-learning. Even if the ac-
tion and state spaces are continuous, as in the pendulum on a cart system, it is
possible to discretize and then apply Q-learning.

In addition to being model-free, Q-learning is also referred to as off-policy
RL, as it does not require that an optimal policy is enacted, as in policy it-
eration and value iteration. Off-policy learning is more realistic in real-world
applications, enabling the RL agent to improve when its policy is sub-optimal
and by watching and imitating other more skilled agents. Q-learning is espe-
cially good for games, such as backgammon, chess, and go. In particular, deep
Q-learning, which approximates the Q function using a deep neural network,
has been used to surpass the world champions in these challenging games.

Experience Replay and Imitation Learning

Because Q-learning is off-policy, it is possible to learn from action–state se-
quences that do not use the current optimal policy. For example, it is possible
to store past experiences, such as previously played games, and replay these
experiences to further improve the Q function.

In an on-policy strategy, such as SARSA, using actions that are sub-optimal,
based on the current optimal policy, will degrade the Q function, since the TD
target will be a flawed estimate of future rewards based on a sub-optimal ac-
tion. However, in Q-learning, since the action is optimized over the current Q
function in the update, it is possible to learn from experience resulting from
sub-optimal actions. This also makes it possible to learn from watching other,
more experienced agents, which is related to imitation learning [217, 330, 344,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING523

625].
Experience replay is deeply intuitive, as it is closely related to how we learn,

through recalling past experiences in the light of new knowledge (i.e., an up-
dated Q function). Similarly, imitation learning is perhaps one of the most fun-
damental first steps in biological learning.

Exploration versus Exploitation: ε-Greedy Actions

It is important to introduce an element of random exploration into Q-learning,
and there are several techniques. One approach is the ε-greedy algorithm to
select the next action. In this approach, the agent takes the current optimal ac-
tion ak = maxaQ(sk, a), based on the current Q function, with probability 1− ε,
where ε ∈ [0, 1]. With probability ε, the agent takes a random action. Thus, the
agent balances exploration with the random actions, and exploitation with the
optimal actions. Larger ε promotes more random exploration.

Typically, the value of ε will be initialized to a large value, often ε = 1.
Throughout the course of training, ε decays so that, as theQ function improves,
the agent increasingly takes the current optimal action. This is closely related
to simulated annealing from optimization, which mimics the process of forging
metal to find a low-energy state through a specific cooling schedule.

Policy Gradient Optimization

Policy gradient optimization [368, 660, 684] is a powerful technique to optimize
a policy that is parameterized, as in (11.2). When the policy π is parameterized
by θ, it is possible to use gradient optimization on the parameters to improve
the policy much faster than through traditional iteration. The parameterization
may be a multi-layer neural network, in which case this would be a deep policy
network, although other representations and function approximations may be
useful. In any case, instead of extracting the policy as the argument maximizing
the value or quality functions, it is possible to directly optimize the parameters
θ, for example through gradient descent or stochastic gradient descent. The
value function Vπ(s), depending on a policy π, then becomes V (s,θ), and a
similar modification is possible for the quality function Q.

The total estimated reward is given by

RΣ,θ = E (Q(s, a)) =
∑

s∈S
µθ(s)

∑

a∈A
πθ(s, a)Q(s, a), (11.33)

where µθ is the asymptotic steady state of the MDP given a policy πθ param-
eterized by θ. It is then possible to compute the gradient of the total estimated

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

524 CHAPTER 11. REINFORCEMENT LEARNING

reward with respect to θ:

∇θRΣ,θ =
∑

s∈S
µθ(s)

∑

a∈A
Q(s, a)∇θπθ(s, a) (11.34a)

=
∑

s∈S
µθ(s)

∑

a∈A
πθ(s, a)Q(s, a)

∇θπθ(s, a)

πθ(s, a)
(11.34b)

=
∑

s∈S
µθ(s)

∑

a∈A
πθ(s, a)Q(s, a)∇θ log(πθ(s, a)) (11.34c)

= E(Q(s, a)∇θ log(πθ(s, a))). (11.34d)

Then the policy parameters may be updated as

θnew = θold + α∇θRΣ,θ, (11.35)

where α is the learning weight; note that α may be replaced with a vector of
learning weights for each component of θ. There are several approaches to
approximating this gradient, including through finite differences, the REIN-
FORCE algorithm [759], and natural policy gradients [368].

11.4 Deep Reinforcement Learning

Deep reinforcement learning is one of the most exciting areas of machine learn-
ing and of control theory, and it is one of the most promising avenues of re-
search towards generalized artificial intelligence. Deep learning has revolu-
tionized our ability to represent complicated functions from data, providing
a set of architectures for achieving human-level performance in complex tasks
such as image recognition and natural language processing. Classic reinforce-
ment learning suffers from a representation problem, as many of the relevant
functions, such as the policy π, the value function V , and the quality func-
tion Q, may be exceedingly complicated functions defined over a very high-
dimensional state and action space. Indeed, even for simple games, such as
the 1972 Atari game Pong, the black-and-white screen at standard resolution
336× 240 has over 1024 000 possible discrete states, making it infeasible to repre-
sent any of these functions exactly without approximation. Thus, deep learning
provides a powerful tool for improving these representations.

It is possible to use deep learning in several different ways to approximate
the various functions used in RL, or to model the environment more generally.
Typically, the central challenge is in identifying and representing key features
in a high-dimensional state space. For example, the policy π(s, a) may now be
approximated by

π(s, a) ≈ π(s, a,θ), (11.36)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.4. DEEP REINFORCEMENT LEARNING 525

PROBABILITY
OF MOVING

UP

HIDDEN
LAYER

PIXELS (INPUT)

Atari

Play to get high score in Atari 2600 games

MuJoCo

Physics emulator for continuous control tasks

Robotics

Goal-based robotics tasks

Figure 11.4: Deep policy network to encode the probability of moving up in
the game of Pong. Inspired by Andrej Karpathy’s Blog, “Deep Reinforcement
Learning: Pong from Pixels” at http://karpathy.github.io/2016/05/
31/rl/.

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learningprocedure throughout—takinghigh-dimensionaldata (210|160
colour video at 60Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputswithonlyveryminimalpriorknowledge (that is,merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradientdescent in a stablemanner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional humangames tester playingunder controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional humangames tester across the set of 49games, achievingmore
than75%of the human score onmore thanhalf of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in theMethods. The input to the neural
network consists of an 843 843 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

Figure 11.5: Convolutional structure of deep Q network used to play Atari
games. Reproduced with permission from [506].

where θ represent the weights of a neural network.
This pairing of deep learning for representations with reinforcement learn-

ing for decision making and control has resulted in dramatic improvements to
the capabilities of reinforcement learning. For example, Fig. 11.4 shows a sim-
ple policy network designed to play Pong, and Fig. 11.5 shows a more general
deep convolutional neural network architecture used to develop a deep Q net-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/

526 CHAPTER 11. REINFORCEMENT LEARNING

work to play Atari games at human levels of performance [506].
Much of what is discussed in this section is also relevant for other function

approximation techniques besides deep learning. For example, policy gradi-
ents may be computed and used for gradient-based optimization using other
representations of the form of (11.36), and there is a long history before deep
learning [368, 684]. That said, many of the most exciting and impressive re-
cent demonstrations of RL leverage the full power of deep learning, and so we
present these innovations in this context.

DeepQ-Learning

Many of the most exciting advances in RL over the past decade have involved
some variation of deep Q-learning, which uses deep neural networks to rep-
resent the quality function Q. As with the policy in (11.36), it is possible to
approximate the Q function through some parameterization θ,

Q(s, a) ≈ Q(s, a,θ), (11.37)

where θ represents the weights of a deep neural network. In this representation,
the training loss function is directly related to the standard Q-learning update
in (11.32):

L = E
[
(rk + γmax

a
Q(sk+1, a,θ)−Q(sk, ak,θ))2

]
. (11.38)

The first part of the loss function, rk + γmaxaQ(sk+1, a,θ), is the temporal dif-
ference target from before, and the second part, Q(sk, ak,θ), is the prediction.

Deep reinforcement learning based on a deep Q network (DQN) was in-
troduced by Mnih et al. [506] to play Atari games. Specifically, this network
used a deep convolutional neural network to represent the Q function, where
the inputs were pixels from the Atari screen and actions were joystick motions,
as shown in Fig. 11.5. In this original paper, both Q functions in (11.38) were
represented by the same network weights θ. However, in a double DQN [730],
different networks are used to represent the target and prediction Q functions,
which reduces bias due to inaccuracies early in training. In double DQN, it
may be necessary to fix the target network for multiple training iterations of
the prediction network before updating to improve stability and convergence
[258].

Experience replay is a critical component of training a DQN, which is possi-
ble because it is an off-policy RL algorithm. Short segments of past experiences
are used in batches for stochastic gradient descent during training. Moreover,
to place more importance on experiences with large model mismatch, it is pos-
sible to weight past experiences by the magnitude of the TD error. This process
is known as prioritized experience replay [630].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.4. DEEP REINFORCEMENT LEARNING 527

Dueling deep Q networks (DDQNs) [745] are another important deep Q
learning architecture that are used to improve training when actions have a
marginal affect on the quality function. In particular, a DDQN splits the quality
function into the sum of a value function and an advantage function A(s, a),
which quantifies the additional benefit of a particular action over the value of
being in that state:

Q(s, a,θ) = V (s,θ1) + A(s, a,θ2). (11.39)

Thus, separate value and advantage networks are combined to estimate the Q
function.

There are a variety of other useful architectures for deep Q learning, with
more introduced regularly. For example, deep recurrentQ networks are promis-
ing for dynamic problems [316]. Advantage actor–critic networks, discussed in
the next section, combine the DDQN with deep policy networks.

Actor–Critic Networks

Actor–critic methods in reinforcement learning simultaneously learn a policy
function and a value function, with the goal of taking the best of both value-
based and policy-based learning. The basic idea is to have an actor, which is
policy-based, and a critic, which is value-based, and to use the temporal dif-
ference signal from the critic to update the policy parameters. There are many
actor–critic methods that pre-date deep learning. For example, a simple actor–
critic approach would update the policy parameters θ in (11.36) using the tem-
poral difference error rk + γV (sk+1)− V (sk):

θk+1 = θk + α∇θ((logπ(sk, ak,θ))(rk + γV (sk+1)− V (sk)). (11.40)

It is rather straightforward to incorporate deep learning into an actor–critic
framework. For example, in the advantage actor–critic (A2C) network, the actor
is a deep policy network, and the critic is a DDQN. In this case, the update is
given by

θk+1 = θk + α∇θ((logπ(sk, ak,θ))Q(sk, ak,θ2)). (11.41)

Challenges and Additional Techniques

There are several important innovations that are necessary to make reinforce-
ment learning tractable for even moderately challenging tasks. Two of the biggest
challenges in RL are: (1) high-dimensional state and action spaces, and (2) sparse
and delayed rewards.

Many games, such as chess and go, have exceedingly large state spaces. For
example, Claude Shannon estimated the number of possible games of chess,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

528 CHAPTER 11. REINFORCEMENT LEARNING

known as the Shannon number, at around 10120 in his famous paper “Program-
ming a computer for playing chess” [654]; this paper was a major inspiration
for modern dynamic programming and reinforcement learning. Representing a
value or quality function, let alone sampling over these states, is beyond astro-
nomically difficult. Thus, approximate representations of the value or quality
functions using approximation theory, such as deep neural networks, are nec-
essary.

Sparse and delayed rewards represent the central challenge of reinforce-
ment learning, leading to the well-known credit assignment problem, which
we have seen multiple times at this point. The following techniques, includ-
ing reward shaping and hindsight experience replay, are leading techniques to
overcome the credit assignment problem.

Reward Shaping

Perhaps the most standard approach for systems with sparse rewards is a tech-
nique called reward shaping. This involves designing customized proxy fea-
tures that are indicative of a future reward and that may be used as an interme-
diate reward signal. For example, in the game of chess, the relative point count,
where each piece is assigned a numeric value (e.g., a queen is worth 10 points,
rooks are worth 5, knights and bishops are worth 3, and pawns are worth 1
point), is an example of a shaped reward that gives an intermediate reward
signal each time a piece is taken.

Reward shaping is quite common and can be very effective. However, these
rewards require expert human guidance to design, and this requires customized
effort for each new task. Thus, reward shaping is not a viable strategy for a
generalized artificial intelligence agent capable of learning multiple games or
tasks. In addition, reward shaping generally limits the upper end of the agent’s
performance to that of the human expert.

Hindsight Experience Replay

In many tasks, such as robotic manipulation, the goal is to move the robot or
an object from one location to another. For example, consider a robot arm that
is required to slide an object on a table from point A to point B. Without a de-
tailed physical model, or other prior knowledge, it is extremely unlikely that
a random control policy will result in the object actually reaching the desired
destination, so the rewards may be very sparse. It is possible to shape a reward
based on the distance of the object to the goal state, although this is not a gen-
eral strategy and suffers from the limitations discussed above.

Hindsight experience replay (HER) [22, 429] is a strategy that enriches the
reward signal by taking failed trials and pretending that they were successful at
a different task. This approach makes the reward structure much more dense,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.5. APPLICATIONS AND ENVIRONMENTS 529

and has the benefit of enabling the simultaneous learning of a whole family of
motion tasks.

HER is quite intuitive in the context of human learning, for example in the
case of tennis. Initially, it is difficult to aim the ball, and shots often go wild
when learning. However, this provides valuable information about those mus-
cle actions that might be useful for future tasks. After lots of practice, it then
becomes possible to pick from different shots and place the ball more deliber-
ately.

Curiosity-Driven Exploration

Another challenge with RL for large open-world environments is that the agent
may easily get stuck in a local minimum, where it over-optimizes for a small
region of state space. One approach to this problem is to augment the reward
signal with a novelty reward that is large in regions of state space that are not
well modeled. This is known as curiosity-driven exploration [549], and it in-
volves an intrinsic curiosity module (ICM), which compares a forward model
of the evolution of the state, or a latent representation of the state, with the
actual observed evolution. The discrepancy between the model and the actual
dynamics is the novelty reward. When this difference is large, the agent be-
comes curious and explores this region more. There are similarities between
this approach and TD learning, and, in fact, many of the same variations may
be implemented for curiosity-driven exploration. The main difference is that, in
TD learning, the reward discrepancy is used as feedback to improve the value
or quality function; while, in curiosity-driven exploration, the discrepancy is
explicitly used as an additional reward signal. This is a clever approach to em-
bedding this fundamental behavior of intelligent biological learning systems,
to be curious and explore.

There are challenges when using this novelty reward for chaotic and stochas-
tically driven systems, where there are aspects of the state evolution that are
fundamentally unpredictable. A naive novelty reward would constantly pro-
vide positive incentive to explore these regions, since the forward model will
not improve. Instead, the authors in [549] overcome this challenge by predicat-
ing novelty on the predictability of an outcome given the action, using latent
features in an autoencoder, so only aspects of the future state that can be af-
fected by the agent’s actions are included in the novelty signal.

11.5 Applications and Environments

Here we provide a brief overview of some of the modern applications and suc-
cess stories of RL, along with some common environments.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

530 CHAPTER 11. REINFORCEMENT LEARNING

OpenAI Gym

The OpenAI Gym is an incredible open-source resource to develop and test
reinforcement learning algorithms in a wide range of environments. Figure 11.6
shows a small selection of these systems. Example environments include the
following.

• Classic Atari video games: over 100 tasks on Atari 2600 games, including
asteroids, breakout, space invaders, and many others.

• Classic control benchmarks: tasks include balancing an inverted pendu-
lum on a cart, swing-up of a pendulum, swing-up of a double pendulum,
and driving up a hill with an under-actuated system.

• Goal-based robotics [769]: tasks include pushing or fetching a block to
a goal position with a robot arm, with and without sliding after loss of
contact, and robotic hand manipulation for reaching a pose or orienting
various objects.

• MuJoCo [706]: tasks include multi-legged locomotion, running, hopping,
swimming, etc., within a fast physics simulator environment.

This wide range of environments and tasks provides an invaluable resource for
RL researchers, dramatically lowering the barrier to entry and facilitating the
benchmarking and comparison of new algorithms.

Classic Board Games

As discussed throughout this chapter, RL has developed tremendously over the
past half-century, from a biologically inspired idea to a major field at the fore-
front of generalized artificial intelligence. This progress can be largely traced
through the success of RL on increasingly challenging games, where RL has
learned to interact with and mimic humans, and eventually to defeat our great-
est Grandmasters.

Many of the most fundamental advances in RL were either developed for
the purpose of playing games, or demonstrated on the most challenging games
of the time. These simple board games also make the struggles of machine
learning and artificial intelligence more relatable to humans,2 as we can reflect
on our own experiences learning first how to play tic-tac-toe, then checkers,
and then eventually “real” games, such as backgammon, chess, and go. The
progression of RL capabilities roughly follows this progression of complexity,

2“A strange game. The only winning move is not to play. How about a nice game of chess?”
– WarGames, 1983.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.5. APPLICATIONS AND ENVIRONMENTS 531

PROBABILITY
OF MOVING

UP

HIDDEN
LAYER

PIXELS (INPUT)

Atari

Play to get high score in Atari 2600 games

SpaceInvaders-v0 Qbert-v0 Breakout-v0

MuJoCo

Physics emulator for continuous control tasks

Ant-v2HalfCheetah-v2Humanoid-v2

Robotics

Goal-based robotics tasks

FetchPickAndPlace-v1 FetchPush-v1 FetchReach-v1
Figure 11.6: The OpenAI Gym [119] (https://gym.openai.com) provides
a flexible simulation environment to test learning strategies. Examples include
classic Atari 2600 video games and simulated rule-based control environments,
including open-world physics [706] and robotics [769]. Other examples include
classic control benchmarks.

with tic-tac-toe being essentially a homework exercise, checkers being the earli-
est real demonstration of RL by Arthur Samuel [616], and more complex games
such as backgammon [700] and eventually chess and go [658, 661] following.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://gym.openai.com

532 CHAPTER 11. REINFORCEMENT LEARNING

https://www.flickr.com/photos/erikbenson/25717574115

Figure 11.7: Reinforcement learning has demonstrated incredible perfor-
mance in recent expert tasks, such as AlphaGo defeating world champion
Lee Sedol in the game of go [659] on March 19, 2016. Reproduced from
https://www.flickr.com/photos/erikbenson/25717574115.

Interestingly, about three decades passed between each of these definitive land-
marks. One of the next major landmarks was a recent generalist RL agent that
can learn to play multiple games [659], rather than specializing in only one task.

The success of DeepMind’s AlphaGo and AlphaGo Zero demonstrates the
remarkable power of modern RL. This system was a major breakthrough in
RL research, learning to beat the Grandmaster Lee Sedol 4–1 in 2016, depicted
in Fig. 11.7. However, AlphaGo relied heavily on reward shaping and expert
guidance, making it a custom solution, rather than a generalized learner. Its
successor, AlphaGo Zero, relied entirely on self-play, and was able to even-
tually defeat the original AlphaGo decisively. AlphaGo was based largely on
CNNs, while AlphaGo Zero used a residual network (ResNet). ResNets are eas-
ier to train, and AlphaGo Zero was one of the first concrete success stories that
cemented the ResNet as a competitive architecture. AlphaGo Zero was trained
in 40 days on four tensor processing units, in contrast to many advanced ML
algorithms that are trained for months on thousands of GPUs. Both AlphaGo
and AlphaGo Zero are based on using deep learning to improve a Monte Carlo
tree search.

Video Games

Some of the most impressive recent innovations in RL have involved scaling up
to larger input spaces, which are well exemplified by the ability of RL to mas-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.5. APPLICATIONS AND ENVIRONMENTS 533

ter classic Atari video games [506]. In the case of Atari games, the pixel space
is processed using a CNN architecture, with human-level performance being
achieved mere years after the birth of modern deep learning for image classi-
fication [414]. More recently, RL has been demonstrated on more sophisticated
games, such as StarCraft [735], which is a real-time strategy game; DeepMind’s
AlphaStar became a Grandmaster in 2019.

General artificial intelligence is one of the grand challenge problems in mod-
ern machine learning, whereby a learning agent is able to excel at multiple
tasks, as in biological systems. What is perhaps most impressive about recent
RL agents that learn video games is that the learning approach is general, so that
the same RL framework can be used to learn multiple tasks. There is evidence
that video games may improve performance in human surgeons [467, 607],
and it may be that future RL agents will master both robotic manipulation and
video games in a next stage of generalized AI.

Physical Systems

Although much of RL has been developed for board games and video games, it
is increasingly being used for various advanced modeling and control tasks in
physical systems. Physical systems, such as lasers [678] and fluids [581], often
require additional considerations, such as continuous state and action spaces
[589], and the need for certifiable solutions, such as trust regions [644], for
safety-critical applications (e.g., transportation, autonomous flight, etc.).

There has been considerable work applying RL in the field of fluid dy-
namics [131] for fluid flow control [302, 565, 581, 582], for example for bluff-
body control [241] and controlling Rayleigh–Bénard convection [66]. RL has
also been applied to the related problem of navigation in a fluid environment
[85, 180, 304], and more recently for turbulence modeling [530].

In addition to studying fluids, there is an extensive literature using RL to
develop control policies for real and simulated robotic systems that operate
primarily in a fluid environment, for example to learn how to fly and swim.
For example, some of the earliest work has involved optimizing the flight of
uninhabited aerial vehicles [1, 2, 385, 538, 591, 698, 773] with especially impres-
sive helicopter aerobatics [2]. Controlling the motion of fish [268, 269, 532, 733]
is another major area of development, including individual [268] and collective
motion [269, 532, 733]. Gliding and perching is another large area of develop-
ment [531, 590, 591].

Robotics and Autonomy

Robotics [300, 394] and autonomy [545, 592, 615, 652] are two of the largest ar-
eas of current research in RL. These both count as physical systems, as in the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

534 CHAPTER 11. REINFORCEMENT LEARNING

Figure 11.8: Illustration of improved bipedal locomotion performance with
more generations of learning. Reproduced with permission from Geijtenbeek
et al. [271].

section above, but deserve their own treatment, as these are major areas of in-
novation. In fact, both robotics and autonomy may be viewed as two of the
most pressing societal applications of machine learning in general, and rein-
forcement learning in particular, with self-driving cars alone promising to re-
shape the modern transportation and energy landscape. As with the discussion
of physical systems above, these are typically safety-critical applications with
physical constraints [431, 696]. Figure 11.8 shows a virtual locomotion task that
involves learning physics in a robot walker.

11.6 Optimal Nonlinear Control

Reinforcement learning has considerable overlap with optimal nonlinear con-
trol, and historically they were developed in parallel under the same optimiza-
tion framework. Here we provide a brief overview of optimal nonlinear control
theory, which will provide a connection between the classic linear control the-
ory from Chapter 8 and dynamic programming to solve Bellman’s equations
used in this chapter. We have already seen optimal control in the context of lin-
ear dynamics and quadratic cost functions in Section 8.4, resulting in the linear–
quadratic regulator (LQR). Similarly, we have used Bellman’s equations to find
optimal policies in RL for systems governed by MDPs. A major goal of this
section is to provide a more general mathematical treatment of Bellman’s equa-
tions, extending these approaches to fully nonlinear optimal control problems.
However, this section is very technical and departs from the MDP notation

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.6. OPTIMAL NONLINEAR CONTROL 535

used throughout the rest of the chapter; it may be omitted on a first reading.
For more details, see the excellent text by Stengel [675].

Hamilton–Jacobi–Bellman Equation

In optimal control, the goal is often to find a control input u(t) to drive a dy-
namical system,

d

dt
x = f(x(t),u(t), t) , (11.42)

to follow a trajectory x(t) that minimizes a cost function,

J(x(t),u(t), t0, tf) = Q(x(tf), tf) +

∫ tf

t0

L(x(τ),u(τ)) dτ. (11.43)

Note that this formulation in (11.43) generalizes the LQR cost function in (8.47);
now the immediate cost function L(x,u) and the terminal cost Q(x(tf), tf) may
be non-quadratic functions. Often there are also constraints on the state x and
control u, which determine what solutions are admissible.

Given an initial state x0 = x(t0) at t0, an optimal control u(t) will result in
an optimal cost function J . We may define a value function V (x, t0, tf) that de-
scribes the total integrated cost starting at this position x assuming the control
law is optimal:

V (x(t0), t0, tf) = min
u(t)

J(x(t),u(t), t0, tf), (11.44)

where x(t) is the solution to (11.42) for the optimal u(t). Notice that the value
function is no longer a function of the control u(t), as this has been optimized
over, and it is also not a function of a trajectory x(t), but rather of an initial
state x0, as the remainder of the trajectory is entirely specified by the dynamics
and the optimal control law. The value function is often called the cost-to-go in
control theory, as the value function evaluated at any point x(t) on an optimal
trajectory will represent the remaining cost associated with continuing to enact
this optimal policy until the final time tf . In fact, this is a statement of Bellman’s
optimality principle, that the value function V remains optimal starting with
any point on an optimal trajectory.

The Hamilton–Jacobi–Bellman3 (HJB) equation establishes a partial differ-
ential equation that must be satisfied by the value function V (x(t), t, tf) at every

3Kalman recognized that the Bellman optimal control formulation was a generalization of
the Hamilton–Jacobi equation from classical mechanics to handle stochastic input–output sys-
tems. These formulations all involve the calculus of variations, which traces its roots back to
the brachistochrone problem of Johann Bernoulli.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

536 CHAPTER 11. REINFORCEMENT LEARNING

intermediate time t ∈ [t0, tf]:

−∂V
∂t

= min
u(t)

((
∂V

∂x

)T
f(x(t),u(t)) + L(x(t),u(t))

)
. (11.45)

To derive the HJB equation, we may compute the total time derivative of
the value function V (x(t), t, tf) at some intermediate time t:

d

dt
V (x(t), t, tf) =

∂V

∂t
+

(
∂V

∂x

)T
dx

dt
(11.46a)

= min
u(t)

d

dt

(∫ tf

t

L(x(τ),u(τ)) dτ +Q(x(tf), tf)

)
(11.46b)

= min
u(t)

d

dt

∫ tf

t

L(x(τ),u(τ)) dτ

︸ ︷︷ ︸
−L(x(t),u(t))

 (11.46c)

=⇒ −∂V
∂t

= min
u(t)

((
∂V

∂x

)T
f(x,u) + L(x,u)

)
. (11.46d)

Note that the terminal cost does not vary with t, so it has zero time derivative.
The derivative of the integral of the instantaneous cost

∫ tf
t
L(x(τ),u(τ)) dτ is

equal to−L(x(t),u(t)) by the first fundamental theorem of calculus. Finally, the
term (∂V/∂x)T f(x,u) may be brought into the minimization argument, since V
is already defined as the optimal cost over u. The LQR optimal Riccati equation
is a special case of the HJB equation, and the vector of partial derivatives in
(∂J/∂x) serves the same role as the Lagrange multiplier co-state λ. The HJB
equation may also be more intuitive in vector calculus notation

−∂V
∂t

= min
u(t)

(∇V · f(x(t),u(t)) + L(x(t),u(t))). (11.47)

The HJB formulation above relies implicitly on Bellman’s principle of opti-
mality, namely that for any point on an optimal trajectory x(t), the value func-
tion V is still optimal for the remainder of the trajectory:

V (x(t), t, tf) = min
u

(∫ tf

t

L(x(τ),u(τ)) dτ +Q(x(tf), tf)

)
. (11.48)

One outcome is that the value function can be decomposed as

V (x(t0), t0, tf) = V (x(t0), t0, t) + V (x(t), t, tf). (11.49)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.6. OPTIMAL NONLINEAR CONTROL 537

This makes it possible to take the total time derivative above. A more rigorous
derivation is possible using the calculus of variations.

The HJB equation is incredibly powerful, providing a PDE for the optimal
solution of general nonlinear control problems. Typically, the HJB equation
is solved numerically as a two-point boundary value problem, with bound-
ary conditions x(0) = x0 and V (x(tf), tf , tf) = Q(x(tf), tf), for example us-
ing a shooting method. However, a nonlinear control problem with a three-
dimensional state vector x ∈ R3 will result in a three-dimensional PDE. Thus,
optimal nonlinear control based on the HJB equation typically suffers from the
curse of dimensionality. Phase-space clustering techniques have shown great
promise in reducing the effective state-space dimension for systems that evolve
on a low-dimensional attractor [367].

Discrete-Time HJB and the Bellman Equation

Bellman’s optimal control is especially intuitive for discrete-time systems, where,
instead of optimizing over a function, we optimize over a discrete control se-
quence. Consider a discrete-time dynamical system

xk+1 = F(xk,uk). (11.50)

The cost is now given by

J(x0, {uk}nk=j, j, n) =
n∑

k=j

L(xk,uk) +Q(xn, tn). (11.51)

Similarly, the value function is defined as the value of the cumulative cost func-
tion, starting at a point x0 assuming an optimal control policy u:

V (x0, 0, n) = min
{uk}nk=0

J(x0, {uk}nk=0, 0, n). (11.52)

Again, Bellman’s principle of optimality states that an optimal control policy
has the property that, at any point along the optimal trajectory x(t), the re-
maining control policy is optimal with respect to this new initial state. Mathe-
matically,

V (x0, 0, n) = V (x0, 0, k) + V (xk, k, n), ∀ k ∈ (0, n). (11.53)

Thus, the value at an intermediate time-step k may be written as

V (xk, k, n) =

(
min
uk
L(xk,uk)

)
+ V (xk+1, k + 1, n)︸ ︷︷ ︸

s.t. xk+1=F(xk,uk)

(11.54a)

= min
uk

(L(xk,uk) + V (F(xk,uk), k + 1, n)) . (11.54b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

538 CHAPTER 11. REINFORCEMENT LEARNING

It is also possible, given a value function V (xk, k, n), to determine the next opti-
mal control action uk by returning the uk that minimizes the above expression.
This defines an optimal policy u = π(x). Dropping the functional dependence of
V on the end time, we then have

V (x) = min
u

(L(x,u) + V (F(x,u))), (11.55a)

π(x) = argmin
u

(L(x,u) + V (F(x,u))). (11.55b)

These form the Bellman equations.
Note that we have explicitly included the terminal time tf in the terminal

cost Q(xn, tn) and Q(x(tf), tf), as there are situations when the arrival time
should be minimized. However, it is also possible to include the time explic-
itly in the immediate cost L(x,u, t), for example to include a discount function
e−γt for future costs or rewards.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.6. OPTIMAL NONLINEAR CONTROL 539

Suggested Reading

Texts

(1) Reinforcement learning: An introduction, by R. S. Sutton and A. G. Barto,
1998 [683].

Papers and reviews

(1) Q-learning, by C. Watkins and P. Dayan, Machine Learning, 1992 [746].

(2) TD(λ) converges with probability 1, by P. Dayan and T. J. Sejnowski, Ma-
chine Learning, 1994 [197].

(3) Human-level control through deep reinforcement learning, by V. Mnih et
al., Nature, 2015 [506].

(4) Mastering the game of go without human knowledge, by D. Silver et al.,
Nature, 2017 [661].

(5) A tour of reinforcement learning: The view from continuous control, by
B. Recht, Annual Review of Control, Robotics, and Autonomous Systems, 2019
[589].

Blogs and lectures

(1) Deep reinforcement learning: Pong from pixels, by A. Karpathy,
http://karpathy.github.io/2016/05/31/rl/.

(2) Introduction to reinforcement learning with David Silver, by D. Silver,
www.youtube.com/playlist?list=PLqYmG7hTraZBiG_XpjnPrSNw-1XQaM_
gB

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://karpathy.github.io/2016/05/31/rl/
www.youtube.com/playlist?list=PLqYmG7hTraZBiG_XpjnPrSNw-1XQaM_gB
www.youtube.com/playlist?list=PLqYmG7hTraZBiG_XpjnPrSNw-1XQaM_gB

540 CHAPTER 11. REINFORCEMENT LEARNING

Homework

Exercise 11-1. This example will explore reinforcement learning on the game of
tic-tac-toe. First, describe the states, actions, and rewards.

Next, design a policy iteration algorithm to optimize the policy π. Begin with a
randomly chosen policy. Plot the value function on the board and describe the
optimal policy.

How many policy iterations are required before the policy and value function
converge? How many games were played at each policy iteration? Is this con-
sistent with what you would expect a human learning would do?

Is there any structure or symmetry in the game that could be used to improve
the learning rate? Implement a policy iteration that exploits this structure, and
determine how many policy iterations are required before converging and how
many games played per policy iteration.

Exercise 11-2. Repeat the above example using value iteration instead of policy
iteration. Compare the number of iterations in both methods, along with the
total training time.

Exercise 11-3. This exercise will develop a reinforcement learning controller
for the fluid flow past a cylinder. There are several open-source codes that can
be used to simulate simple fluid flows, such as the IBPM code at https://
github.com/cwrowley/ibpm/.

Use reinforcement learning to develop a control law to force the cylinder wake
to be symmetric. Describe the reward structure and what learning framework
you chose. Also plot your results, including learning rates, performance, etc.
How long did it take to train this controller (i.e., how many computational iter-
ations, how much CPU time, etc.)?

Now, assume that the RL agent only has access to the lift and drag coefficients,
CL and CD. Design an RL scheme to track a given reference lift value, say
CL = 1 or CL = −1. See if you can make your controller track a reference
that switches between these values. What if the reference lift is much larger,
say CL = 2 or CL = 5?

Exercise 11-4. Install the AI Gym API and develop an RL controller for the clas-
sic control example of a pendulum on a cart. Explore different RL strategies.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/cwrowley/ibpm/
https://github.com/cwrowley/ibpm/

Chapter 12

Reduced-Order Models (ROMs)

The proper orthogonal decomposition (POD) is the SVD algorithm applied
to partial differential equations (PDEs). As such, it is one of the most impor-
tant dimensionality reduction techniques available to study complex, spatio-
temporal systems. Such systems are typically exemplified by nonlinear PDEs
that prescribe the evolution in time and space of the quantities of interest in a
given physical, engineering, and/or biological system. The success of the POD
is related to the seemingly ubiquitous observation that, in most complex sys-
tems, meaningful behaviors are encoded in low-dimensional patterns of dy-
namic activity. The POD technique seeks to take advantage of this fact in or-
der to produce low-rank dynamical systems capable of accurately modeling
the full spatio-temporal evolution of the governing complex system. Specifi-
cally, reduced-order models (ROMs) leverage POD modes for projecting PDE dy-
namics to low-rank subspaces where simulations of the governing PDE model
can be more readily evaluated. Importantly, the low-rank models produced by
the ROM allow for significant improvements in computational speed, poten-
tially enabling prohibitively expensive Monte Carlo simulations of PDE sys-
tems, optimization over parameterized PDE systems, and/or real-time con-
trol of PDE-based systems. POD has been extensively used in the fluid dy-
namics community [335]. It has also found a wide variety of applications in
structural mechanics and vibrational analysis [31, 311, 382, 437], optical and
micro-electromechanical systems (MEMS) technologies [444, 657], atmospheric
sciences (where it is called empirical orthogonal functions (EOFs)) [158, 159],
wind engineering applications [667], acoustics [243], and neuroscience [45, 379,
703]. The success of the method relies on its ability to provide physically inter-
pretable spatio-temporal decompositions of data [79, 170, 243, 381, 420, 444].

541

542 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

12.1 Proper Orthogonal Decomposition (POD) for
Partial Differential Equations

Throughout the engineering, physical, and biological sciences, many systems
are known to have prescribed relationships between time and space that drive
patterns of dynamical activity. Even simple spatio-temporal relationships can
lead to highly complex, yet coherent, dynamics that motivate the main thrust
of analytic and computational studies. Modeling efforts seek to derive these
spatio-temporal relationships either through first-principles laws or through
well-reasoned conjectures about existing relationships, thus leading generally
to an underlying partial differential equation (PDE) that constrains and governs
the complex system. Typically, such PDEs are beyond our ability to solve ana-
lytically. As a result, two primary solution strategies are pursued: computation
and/or asymptotic reduction. In the former, the complex system is discretized
in space and time to artificially produce an extremely high-dimensional system
of equations which can be solved to a desired level of accuracy, with higher
accuracy requiring a larger dimension of the discretized system. In this tech-
nique, the high-dimensionality is artificial and simply a consequence of the un-
derlying numerical solution scheme. In contrast, asymptotic reduction seeks to
replace the complex system with a simpler set of equations, preferably that are
linear so as to be amenable to analysis. Before the 1960s and the rise of computa-
tion, such asymptotic reductions formed the backbone of applied mathematics
in fields such a fluid dynamics. Indeed, asymptotics form the basis of the ear-
liest efforts of dimensionality reduction. Asymptotic methods are not covered
in this book, but the computational methods that enable reduced-order models
are.

To be more mathematically precise about our study of complex systems, we
consider generically a system of nonlinear PDEs of a single spatial variable that
can be modeled as

ut = N(u,ux,uxx, . . . , x, t;β) (12.1)

where the subscripts denote partial differentiation and N(·) prescribes the gener-
ically nonlinear evolution. The parameter β will represent a bifurcation param-
eter for our later considerations. Further, associated with (12.1) are a set of ini-
tial and boundary conditions on a domain x ∈ [−L,L]. Historically, a number
of analytic solution techniques have been devised to study (12.1). Typically the
aim of such methods is to reduce the PDE (12.1) to a set of ordinary differen-
tial equations (ODEs). The standard PDE methods of separation of variables and
similarity solutions are constructed for this express purpose. Once in the form
of an ODE, a broader variety of analytic methods can be applied along with a
qualitative theory in the case of nonlinear behavior [334]. This again highlights
the role that asymptotics can play in characterizing behavior.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.1. PROPER ORTHOGONAL DECOMPOSITION (POD) FOR PARTIAL
DIFFERENTIAL EQUATIONS 543

Although a number of potential solution strategies have been mentioned,
(12.1) does not admit a closed-form solution in general. Even the simplest non-
linearity or a spatially dependent coefficient can render the standard analytic
solution strategies useless. However, computational strategies for solving (12.1)
are abundant and have provided transformative insights across the physical,
engineering, and biological sciences. The various computational techniques de-
vised lead to an approximate numerical solution of (12.1), which is of high
dimension. Consider, for instance, a standard spatial discretization of (12.1)
whereby the spatial variable x is evaluated at n� 1 points,

u(xk, t) for k = 1, 2, . . . , n, (12.2)

with spacing ∆x = xk+1−xk = 2L/n. Using standard finite-difference formulas,
spatial derivatives can be evaluated using neighboring spatial points so that,
for instance,

ux =
u(xk+1, t)− u(xk−1, t)

2∆x
, (12.3a)

uxx =
u(xk+1, t)− 2u(xk, t) + u(xk−1, t)

∆x2
. (12.3b)

Such spatial discretization transforms the governing PDE (12.1) into a set of n
ODEs:

duk
dt

= N(u(xk+1, t),u(xk, t),u(xk−1, t), . . . , xk, t;β), k = 1, 2, . . . , n. (12.4)

This process of discretization produces a more manageable system of equations
at the expense of rendering (12.1) high-dimensional. It should be noted that, as
accuracy requirements become more stringent, the resulting dimension n of
the system (12.4) also increases, since ∆x = 2L/n. Thus, the dimension of the
underlying computational scheme is artificially determined by the accuracy of
the finite-difference differentiation schemes.

The spatial discretization of (12.1) illustrates how high-dimensional systems
are rendered. The artificial production of high-dimensional systems is ubiqui-
tous across computational schemes and presents significant challenges for sci-
entific computing efforts. To further illustrate this phenomenon, we consider a
second computational scheme for solving (12.1). In particular, we consider the
most common technique for analytically solving PDEs: separation of variables.
In this method, a solution is assumed, whereby space and time are indepen-
dent, so that

u(x, t) = a(t)ψ(x), (12.5)

where the variable a(t) subsumes all the time dependence of (12.1) and ψ(x)
characterizes the spatial dependence. Separation of variables is only guaran-
teed to work analytically if (12.1) is linear with constant coefficients. In that

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

544 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

restrictive case, two differential equations can be derived that separately char-
acterize the spatial and temporal dependences of the complex system. The dif-
ferential equations are related by a constant parameter that is present in each.

For the general form of (12.1), separation of variables can be used to yield
a computational algorithm capable of producing accurate solutions. Since the
spatial solutions are not known a priori, it is typical to assume a set of basis
modes which are used to construct ψ(x). Indeed, such assumptions on basis
modes underlie the critical ideas of the method of eigenfunction expansions. This
yields a separation-of-variables solution ansatz of the form

u(x, t) =
n∑

k=1

ak(t)ψk(x), (12.6)

where ψk(x) form a set of n � 1 basis modes. As before, this expansion ar-
tificially renders a high-dimensional system of equations since n modes are
required. This separation-of-variables solution approximates the true solution,
provided n is large enough. Increasing the number of modes n is equivalent to
increasing the spatial discretization in a finite-difference scheme.

The orthogonality properties of the basis functions ψk(x) enable us to make
use of (12.6). To illustrate this, consider a scalar version of (12.1) with the associ-
ated scalar separable solution u(x, t) =

∑n
k=1 ak(t)ψk(x). Inserting this solution

into the governing equations gives

∑
ψk

dak
dt

= N
(∑

akψk,
∑

ak(ψk)x,
∑

ak(ψk)xx, . . . , x, t;β
)
, (12.7)

where the sums are from k = 1, 2, . . . , n. Orthogonality of our basis functions
implies that

〈ψk, ψj〉 = δkj =

{
0 j 6= k,
1 j = k,

(12.8)

where δkj is the Kronecker delta function and 〈ψk, ψj〉 is the inner product de-
fined as

〈ψk, ψj〉 =

∫ L

−L
ψkψ

∗
j dx, (12.9)

where ∗ denotes complex conjugation.
Once the modal basis is decided on, the governing equations for the ak(t)

can be determined by multiplying (12.7) by ψj(x) and integrating from x ∈
[−L,L]. Orthogonality then results in the temporal governing equations, or
Galerkin projected dynamics, for each mode

dak
dt

=
〈
N
(∑

ajψj,
∑

aj(ψj)x,
∑

aj(ψj)xx, . . . , x, t;β
)
, ψk

〉
(12.10)

for k = 1, 2, . . . , n.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.1. PROPER ORTHOGONAL DECOMPOSITION (POD) FOR PARTIAL
DIFFERENTIAL EQUATIONS 545

The given form of N(·) determines the mode coupling that occurs between the
various nmodes. Indeed, the hallmark feature of nonlinearity is the production
of modal mixing from (12.10).

Numerical schemes based on the Galerkin projection (12.10) are commonly
used to perform simulations of the full governing system (12.1). Convergence
to the true solution can be accomplished by judicious choice of both the modal
basis elements ψk as well as the total number of modes n. Interestingly, the
separation-of-variables strategy, which is rooted in linear PDEs, works for non-
linear and non-constant-coefficient PDEs, provided enough modal basis functions
are chosen in order to accommodate all the nonlinear mode mixing that occurs
in (12.10). A good choice of modal basis elements allows for a smaller set of n
modes to be chosen to achieve a desired accuracy. The POD method is designed
to specifically address the data-driven selection of a set of basis modes that are
tailored to the particular dynamics, geometry, and parameters.

Fourier Mode Expansion

The most prolific basis used for the Galerkin projection technique is Fourier
modes. More precisely, the fast Fourier transform (FFT) and its variants have
dominated scientific computing applied to the engineering, physical, and bi-
ological sciences. There are two primary reasons for this: (1) there is a strong
intuition developed around the meaning of Fourier modes as it directly relates
to spatial wavelengths and frequencies, and, more importantly, (2) the algo-
rithm necessary to compute the right-hand side of (12.10) can be executed in
O(n log n) operations. The second fact has made the FFT one of the top 10 algo-
rithms of the last century and a foundational cornerstone of scientific comput-
ing.

The Fourier mode basis elements are given by

ψk(x) =
1

L
exp

(
i
2πkx

L

)
(12.11)

for x ∈ [0, L] and k = −n/2, . . . ,−1, 0, 1, . . . , n/2− 1.

It should be noted that in most software packages, including MATLAB, the FFT
command assumes that the spatial interval is x ∈ [0, 2π]. Thus one must rescale
a domain of length L to 2π before using the FFT.

Obviously the Fourier modes (12.11) are complex periodic functions on the
interval x ∈ [0, L]. However, they are applicable to a much broader class of
functions that are not necessarily periodic. For instance, consider a localized
Gaussian function

u(x, t) = exp(−σx2) (12.12)

whose Fourier transform is also a Gaussian. In representing such a function
with Fourier modes, a large number of modes are often required since the func-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

546 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

−10 0 10
0

0.5

1

u(x)

x

(a)

−40 0 40
0

0.5

1

u(k)^

mode

(b)

−10 −5 0 5 10

0

0.5

1
u(x)

N=3

N=39

x

(c)

0 5 10 15 20 25 30 35 40
10

−5
10

−4
10

−3
10

−2
10

−1
10

0
10

1

Error

of modes

(d)

Figure 12.1: Illustration of Fourier modes for representing a localized Gaussian
pulse. (a) Here n = 80 Fourier modes are used to represent the Gaussian u(x) =
exp(−σx2) in the domain x ∈ [−10, 10] for σ = 0.1 (red), σ = 1 (black), and
σ = 10 (blue). (b) The Fourier mode representation of the Gaussian, showing
the modes required for an accurate representation of the localized function.
(c) The convergence of the n-mode solution to the actual Gaussian (σ = 1); with
(d) the L2 error from the true solution for the three values of σ.

tion itself is not periodic. Figure 12.1 shows the Fourier mode representation
of the Gaussian for three values of σ. Of note is the fact that a large number of
modes are required to represent this simple function, especially as the Gaussian
width is decreased. Although the FFT algorithm is extremely fast and widely
applied, one can see immediately that a large number of modes are generically
required to represent simple functions of interest. Thus, solving problems us-
ing the FFT often requires high-dimensional representations (i.e., n� 1) to ac-
commodate generic, localized spatial behaviors. Ultimately, our aim is to move
away from artificially creating such high-dimensional problems.

Special Functions and Sturm–Liouville Theory

In the 1800s and early 1900s, mathematical physics developed many of the gov-
erning principles behind heat flow, electromagnetism, and quantum mechan-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.1. PROPER ORTHOGONAL DECOMPOSITION (POD) FOR PARTIAL
DIFFERENTIAL EQUATIONS 547

ics, for instance. Many of the hallmark problems considered were driven by
linear dynamics, allowing for analytically tractable solutions. And since these
problems arose before the advent of computing, nonlinearities were typically
treated as perturbations to an underlying linear equation. Thus one often con-
sidered complex systems of the form

ut = Lu + εN(u,ux,uxx, . . . , x, t;β), (12.13)

where L is a linear operator and ε � 1 is a small parameter used for pertur-
bation calculations. Often in mathematical physics, the operator L is a Sturm–
Liouville operator, which guarantees many advantageous properties of the eigen-
values and eigenfunctions.

To solve equations of the form in (12.13), special modes are often used that
are ideally suited for the problem. Such modes are eigenfunctions of the under-
lying linear operator L in (12.13):

Lψk = λkψk, (12.14)

where ψk(x) are orthonormal eigenfunctions of the operator L. The eigenfunc-
tions allow for an eigenfunction expansion solution whereby u(x, t) =

∑
ak(t)ψk(x).

This leads to the following solution form:

dak
dt

= 〈Lu, ψk〉+ ε〈N, ψk〉. (12.15)

The key idea in such an expansion is that the eigenfunctions presumably are
ideal for modeling the spatial variations particular to the problem under con-
sideration. Thus, they would seem to be ideal, or perfectly suited, modes for
(12.13). This is in contrast to the Fourier mode expansion, as the sinusoidal
modes may be unrelated to the particular physics or symmetries in the geom-
etry. For example, the Gaussian example considered can be potentially repre-
sented more efficiently by Gauss–Hermite polynomials. Indeed, the wide vari-
ety of special functions, including the Sturm–Liouville operators of Bessel, La-
guerre, Hermite, and Legendre, for instance, are aimed at making the representa-
tion of solutions more efficient and much more closely related to the underly-
ing physics and geometry. Ultimately, one can think of using such functions as
a way of doing dimensionality reduction by using an ideally suited set of basis
functions.

Dimensionality Reduction

The examples above and solution methods for PDEs illustrate a common prob-
lem of scientific computing: the generation of n-degree, high-dimensional sys-
tems. For many complex PDEs with several spatial dimensions, it is not uncom-
mon for discretization or modal expansion techniques to yield systems of dif-
ferential equations with millions or billions of degrees of freedom. Such large

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

548 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

systems are extremely demanding for even the latest computational architec-
tures, limiting accuracies and run-times in the modeling of many complex sys-
tems, such as high-Reynolds-number fluid flows.

To aid in computation, the selection of a set of optimal basis modes is crit-
ical, as it can greatly reduce the number of differential equations generated.
Many solution techniques involve the solution of a linear system of size n,
which generically involves O(n3) operations. Thus, reducing n is of paramount
importance. One can already see that, even in the 1800s and early 1900s, the spe-
cial functions developed for various problems of mathematical physics were an
analytic attempt to generate an ideal set of modes for representing the dynam-
ics of the complex system. However, for strongly nonlinear, complex systems
(12.1), even such special functions rarely give the best set of modes. In the next
section, we show how one might generate modes ψk that are tailored specifi-
cally for the dynamics and geometry in (12.1). Based on the SVD algorithm, the
proper orthogonal decomposition (POD) generates a set of modes that are optimal
for representing either simulation or measurement data, potentially allowing
for significant reduction of the number of modes n required to model the be-
havior of (12.1) for a given accuracy [79, 737, 738].

12.2 Optimal Basis Elements: the POD Expansion

As illustrated in the previous section, the selection of a good modal basis for
solving (12.1) using the Galerkin expansion in (12.6) is critical for efficient sci-
entific computing strategies. Many algorithms for solving PDEs rely on choos-
ing basis modes a priori based on (i) computational speed, (ii) accuracy, and/or
(iii) constraints on boundary conditions. All these reasons are justified and form
the basis of computationally sound methods. However, our primary concern in
this chapter is in selecting a method that allows for maximal computational ef-
ficiency via dimensionality reduction. As already highlighted, many algorithms
generate artificially large systems of size n. In what follows, we present a data-
driven strategy, whereby optimal modes, also known as POD modes, are se-
lected from numerical and/or experimental observations, thus allowing for a
minimal number of modes r � n to characterize the dynamics of (12.1).

Two options exist for extracting the optimal basis modes from a given com-
plex system. Either one can collect data directly from an experiment, or one can
simulate the complex system and sample the state of the system as it evolves ac-
cording to the dynamics. In both cases, snapshots of the dynamics are taken and
optimal modes identified. In the case when the system is simulated to extract
modes, one can argue that no computational savings are achieved. However,
much like the LU decomposition, which has an initial one-time computational
cost of O(n3) before further O(n2) operations can be applied, the costly modal

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.2. OPTIMAL BASIS ELEMENTS: THE POD EXPANSION 549

extraction process is performed only once. The optimal modes can then be used
in a computationally efficient manner thereafter.

To proceed with the construction of the optimal POD modes, the dynamics
of (12.1) are sampled at some prescribed time interval. In particular, a snapshot
uk consists of samples of the complex system, with subscript k indicating sam-
pling at time tk, i.e., uk :=

[
u(x1, tk) u(x2, tk) · · · u(xn, tk)

]T . Now, the con-
tinuous functions and modes will be evaluated at n discrete spatial locations,
resulting in a high-dimensional vector representation; these will be denoted by
bold symbols. We are generally interested in analyzing the computationally or
experimentally generated large data set X:

X =

u1 u2 · · · um

 , (12.16)

where the columns uk = u(tk) ∈ Cn may be measurements from simulations or
experiments. Matrix X consists of a time series of data, with m distinct measure-
ment instants in time. Often the state dimension n is very large, on the order of
millions or billions in the case of fluid systems. Typically n� m, resulting in a
tall-skinny matrix, as opposed to a short-fat matrix when n� m.

As discussed previously, the singular value decomposition (SVD) provides
a unique matrix decomposition for any complex-valued matrix X ∈ Cn×m:

X = UΣV∗, (12.17)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices, and Σ ∈ Cn×m is a matrix
with non-negative entries on the diagonal. Here ∗ denotes the complex conju-
gate transpose. The columns of U are called left singular vectors of X and the
columns of V are right singular vectors. The diagonal elements of Σ are called
singular values and they are ordered from largest to smallest. The SVD provides
critical insight into building an optimal basis set tailored to the specific prob-
lem. In particular, the matrix U is guaranteed to provide the best set of modes
to approximate X in an `2 sense. Specifically, the columns of this matrix contain
the orthogonal modes necessary to form the ideal basis. The matrix V gives
the time history of each of the modal elements, and the diagonal matrix Σ is
the weighting of each mode relative to the others. Recall that the modes are
arranged with the most dominant first and the least dominant last.

The total number of modes generated is typically determined by the num-
ber of snapshots m taken in constructing X (where normally n � m). Our ob-
jective is to determine the minimal number of modes necessary to accurately
represent the dynamics of (12.1) with a Galerkin projection (12.6). Thus we
are interested in a rank-r approximation to the true dynamics where typically
r � m. The quantity of interest is then the low-rank decomposition of the SVD

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

550 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

given by
X̃ = ŨΣ̃Ṽ∗, (12.18)

where ‖X−X̃‖ < ε for a given small value of ε. This low-rank truncation allows
us to construct the modes of interest ψk from the columns of the truncated
matrix Ũ. In particular, the optimal basis modes are given by

Ũ = Ψ =

ψ1 ψ2 · · · ψr

 , (12.19)

where the truncation preserves the r most dominant modes used in (12.6). The
truncated r modes {ψ1,ψ2, . . . ,ψr} are then used as the low-rank, orthogonal
basis to represent the dynamics of (12.1).

The above snapshot-based method for extracting the low-rank, r-dimensional
subspace of dynamic evolution associated with (12.1) is a data-driven compu-
tational architecture. Indeed, it provides an equation-free method, i.e., the gov-
erning equation (12.1) may actually be unknown. In the event that the under-
lying dynamics are unknown, then the extraction of the low-rank space allows
one to build potential models in an r-dimensional subspace as opposed to re-
maining in a high-dimensional space where n� r. These ideas will be explored
further in what follows. However, it suffices to highlight at this juncture that an
optimal basis representation does not require an underlying knowledge of the
complex system (12.1).

Galerkin Projection onto POD Modes

It is possible to approximate the state u of the PDE using a Galerkin expansion:

u(t) ≈ Ψa(t), (12.20)

where a(t) ∈ Rr is the time-dependent coefficient vector and r � n. Plugging
this modal expansion into the governing equation (12.13) and applying orthog-
onality (multiplying by ΨT) gives the dimensionally reduced evolution

da(t)

dt
= ΨTLΨa(t) + ΨTN(Ψa(t),β). (12.21)

By solving this system of much smaller dimension, the solution of a high-
dimensional nonlinear dynamical system can be approximated. Of critical im-
portance is evaluating the nonlinear terms in an efficient way using the gappy
POD or discrete empirical interpolation method (DEIM) mathematical archi-
tecture in Chapter 13. Otherwise, the evaluation of the nonlinear terms still
requires calculation of functions and inner products with the original dimen-
sion n. In certain cases, such as the quadratic nonlinearity of Navier–Stokes, the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.2. OPTIMAL BASIS ELEMENTS: THE POD EXPANSION 551

nonlinear terms can be computed once in an offline manner. However, param-
eterized systems generally require repeated evaluation of the nonlinear terms
as the POD modes change with β.

Example: the Harmonic Oscillator

To illustrate the POD method for selecting optimal basis elements, we will con-
sider a classic problem of mathematical physics: the quantum harmonic oscillator.
Although the ideal basis functions (Gauss–Hermite functions) for this problem
are already known, we would like to infer these special functions in a purely
data-driven way. In other words, can we deduce these special functions from
snapshots of the dynamics alone? The standard harmonic oscillator arises in
the study of spring–mass systems. In particular, one often assumes that the
restoring force F of a spring is governed by the linear Hooke’s law:

F (t) = −kx, (12.22)

where k is the spring constant and x(t) represents the displacement of the
spring from its equilibrium position. Such a force gives rise to a potential en-
ergy for the spring of the form V = kx2/2.

In considering quantum mechanical systems, such a restoring force (with
k = 1 without loss of generality) and associated potential energy give rise to
the Schrödinger equation with a parabolic potential,

iut +
1

2
uxx −

x2

2
u = 0, (12.23)

where the second term in the partial differential equation represents the kinetic
energy of a quantum particle while the last term is the parabolic potential as-
sociated with the linear restoring force.

The solution for the quantum harmonic oscillator can be easily computed
in terms of special functions. In particular, by assuming a solution of the form

u(x, t) = akψk(x) exp[−i(k + 1
2
)t], (12.24)

with ak determined from initial conditions, one finds the following boundary
value problem for the eigenmodes of the system:

d2ψk
dx2

+ (2k + 1− x2)ψk, (12.25)

with the boundary conditions ψk → 0 as x → ±∞. Normalized solutions to
this equation can be expressed in terms of Hermite polynomials, Hk(x), or the
Gaussian–Hermite functions,

ψk = (2kk!
√
π)−1/2 exp(−x2/2)Hk(x) (12.26a)

= (−1)k(2kk!
√
π)−1/2 exp(−x2/2)

dk

dxk
exp(−x2). (12.26b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

552 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

The Gauss–Hermite functions are typically thought of as the optimal basis
functions for the harmonic oscillator, as they naturally represent the under-
lying dynamics driven by the Schrödinger equation with parabolic potential.
Indeed, solutions of the complex system (12.23) can be represented as the sum

u(x, t) =
∞∑

k=0

ak(2
kk!
√
π)−1/2 exp(−x2/2)Hk(x) exp[−i(k + 1

2
)t]. (12.27)

Such a solution strategy is ubiquitous in mathematical physics, as is evidenced
by the large number of special functions, often of Sturm–Liouville form, for dif-
ferent geometries and boundary conditions. These include Bessel functions, La-
guerre polynomials, Legendre polynomials, parabolic cylinder functions, spher-
ical harmonics, etc.

A numerical solution to the governing PDE (12.23) based on the fast Fourier
transform is easy to implement [420]. The following code executes a full numer-
ical solution with the initial conditions u(x, 0) = exp(−0.2(x − x0)2), which is
a Gaussian pulse centered at x = x0. This initial condition generically excites
a number of Gauss–Hermite functions. In particular, the initial projection onto
the eigenmodes is computed from the orthogonality conditions so that

ak = 〈u(x, 0), ψk〉. (12.28)

This inner product projects the initial condition onto each mode ψk.

Code 12.1: [MATLAB] Harmonic oscillator code.
L=30; n=512; x2=linspace(-L/2,L/2,n+1); x=x2(1:n); % spatial

discretization
k=(2*pi/L)*[0:n/2-1 -n/2:-1].’; % wavenumbers for FFT
V=x.ˆ2.’; % potential
t=0:0.2:20; % time domain collection points

u=exp(-0.2*(x-1).ˆ2); % initial conditions
ut=fft(u); % FFT initial data
[t,utsol]=ode45(’pod_harm_rhs’,t,ut,[],k,V); % integrate PDE
for j=1:length(t)

usol(j,:)=ifft(utsol(j,:)); % transforming back
end

Code 12.1: [Python] Harmonic oscillator code.
u = np.exp(-0.2*np.power(x-1,2)) # initial conditions
ut = np.fft.fft(u) # FFT initial data
ut_split = np.concatenate((np.real(ut),np.imag(ut)))

utsol_split = integrate.odeint(harm_rhs,ut_split,t,mxstep
=10**6)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.2. OPTIMAL BASIS ELEMENTS: THE POD EXPANSION 553

utsol = utsol_split[:,:n] + (1j)*utsol_split[:,n:]

usol = np.zeros_like(utsol)
for jj in range(len(t)):

usol[jj,:] = np.fft.ifft(utsol[jj,:])

The right-hand side function pod harm rhs.m associated with the above
code contains the governing equation (12.23) in a three-line MATLAB code:

Code 12.2: [MATLAB] Harmonic oscillator right-hand side.
function rhs=pod_harm_rhs(t,ut,dummy,k,V)
u=ifft(ut);
rhs=-(i/2)*(k.ˆ2).*ut - 0.5*i*fft(V.*u);

Code 12.2: [Python] Harmonic oscillator right-hand side.
def harm_rhs(ut_split,t,k=k,V=V,n=n):

ut = ut_split[:n] + (1j)*ut_split[n:]
u = np.fft.ifft(ut)
rhs = -0.5*(1j)*np.power(k,2)*ut - 0.5*(1j)*np.fft.fft(V

*u)
rhs_split = np.concatenate((np.real(rhs),np.imag(rhs)))
return rhs_split

The two codes together produce dynamics associated with the quantum
harmonic oscillator. Figure 12.2 shows the dynamical evolution of an initial
Gaussian u(x, 0) = exp(−0.2(x − x0)2) with x0 = 0 (top left) and x0 = 1 (top
right). From the simulation, one can see that there are a total of 101 snapshots
(the initial condition and an additional 100 measurement times). These snap-
shots can be organized as in (12.16) and the singular value decomposition per-
formed. The singular values of the decomposition are suggestive of the under-
lying dimensionality of the dynamics. For the dynamical evolution observed in
the top panels of Fig. 12.2, the corresponding singular values of the snapshots
are given in the bottom panels. For the symmetric initial condition (symmetric
about x = 0), five modes dominate the dynamics. In contrast, for an asymmetric
initial condition, twice as many modes are required to represent the dynamics
with the same precision.

The singular value decomposition not only gives the distribution of energy
within the first set of modes, but it also produces the optimal basis elements
as columns of the matrix U. The distribution of singular values is highly sug-
gestive of how to truncate with a low-rank subspace of r modes, thus allow-
ing us to construct the dimensionally reduced space (12.19) appropriate for a
Galerkin–POD expansion.

The modes of the quantum harmonic oscillator are illustrated in Fig. 12.3.
Specifically, the first five modes are shown for (i) the Gauss–Hermite functions

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

554 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

V (x)/100 V (x)/100

|u|2|u|2

x

t

x

t

Mode Mode

En
er

gy
(%

)

En
er

gy
(%

)
Figure 12.2: Dynamics of the quantum harmonic oscillator (12.23) given the
initial condition u(x, 0) = exp(−0.2(x − x0)2) for x0 = 0 (top left) and x0 = 1
(top right). The symmetric initial data elicits a dominant five-mode response
while the initial condition with initial offset x0 = 1 activates 10 modes. The
bottom panels show the singular values of the SVD of the corresponding top
panels, along with the percentage of energy (or L2-norm) in each mode. The
dynamics are clearly low-rank given the rapid decay of the singular values.

representing the special function solutions, (ii) the modes of the SVD for the
symmetric (x0 = 0) initial conditions, and (iii) the modes of the SVD for the
offset (asymmetric, x0 = 1) initial conditions. The Gauss–Hermite functions,
by construction, are arranged from lowest eigenvalue of the Sturm–Liouville
problem (12.25). The eigenmodes alternate between symmetric and asymmet-
ric modes. For the symmetric (about x = 0) initial conditions given by u(x, 0) =
exp(−0.2x2), the first five modes are all symmetric, as the snapshot-based method
is incapable of producing asymmetric modes since they are actually not part of
the dynamics, and thus they are not observable or manifested in the evolu-
tion. In contrast, with a slight offset, u(x, 0) = exp(−0.2(x − 1)2), snapshots of
the evolution produce asymmetric modes that closely resemble the asymmet-
ric modes of the Gauss–Hermite expansion. Interestingly, in this case, the SVD
arranges the modes by the amount of energy exhibited in each mode. Thus the
first asymmetric mode (bottom panel in red – third mode) is equivalent to the
second mode of the exact Gauss–Hermite polynomials (top panel in green –
second mode). The key observation here is that the snapshot-based method is
capable of generating, or nearly so, the known optimal Gauss–Hermite poly-
nomials characteristic of this system. Importantly, the Galerkin–POD method
generalizes to more complex physics and geometries where the solution is not

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.3. POD AND SOLITON DYNAMICS 555

−5 −2.5 0 2.5 5
−1

−0.5

0

0.5

1

−5 −2.5 0 2.5 5
−1

−0.5

0

0.5

1

−5 −2.5 0 2.5 5
−1

−0.5

0

0.5

1

mode 1

mode 2

mode 3

mode 4

mode 5

x

x

x

u(x)

u(x)

u(x)

Figure 12.3: First five modes of the quantum harmonic oscillator. In the top
panel, the first five Gauss–Hermite modes (12.26), arranged by their Sturm–
Liouville eigenvalue, are illustrated. The second panel shows the dominant
modes computed from the SVD of the dynamics of the harmonic oscillator
with u(x, 0) = exp(−0.2x2), illustrated in Fig. 12.2 (left). Note that the modes
are all symmetric, since no asymmetric dynamics was actually manifested. For
the bottom panel, where the harmonic oscillator was simulated with the offset
Gaussian u(x, 0) = exp(−0.2(x−1)2), asymmetry is certainly observed. This also
produces modes that are very similar to the Gauss–Hermite functions. Thus a
purely snapshot-based method is capable of reproducing the nearly ideal basis
set for the harmonic oscillator.

known a priori.

12.3 POD and Soliton Dynamics

To illustrate a full implementation of the Galerkin–POD method, we will con-
sider an illustrative complex system whose dynamics are strongly nonlinear.
Thus, we consider the nonlinear Schrödinger (NLS) equation,

iut + 1
2
uxx + |u|2u = 0, (12.29)

with the boundary conditions u→ 0 as x→ ±∞. If not for the nonlinear term,
this equation could be solved easily in closed form. However, the nonlinearity

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

556 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

mixes the eigenfunction components in the expansion (12.6), and it is impossi-
ble to derive a simple analytic solution.

To solve the NLS computationally, a Fourier mode expansion is used. Thus
the standard fast Fourier transform may be leveraged. Rewriting (12.29) in the
Fourier domain, i.e., taking the Fourier transform, gives the set of differential
equations

ût = − i
2
k2û+ i|̂u|2u, (12.30)

where the Fourier mode mixing occurs due to the nonlinear mixing in the cubic
term. This gives the system of differential equations to be solved in order to
evaluate the NLS behavior.

It now remains to consider a specific spatial configuration for the initial
condition. For the NLS, there are a set of special initial conditions called solitons
where the initial conditions are given by

u(x, 0) = Nsech(x), (12.31)

where N is an integer. We will consider the soliton dynamics with N = 1 and
N = 2. First, the initial condition is projected onto the Fourier modes with the
fast Fourier transform.

The dynamics of theN = 1 andN = 2 solitons are demonstrated in Fig. 12.4.
During evolution, the N = 1 soliton only undergoes phase changes while its
amplitude remains stationary. In contrast, theN = 2 soliton undergoes periodic
oscillations. In both cases, a large number of Fourier modes, about 50 and 200,
respectively, are required to model the simple behaviors illustrated.

The obvious question to ask in light of our dimensionality reduction think-
ing is this: Is the soliton dynamics really a 50- or 200-degrees-of-freedom system
as required by the Fourier mode solution technique? The answer is no. Indeed,
with the appropriate basis, i.e., the POD modes generated from the SVD, it can
be shown that the dynamics is a simple reduction to one or two modes, respec-
tively. Indeed, it can easily be shown that the N = 1 and N = 2 solitons are
truly low-dimensional, as shown by the evolutions in Fig. 12.4.

Figure 12.5 explicitly demonstrates the low-dimensional nature of the nu-
merical solutions by computing the singular values, along with the modes to
be used in our new eigenfunction expansion. For both of these cases, the dy-
namics are truly low-dimensional with the N = 1 soliton being modeled well
by a single POD mode while the N = 2 dynamics are modeled quite well with
two POD modes. Thus, in performing an eigenfunction expansion, the modes
chosen should be the POD modes generated from the simulations themselves.
In the next section, we will derive the dynamics of the modal interaction for
these two cases, which are low-dimensional and amenable to analysis.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.3. POD AND SOLITON DYNAMICS 557

(a) (b)

(c) (d)

t
x

|u|2

t
k

|û|2

t
x

|u|2

t
k

|û|2

Figure 12.4: Evolution of the (a)N = 1 and (b)N = 2 solitons. Here steady-state
(N = 1, panels (a) and (c)) and periodic (N = 2, panels (b) and (d)) dynamics
are observed and approximately 50 and 200 Fourier modes, respectively, are
required to model the behaviors.

Soliton Reduction (N = 1)

To take advantage of the low-dimensional structure, we first consider theN = 1
soliton dynamics. Figure 12.5 shows that a single mode in the SVD dominates
the dynamics. This is the first column of the U matrix. Thus the dynamics are
recast in a single mode so that

u(x, t) = a(t)ψ(x). (12.32)

Plugging this into the NLS equation (12.29) yields the following:

iatψ + 1
2
aψxx + |a|2a|ψ|2ψ = 0. (12.33)

The inner product is now taken with respect to ψ, which gives

iat +
α

2
a+ β|a|2a = 0, (12.34)

where

α =
〈ψxx, ψ〉
〈ψ, ψ〉 , (12.35a)

β =
〈|ψ|2ψ, ψ〉
〈ψ, ψ〉 . (12.35b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

558 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

1 6 11 16 21

10
−6

10
−3

10
0

10
3

1 6 11 16 21

10
−6

10
−3

10
0

10
3

−10 −5 0 5 10
−0.1

0

0.1

0.2

−10 −5 0 5 10
−0.3

0

0.3

mode 3

mode 2

mode 1

(a) (b)

(c)

(d)

σj

j

σj

j

ψj

x

ψj

x

Figure 12.5: Projection of the N = 1 and N = 2 evolutions onto their POD
modes. Panels (a) and (b) are the singular values σj on a logarithmic scale of
the two evolutions demonstrated in Fig. 12.4. This demonstrates that the N = 1
and N = 2 soliton dynamics are primarily low-rank, with the N = 1 being
a single-mode evolution and the N = 2 being dominated by two modes that
contain approximately 95% of the evolution variance. The first three modes in
both cases are shown in panels (c) and (d).

This is the low-rank approximation achieved by the Galerkin–POD method.
The differential equation (12.34) for a(t) can be solved explicitly to yield

a(t) = a(0) exp
(
i
α

2
t+ β|a(0)|2t

)
, (12.36)

where a(0) is the initial condition for a(t). To find the initial condition, recall
that

u(x, 0) = sech(x) = a(0)ψ(x). (12.37)

Taking the inner product with respect to ψ(x) gives

a(0) =
〈sech(x), ψ〉
〈ψ, ψ〉 . (12.38)

Thus the one-mode expansion gives the approximate PDE solution

u(x, t) = a(0) exp
(
i
α

2
t+ β|a(0)|2t

)
ψ(x). (12.39)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.3. POD AND SOLITON DYNAMICS 559

This solution is the low-dimensional POD approximation of the PDE expanded
in the best basis possible, i.e., the SVD basis.

For the N = 1 soliton, the spatial profile remains constant while its phase
undergoes a nonlinear rotation. The POD solution (12.39) can be solved exactly
to characterize this phase rotation.

Soliton Reduction (N = 2)

The N = 2 soliton case is a bit more complicated and interesting. In this case,
two modes clearly dominate the behavior of the system, as they contain 96% of
the energy. These two modes, ψ1 and ψ2, are the first two columns of the matrix
U and are now used to approximate the dynamics observed in Fig. 12.4. In this
case, the two-mode expansion takes the form

u(x, t) = a1(t)ψ1(x) + a2(t)ψ2(x). (12.40)

Inserting this approximation into the governing equation (12.29) gives

i(a1tψ1 + a2tψ2) + 1
2
(a1ψ1xx + a2ψ2xx)

+ (a1ψ1 + a2ψ2)2(a∗1ψ
∗
1 + a∗2ψ

∗
2) = 0. (12.41)

Multiplying out the cubic term gives

i(a1tψ1 + a2tψ2) + 1
2
(a1ψ1xx + a2ψ2xx)

+ |a1|2a1|ψ1|2ψ1 + |a2|2a2|ψ2|2ψ2 + 2|a1|2a2|ψ1|2ψ2

+ 2|a2|2a1|ψ2|2ψ1 + a2
1a
∗
2ψ

2
1ψ
∗
2 + a2

2a
∗
1ψ

2
2ψ
∗
1 = 0. (12.42)

All that remains is to take the inner product of this equation with respect to
both ψ1(x) and ψ2(x). Recall that these two modes are orthogonal, resulting in
the following 2× 2 system of nonlinear equations:

ia1t + α11a1 + α12a2 + (β111|a1|2 + 2β211|a2|2)a1

+ (β121|a1|2 + 2β221|a2|2)a2 + σ121a
2
1a
∗
2 + σ211a

2
2a
∗
1 = 0, (12.43a)

ia2t + α21a1 + α22a2 + (β112|a1|2 + 2β212|a2|2)a1

+ (β122|a1|2 + 2β222|a2|2)a2 + σ122a
2
1a
∗
2 + σ212a

2
2a
∗
1 = 0, (12.43b)

where

αjk = 〈ψjxx, ψk〉/2, (12.44a)
βjkl = 〈|ψj|2ψk, ψl〉, (12.44b)
σjkl = 〈ψ2

jψ
∗
k, ψl〉, (12.44c)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

560 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

and the initial values of the two components are given by

a1(0) =
〈2 sech(x), ψ1〉
〈ψ1, ψ1〉

, (12.45a)

a2(0) =
〈2 sech(x), ψ2〉
〈ψ2, ψ2〉

. (12.45b)

This gives a complete description of the two-mode dynamics predicted from
the SVD analysis.

The two-mode dynamics accurately approximates the solution. However,
there is a phase drift that occurs in the dynamics that would require both higher
precision in the time series of the full PDE and more accurate integration of the
inner products for the coefficients. Indeed, the most simple trapezoidal rule
has been used to compute the inner products, and its accuracy is somewhat
suspect; this issue will be addressed in the following section. Higher-order
schemes could certainly help improve the accuracy. Additionally, incorporat-
ing the third or higher modes could also help. In either case, this demonstrates
how one would use the low-dimensional structures to approximate PDE dy-
namics in practice.

12.4 Continuous Formulation of POD

Thus far, the POD reduction has been constructed to accommodate discrete
data measurement snapshots X as given by (12.16). The POD reduction gener-
ates a set of low-rank basis modes Ψ so that the following least-squares error is
minimized:

argmin
Ψ s.t. rank(Ψ)=r

‖X−ΨΨTX‖F . (12.46)

Recall that X ∈ Cn×m and Ψ ∈ Cn×r, where r is the rank of the truncation.
In many cases, measurements are performed on a continuous-time process

over a prescribed spatial domain; thus the data we consider are constructed
from trajectories

u(x, t) with t ∈ [0, T], x ∈ [−L,L]. (12.47)

Such data require a continuous-time formulation of the POD reduction. In par-
ticular, an equivalent of (12.46) must be constructed for these continuous-time
trajectories. Note that, instead of a spatially dependent function u(x, t), one
can also consider a vector of trajectories u(t) ∈ Cn. This may arise when a
PDE is discretized so that the infinite-dimensional spatial variable x is finite-
dimensional. Wolkwein [737, 738] gives an excellent, technical overview of the
POD method and its continuous formulation.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.4. CONTINUOUS FORMULATION OF POD 561

To define the continuous formulation, we prescribe the inner product

〈f(x), g(x)〉 =

∫ L

−L
f(x)g∗(x) dx. (12.48)

To find the best-fit function through the entire temporal trajectory u(x, t) in
(12.47), the following minimization problem must be solved:

min
ψ

1

T

∫ T

0

‖u(x, t)− 〈u(x, t), ψ(x)〉ψ‖2 dt subject to ‖ψ‖2 = 1, (12.49)

where the normalization of the temporal integral by 1/T averages the differ-
ence between the data and its low-rank approximation using the function ψ
over the time t ∈ [0, T]. Equation (12.49) is equivalent to maximizing the inner
product between the data u(x, t) and the function ψ(x), i.e., they are maximally
parallel in function space. Thus the minimization problem can be restated as

max
ψ

1

T

∫ T

0

|〈u(x, t), ψ(x)〉|2 dt subject to ‖ψ‖2 = 1. (12.50)

The constrained optimization problem in (12.50) can be reformulated as a
Lagrangian functional,

L(ψ, λ) =
1

T

∫ T

0

|〈u(x, t), ψ(x)〉|2dt+ λ(1− ‖ψ‖2), (12.51)

where λ is the Lagrange multiplier that enforces the constraint ‖ψ‖2 = 1. This
can be rewritten as

L(ψ, λ) =
1

T

∫ T

0

(∫ L

−L
u(ξ, t)ψ∗(ξ) dξ

∫ L

−L
u∗(x, t)ψ(x) dx

)
dt

+ λ(1− ‖ψ‖2) + λ

(
1−

∫ L

−L
ψ(x)ψ∗(x) dx

)
. (12.52)

The Lagrange multiplier problem requires that the functional derivative be
zero:

∂L
∂ψ∗

= 0. (12.53)

Applying this derivative constraint to (12.52) and interchanging integrals yields

∂L
∂ψ∗

=

∫ L

−L
dξ

[
1

T

∫ T

0

(
u(ξ, t)

∫ L

−L
u∗(x, t)ψ(x) dx

)
dt− λψ(x)

]
= 0. (12.54)

Setting the integrand to zero, the following eigenvalue problem is derived:

〈R(ξ, x), ψ〉 = λψ, (12.55)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

562 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

where R(ξ, x) is a two-point correlation tensor of the continuous data u(x, t),
which is averaged over the time interval where the data is sampled:

R(ξ, x) =
1

T

∫ T

0

u(ξ, t)u∗(x, t) dt. (12.56)

If the spatial direction x is discretized, resulting in a high-dimensional vector
u(t) =

[
u(x1, t) u(x2, t) · · · u(xn, t)

]T , then R(ξ, x) becomes

R =
1

T

∫ T

0

u(t)u∗(t) dt. (12.57)

In practice, the function R is evaluated using a quadrature rule for integra-
tion. This will allow us to connect the method to the snapshot-based method
discussed thus far.

Quadrature Rules for R: Trapezoidal Rule

The evaluation of the integral (12.57) can be performed by numerical quadra-
ture [420]. The simplest quadrature rule is the trapezoidal rule, which evaluates
the integral via summation of approximating rectangles. Figure 12.6 illustrates
a version of the trapezoidal rule where the integral is approximated by a sum-
mation over a number of rectangles. This gives the approximation of the two-
point correlation tensor:

R =
1

T

∫ T

0

u(t)u∗(t) dt

≈ ∆t

T
[u∗(t1)u(t1) + u∗(t2)u(t2) + · · ·+ u∗(tm)u(tm)] (12.58)

=
∆t

T
[u∗1u1 + u∗2u2 + · · ·+ u∗mum].

Here we have assumed u(x, t) is discretized into a vector uj = u(tj), and there
are m rectangular bins of width ∆t so that (m)∆t = T . Defining a data matrix

X = [u1 u2 · · · um], (12.59)

we can then rewrite the two-point correlation tensor as

R ≈ 1

m
X∗X, (12.60)

which is exactly the definition of the covariance matrix in (1.39), i.e., C ≈ R.
Note that the role of 1/T is to average over the various trajectories so that the
average is subtracted out, giving rise to a definition consistent with the covari-
ance.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.4. CONTINUOUS FORMULATION OF POD 563

f(t)

0 T/2 T

f1

f2

f3

Figure 12.6: Illustration of an implementation of the quadrature rule to evaluate
the integrals

∫ T
0
f(t) dt. The rectangles of height f(tj) = fj and width δt are

summed to approximate the integral.

Higher-Order Quadrature Rules

Numerical integration simply calculates the area under a given curve. The basic
ideas for performing such an operation come from the definition of integration,

∫ b

a

f(t) dt = lim
∆t→0

m−1∑

j=0

f(tj)∆t, (12.61)

where b − a = (m − 1)∆t. The area under the curve is a limiting process of
summing up an ever-increasing number of rectangles. This process is known
as numerical quadrature. Specifically, any sum can be represented as follows:

Q[f] =
m−1∑

j=0

wjf(tj) = w0f(t0) + w1f(t1) + · · ·+ wm−1f(tm−1), (12.62)

where a = t0 < t1 < t2 < · · · < tm−1 = b. Thus the integral is evaluated as
∫ b

a

f(t) dt = Q[f] + E[f], (12.63)

where the termE[f] is the error in approximating the integral by the quadrature
sum (12.62). Typically, the error E[f] is due to truncation error. To integrate, we
will use polynomial fits to the y-values f(tj). Thus we assume the function f(t)
can be approximated by a polynomial,

Pn(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0, (12.64)

where the truncation error in this case is proportional to the (n+1)th derivative
E[f] = Af (n+1)(c) and A is a constant. This process of polynomial fitting the
data gives the Newton–Cotes formulas.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

564 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

The following integration approximations result from using a polynomial
fit through the data to be integrated. It is assumed that

tk = t0 + ∆tk and fk = f(tk). (12.65)

This gives the following integration algorithms:

trapezoid rule∫ t1

t0

f(t) dt =
∆t

2
(f0 + f1)− ∆t3

12
f ′′(c), (12.66a)

Simpson’s rule∫ t2

t0

f(t) dt =
∆t

3
(f0 + 4f1 + f2)− ∆t5

90
f (4)(c), (12.66b)

Simpson’s 3/8 rule∫ t3

t0

f(t) dt =
3∆t

8
(f0 + 3f1 + 3f2 + f3)− 3∆t5

80
f (4)(c), (12.66c)

Boole’s rule∫ t4

t0

f(t) dt =
2∆t

45
(7f0 + 32f1 + 12f2 + 32f3 + 7f4)− 8∆t7

945
f (6)(c). (12.66d)

These algorithms have varying degrees of accuracy. Specifically, they areO(∆t2),
O(∆t4), O(∆t4), and O(∆t6) accurate schemes, respectively. The accuracy con-
dition is determined from the truncation terms of the polynomial fit. Note that
the trapezoidal rule uses a sum of simple trapezoids to approximate the inte-
gral. Simpson’s rule fits a quadratic curve through three points and calculates
the area under the quadratic curve. Simpson’s 3/8 rule uses four points and a
cubic polynomial to evaluate the area, while Boole’s rule uses five points and a
quartic polynomial fit to generate an evaluation of the integral.

The integration methods (12.66) give values for the integrals over only a
small part of the integration domain. The trapezoidal rule, for instance, only
gives a value for t ∈ [t0, t1]. However, our fundamental aim is to evaluate the
integral over the entire domain t ∈ [a, b]. Assuming once again that our interval
is divided as a = t0 < t1 < t2 < · · · < tm−1 = b, then the trapezoidal rule
applied over the interval gives the total integral

∫ b

a

f(t) dt ≈ Q[f] =
m∑

j=1

∆t

2
(fj + fj+1). (12.67)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.4. CONTINUOUS FORMULATION OF POD 565

Writing out this sum gives
m∑

j=1

∆t

2
(fj + fj+1) =

∆t

2
(f0 + f1) +

∆t

2
(f1 + f2) + · · ·+ ∆t

2
(fm + fm−1)

=
∆t

2
(f0 + 2f1 + 2f2 + · · ·+ 2fm + fm−1) (12.68)

=
∆t

2

(
f0 + fm−1 + 2

m∑

j=1

fj

)
.

The final expression no longer double-counts the values of the points between
f0 and fm−1. Instead, the final sum only counts the intermediate values once,
thus making the algorithm about twice as fast as the previous sum expression.
These are computational savings which should always be exploited if possible.

POD Modes from Quadrature Rules

Any of these algorithms could be used to approximate the two-point correla-
tion tensor R(ξ, x). The method of snapshots implicitly uses the trapezoidal
rule to produce the snapshot matrix X. Specifically, recall that

X =

u1 u2 · · · um

 , (12.69)

where the columns uk ∈ Cn may be measurements from simulations or experi-
ments. The SVD of this matrix produces the modes used to produce a low-rank
embedding Ψ of the data.

One could alternatively use a higher-order quadrature rule to produce a
low-rank decomposition. Thus the matrix (12.69) would be modified to

X =

u1 4u2 2u3 4u4 2u5 · · · 4um−1 um

 , (12.70)

where the Simpson’s rule quadrature formula is used. Simpson’s rule is com-
monly used in practice, as it is simple to execute and provides significant im-
provement in accuracy over the trapezoidal rule. Producing this matrix simply
involves multiplying the data matrix on the right by

[
1 4 2 4 · · · 2 4 1

]T .
The SVD can then be used to construct a low-rank embedding Ψ. Before ap-
proximating the low-rank solution, the quadrature weighting matrix must be
undone. To our knowledge, very little work has been done in quantifying the
merits of various quadrature rules. However, the interested reader should con-
sider the optimal snapshot sampling strategy developed by Kunisch and Volk-
wein [419].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

566 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

10

5

0
20

10
0

-10
-20

1

0

0 10 20 30 40
0

4

8

0 10 20 30 40
10

-3

10
-2

10
-1

10
0

10
1

(a) (b)

(c)
t

x

y(x, t)

Mode number

V
ar

ia
nc

e
(%

)

Figure 12.7: (a) Translating Gaussian with speed c = 3. The singular value de-
composition produces a slow decay of the singular values, which is shown on
a (b) normal and (c) logarithmic plot.

12.5 POD with Symmetries: Rotations and Transla-
tions

The POD method is not without its shortcomings. It is well known in the POD
community that the underlying SVD algorithm does handle invariances in the
data in an optimal way. The most common invariances arise from translational
or rotational invariances in the data. Translational invariance is observed in the
simple phenomenon of wave propagation, making it difficult for correlation to
be computed, since critical features in the data are no longer aligned snapshot
to snapshot.

In what follows, we will consider the effects of both translation and rota-
tion. The examples are motivated from physical problems of practical interest.
The important observation is that, unless the invariance structure is accounted
for, the POD reduction will give an artificially inflated dimension for the un-
derlying dynamics. This challenges our ability to use the POD as a diagnostic
tool or as the platform for reduced-order models.

Translation: Wave Propagation

To illustrate the impact of translation on a POD analysis, consider a simple
translating Gaussian propagating with velocity c:

u(x, t) = exp[−(x− ct+ 15)2]. (12.71)

We consider this solution on the space and time intervals x ∈ [−20, 20] and
t ∈ [0, 10].

Figure 12.7(a) demonstrates the simple evolution to be considered. As is
clear from the figure, the translation of the pulse will clearly affect the correla-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.5. POD WITH SYMMETRIES: ROTATIONS AND TRANSLATIONS 567

-20 -15 -10 -5 0 5 10 15 20
-0.15

0

0.15

mode1

mode2

mode3

mode4

0 2 4 6 8 10
-0.3

0

0.3

(a)

(b)

ψj

aj(t)

x

t

Figure 12.8: First four (a) spatial modes (first four columns of the U matrix) and
(b) temporal modes (first four columns of the V matrix). A wave translating at
a constant speed produces Fourier mode structures in both space and time.

tion at a given spatial location. Naive application of the SVD does not account
for the translating nature of the data. As a result, the singular values produced
by the SVD decay slowly, as shown in Figs. 12.7(b) and (c). In fact, the first few
modes each contain approximately 8% of the variance.

The slow decay of singular values suggests that a low-rank embedding is
not easily constructed. Moreover, there are interesting issues interpreting the
POD modes and their time dynamics. Figure 12.8 shows the first four spa-
tial (U) and temporal (V) modes generated by the SVD. The spatial modes
are global in that they span the entire region where the pulse propagation oc-
curred. Interestingly, they appear to be Fourier modes over the region where
the pulse propagated. The temporal modes illustrate a similar Fourier mode
basis for this specific example of a translating wave propagating at a constant
velocity.

The failure of POD in this case is due simply to the translational invariance.
If the invariance is removed, or factored out [609], before a data reduction is
attempted, then the POD method can once again be used to produce a low-rank
approximation. In order to remove the invariance, the invariance must first be
identified and an auxiliary variable defined. Thus we consider the dynamics
rewritten as

u(x, t)→ u(x− c(t)), (12.72)

where c(t) corresponds to the translational invariance in the system responsible

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

568 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

(a) (b) (c)

Figure 12.9: Spiral waves (a) u(x, y), (b) |u(x, y)| and (c) u(x, y)5 on the domain
x ∈ [−20, 20] and y ∈ [−20, 20]. The spirals are made to spin clockwise with
angular velocity ω.

for limiting the POD method. The parameter c can be found by a number of
methods. Rowley and Marsden [609] propose a template-based technique for
factoring out the invariance. Alternatively, a simple center-of-mass calculation
can be used to compute the location of the wave and the variable c(t) [420].

Rotation: Spiral Waves

A second invariance commonly observed in simulations and data is associated
with rotation. Much like translation, rotation moves a coherent, low-rank struc-
ture in such a way that correlations, which are produced at specific spatial loca-
tions, are no longer produced. To illustrate the effects of rotational invariance,
a localized spiral wave with rotation will be considered.

A spiral wave centered at the origin can be defined as follows:

u(x, y) = tanh[
√
x2 + y2 cos(A∠(x+ iy)−

√
x2 + y2)], (12.73)

where A is the number of arms of the spiral, and the ∠ denotes the phase angle
of the quantity (x+iy). To localize the spiral on a spatial domain, it is multiplied
by a Gaussian centered at the origin so that our function of interest is given by

f(x, y) = u(x, y) exp[−0.01(x2 + y2)]. (12.74)

This function creates the rotation structure we wish to consider. The rate
of spin can be made faster or slower by lowering or raising the value of the
denominator, respectively.

In addition to considering the function u(x, y), we will also consider the
closely related functions |u(x, y)| and u(x, y)5 as shown in Fig. 12.9. Although
these three functions clearly have the same underlying function that rotates,
the change in functional form is shown to produce quite different low-rank
approximations for the rotating waves.

To begin our analysis, consider the function u(x, y) illustrated in Fig. 12.9(a).
The SVD of this matrix can be computed and its low-rank structure evaluated.
Two figures are produced (Figs. 12.10 and 12.11). The first assesses the rank

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.5. POD WITH SYMMETRIES: ROTATIONS AND TRANSLATIONS 569

0 10 20 30 40
0

20

40

60

0 10 20 30 40
10

-20

10
-10

10
2

0 20 40 60 80 100
-0.4

-0.2

0

0.2

0.4

mode1

mode2

mode3

mode4

(a)

(b)

(c)

V
ar

ia
nc

e
(%

)
Te

m
po

ra
lm

od
es

Mode number

t

Figure 12.10: (a) First four temporal modes of the matrix V. To numerical pre-
cision, all the variance is in the first two modes, as shown by the singular value
decay on a (b) normal and (c) logarithmic plot. Remarkably, the POD extracts
exactly two modes (see Fig. 12.11) to represent the rotating spiral wave.

of the observed dynamics and the temporal behavior of the first four modes
in V. Figures 12.10(b) and (c) show the decay of singular values on a regular
and logarithmic scale, respectively. Remarkably, the first two modes capture
all the variance of the data to numerical precision. This is further illustrated in
the time dynamics of the first four modes. Specifically, the first two modes of
Fig. 12.10(a) have a clear oscillatory signature associated with the rotation of
modes one and two of Fig. 12.11. Modes 3 and 4 resemble noise in both time
and space as a result of numerical round-off.

The spiral wave (12.74) allows for a two-mode truncation that is accurate
to numerical precision. This is in part due to the sinusoidal nature of the so-
lution when circumnavigating the solution at a fixed radius. Simply changing
the data from u(x, t) to either |u(x, t)| or u(x, t)5 reveals that the low-rank modes
and their time dynamics are significantly different (see Figs. 12.12 and 12.13).
Figures 12.12(a) and (b) show the decay of the singular values for these two
new functions and demonstrate the significant difference from the two-mode
evolution previously considered. The dominant time dynamics computed from
the matrix V are also demonstrated. In the case of the absolute value of the
function |u(x, t)|, the decay of the singular values is slow and never approaches
numerical precision. The quintic function suggests a rank r = 6 truncation is

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

570 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

ψ1 ψ2

ψ3 ψ4

Figure 12.11: First four POD modes associated with the rotating spiral wave
u(x, y). The first two modes capture all the variance to numerical precision,
while the third and fourth mode are noisy due to numerical round-off. The
domain considered is x ∈ [−20, 20] and y ∈ [−20, 20].

0 10 20 30 40
0

20

40

60

|u|
u5

0 10 20 30 40
10-20

10-10

102

0 20 40 60 80 100
-0.2

0

0.2

0 20 40 60 80 100
-0.2

0

0.2

mode1
mode2
mode3
mode4

(a)

(b)

(c)

(d)

V
ar

ia
nc

e
(%

)
Te

m
po

ra
lm

od
es

t

t

j

j

Figure 12.12: Decay of the singular values on a (a) normal and (b) logarithmic
scale showing that the function |u(x, t)| produces a slow decay while u(x, t)5

produces an r = 6 approximation to numerical accuracy. The first four temporal
modes of the matrix V are shown for these two functions in panels (c) and (d),
respectively. The spatial modes are shown in Fig. 12.13.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.6. NEURAL NETWORKS FOR TIME-STEPPING WITH POD 571

ψ1 ψ2 ψ3 ψ4

Modes
for |u(x, t)|

Modes
for u(x, t)5

Figure 12.13: First four POD modes associated with the rotating spiral wave
|u(x, y)| (top row) and u(x, t)5 (bottom row). Unlike our previous example, the
first four modes do not capture all the variance to numerical precision, thus
requiring more modes for accurate approximation. The domain considered is
x ∈ [−20, 20] and y ∈ [−20, 20].

capable of producing an approximation to numerical precision. This highlights
the fact that rotational invariance complicates the POD reduction procedure.
After all, the only difference between the three rotating solutions is the actual
shape of the rotating function, as they are all rotating with the same speed.

To conclude, invariance can severely limit the POD method. Most notably,
it can artificially inflate the dimension of the system and lead to compromised
interpretability. Expert knowledge of a given system and its potential invari-
ances can help frame mathematical strategies to remove the invariances, i.e.,
re-aligning the data [420, 609]. But this strategy also has limitations, especially
if two or more invariant structures are present. For instance, if two waves of
different speeds are observed in the data, then the methods proposed for re-
moving invariances will fail to capture both wave speeds simultaneously. Ulti-
mately, dealing with invariances remains an open research question.

12.6 Neural Networks for Time-Stepping with POD

The emergence of machine learning is expanding the mathematical possibil-
ities for the construction of accurate ROMs. As shown in the previous sec-
tions, the focus of traditional projection-based ROMs is on computing the low-
dimensional subspace Ψ on which to project the governing equations. Recall
that, in constructing the low-dimensional subspace, the SVD is used on snap-
shots of high-fidelity simulation (or experimental) data X ≈ ΨΣ̃Ṽ∗. The POD
reduction technique uses only the single matrix Ψ in the reduction process. The
temporal evolution in the reduced space Ψ is quantified by Σ̃Ṽ∗. This gives ex-
plicitly the evolution of each mode over the snapshots of X, information that is

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

572 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

not used in projection-based ROMs. Neural networks can then be used directly
on the time-series data encoded in V to build a time-stepping algorithm for
marching the solution forward in time.

The motivation for using deep learning algorithms for time-stepping is the
recognition that projection-based model reduction often can produce unstable
iteration schemes [160]. A second important fact is that valuable temporal infor-
mation in the low-dimensional space is summarily dismissed by the projection
schemes, i.e., only the POD modes are retained for ROM construction. Neural
networks aim to leverage the temporal information and in the process build ef-
ficient and stable time-stepping proxies. Recall that model reduction proceeds
by projecting into the low-dimensional subspace spanned by Ψ so that

u(t) ≈ Ψa(t). (12.75)

In the projection-based ROMs of previous sections, the amplitude dynamics
a(t) are constructed by Galerkin projection of the governing equations onto Ψ.
With neural networks, the dynamics a(t) are approximated from the discrete
time-series data encoded in V. Specifically, this gives

a(t) =⇒ Σ̃Ṽ∗ =

a1 a2 · · · am

 (12.76)

over the m time snapshots of the original data matrix on which the ROM is to
be constructed.

Deep learning algorithms provide a flexible framework for constructing a
mapping between successive time-steps. As shown in Fig. 12.14, the typical
ROM architecture constrains the dynamics to a subspace spanned by the POD
modes Ψ. Thus in the original coordinate system, the high-fidelity simulations
of the governing equations for u are solved with a given numerical discretiza-
tion scheme to produce a snapshot matrix X containing uk. In the new coordi-
nate system, which is generated by projection to the subspace Ψ, the snapshot
matrix is now constructed from ak as shown in (12.76). In traditional ROMs,
the snapshot matrix (12.76) is not used. Instead snapshots of ak are achieved
by solving the Galerkin projected model (12.21). However, the snapshot matrix
(12.76) can be used to construct a time-stepping model using neural networks.
Neural networks allow one to use the high-fidelity simulation data to train a
mapping

ak+1 = fθ(ak), (12.77)

where fθ is a generic representation of a neural network which is characterized
by its structure, weights, and biases. Note that deep learning can also be used
to learn nonlinear coordinates that generalize the SVD embedding.

Recently, Parish and Carlberg [548] and Regazzoni et al. [595] developed
a suite of neural-network-based methods for learning time-stepping models

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.6. NEURAL NETWORKS FOR TIME-STEPPING WITH POD 573

Ψ Ψ−1

u1 u2 um
a1 a2 am

uk

ak ak+p

uk+p

· · · · · ·

ut = N(u,ux,uxx, . . . , x, t;β)

da/dt = ΨTLΨa + ΨTN(Ψa,β)

ak+1 = fθ(ak)

Neural net

Traditional ROM

Figure 12.14: Illustration of neural network integration with POD subspaces.
The autoencoder structure projects the original high-dimensional state-space
data into a low-dimensional space via u(t) ≈ Ψa(t). As shown in the bottom
left, the snapshots uk are generated by high-fidelity numerical solutions of the
governing equations ut = N(u,ux,uxx, . . . , x, t;β). In traditional ROMs, the
snapshots ak are constructed from Galerkin projection as shown in the bottom
right. Neural networks instead learn a mapping ak+1 = fθ(ak) from the original,
low-dimensional snapshot data. It should be noted that time-stepping Runge–
Kutta schemes, for instance, are a form of feedforward neural networks, which
are used to produce the original high-fidelity data snapshots uk [289].

for (12.77). Moreover, they provide extensive comparisons between different
neural network architectures along with traditional techniques for time-series
modeling. In such models the neural networks (or time-series analysis meth-
ods) simply map an input (ak) to an output (ak+1) as in Section 6.6. Autoen-
coders can also replace the POD embedding above.

In its simplest form, the neural network training requires input–output pairs

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

574 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

that can be generated from snapshots ak. Thus two matrices can be constructed:

A =

a1 a2 · · · am−1

 and A′ =

a2 a3 · · · am

 , (12.78)

where A denotes the input and A′ denotes the output. This gives the training
data necessary for learning (optimizing) a neural network map:

A′ = fθ(A). (12.79)

There are numerous neural network architectures that can learn the mapping
fθ. In Section 6.6, a simple feedforward network was already shown to be quite
accurate in learning such a model. Further sophistication can improve accuracy
and reduce data requirements for training.

Regazzoni et al. [595] formulated the optimization of (12.79) in terms of
maximum likelihood. Specifically, they considered the most suitable represen-
tation of the high-fidelity model in terms of simpler neural network models.
They show that such neural network models can approximate the solution to
within any accuracy required (limited by the accuracy of the training data,
or course) simply by constructing them from the input–output pairs given by
(12.79). Parish and Carlberg [548] provide an in-depth study of different neu-
ral network architectures that can be used for learning the time-steppers. They
are especially focused on recurrent neural network (RNN) architectures that have
proven to be so effective in temporal sequences associated with language [290].
Their extensive comparisons show that long short-term memory (LSTM) [331]
neural networks outperform other methods and provide substantial improve-
ments over traditional time-series approaches such as autoregressive models.
In addition to a baseline Gaussian process (GP) regression, they specifically com-
pare time-stepping models that include the following: k-nearest neighbors (kNN),
artificial neural networks (ANN), autoregressive with exogenous inputs (ARX),
integrated ANN (ANN-I), latent ARX (LARX), RNN, LSTM, and standard GP.
Some models include recursive training (RT) and others do not (NRT). Their
comparisons on a diversity of PDE models, which will not be detailed here,
are evaluated on the fraction of variance unexplained (FVU). Figure 12.15 gives
a representation of the extensive comparisons made on these methods for an
advection–diffusion PDE model.

The success of neural networks for learning time-stepping representations
fits more broadly under the aegis of flow maps [753], which were introduced in
Section 7.1:

uk+1 = F(uk). (12.80)

For neural networks, the flow map is approximated by the learned model (12.77)
so that F = fθ. Qin et al. [575] and Liu et al. [449] have explored the construc-
tion of flow maps from neural networks as yet another modeling paradigm for

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.6. NEURAL NETWORKS FOR TIME-STEPPING WITH POD 575

Figure 12.15: Comparison of a diversity of error metrics and methods for con-
structing the mapping (12.77) for advection–diffusion equations. In all mod-
els considered in the paper, the LSTM and RNN structures proved to be the
most accurate models for time-stepping. The reader is encouraged to consult
the original paper for the details of the underlying models, the error metrics
displayed, and the training data used. Python codes are available in the ap-
pendix of the original paper. From Parish and Carlberg [548].

advancing the solution in time without recourse to high-fidelity simulations.
Such methods offer a broader framework for fast time-stepping algorithms, as
no initial dimensionality reduction needs to be computed. In Qin et al. [575], the
neural network model fθ is constructed with a residual network (ResNet) as the
basic architecture for approximation. In addition to a one-step method, which
is shown to be exact in temporal integration, a recurrent ResNet and recursive
ResNet are also constructed for multiple time-steps. Their formulation is also in
the weak form where no derivative information is required in order to produce
the time-stepping approximations. Several numerical examples are presented
to demonstrate the performance of the methods. Like Parish and Carlberg [548]
and Regazzoni et al. [595], the method is shown to be exceptionally accurate
even in comparison with direct numerical integration, highlighting the quali-
ties of the universal approximation properties of fθ.

Liu et al. [449] leveraged the flow map approximation scheme to learn a
multi-scale time-stepping scheme. Specifically, one can learn flow maps for dif-
ferent characteristic timescales. Thus a given model

ak+τ = fθτ (ak) (12.81)

can learn a flow map over a prescribed timescale τ . If there exist distinct timescales
in the data, for instance denoted by t1, t2, and t3 with t1 � t2 � t3 (slow,
medium, and fast times), then three models can be learned: fθ1 , fθ2 , and fθ3 for

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

576 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

fθ1 fθ2 fθ3

slow
medium
fast

u1 um

Figure 12.16: Multi-scale hierarchical time-stepping scheme. Neural net-
work representations of the time-steppers are constructed over three dis-
tinct timescales. The red model takes large steps (slow timescale fθ1), leaving
the finer time-stepping to the yellow (medium timescale fθ2) and blue (fast
timescale fθ3) models. The dark path shows the sequence of maps from u1 to
um. Modified from Liu et al. [449].

the slow, medium, and fast times, respectively. Figure 12.16 shows the hierarchi-
cal time-stepping (HiTS) scheme with three distinct timescales. The training data
of a high-fidelity simulation, or collection of experimental data, allow for the
construction of flow maps, which can then be used to efficiently forecast long
times into the future. Specifically, one can use the flow map constructed on the
slowest scale fθ1 to march far into the future, while the medium and fast scales
are then used to advance to the specific point in time. Thus a minimal number
of steps is taken on the fast scale, and the work of forecasting long into the fu-
ture is done by the slow and medium scales. The method is highly efficient and
accurate.

Figure 12.17 compares the HiTS scheme across a number of example prob-
lems, some of which are videos and music frames. Thus HiTS does not require
governing equations, simply time-series data arranged into input–output pairs.
The performance of such flow maps is remarkably robust, stable, and accurate,
even when compared to leading time-series neural networks such as LSTMs,
echo state networks (ESNs), and clockwork recurrent neural networks (CW-RNNs).
This is especially true for long forecasts, in contrast to the small time-steps eval-
uated in the work of Parish and Carlberg [548].

Overall, the works of Parish and Carlberg [548], Regazzoni et al. [595], Qin
et al. [575], and Liu et al. [449] exploit very simple training paradigms related
to input–output pairings of temporal snapshot data as structured in (12.78).
This provides a significant potential improvement for learning time-stepping
proxies to the Galerkin projected models such as (12.21).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.7. LEVERAGING DMD AND SINDY FOR POD-GALERKIN 577

Figure 12.17: Evaluation of different neural network architectures (columns) on
each training sequence (rows). Key diagnostics are visualized from a diversity
of examples, including music files and videos. The last frame of the reconstruc-
tion is visualized for the first, third, and fourth examples, while the entire mu-
sic score is visualized in the second example. Note the superior performance of
the hierarchical time-stepping scheme in comparison with other modern neu-
ral network models such as LSTMs, echo state networks (ESNs), and clockwork
recurrent neural networks (CW-RNNs). From Liu et al. [449]. The code is publicly
available at https://github.com/luckystarufo/multiscale_HiTS.

12.7 Leveraging DMD and SINDy for POD-Galerkin

The construction of a traditional ROM that is accurate and efficient is centered
on the reduction (12.21). Thus, once a low-rank subspace is computed from
the SVD, the POD modes Ψ are used for projecting the dynamics. In the last
section, projection of the governing evolution equations was circumvented by
simply learning a neural network for the temporal (time-stepping) evolution. In
this section, we use data-driven, non-intrusive methods in order to regress to a
model for the temporal dynamics. Consider the evolution dynamics in (12.13):

ut = Lu + N(u,ux,uxx, . . . , x, t;β) (12.82)

where the linear and nonlinear parts of the evolution, denoted by L and N(·),
respectively, have been explicitly separated. The solution ansatz u = Ψa yields
the ROM

da

dt
= ΨTLΨa + ΨTN(Ψa,β). (12.83)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/luckystarufo/multiscale_HiTS

578 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

Note that the linear operator in the reduced space ΨTLΨ is an r × r matrix,
which is easily computed. The nonlinear portion of the operator ΨTN(Ψa,β)
is more complicated since it involves repeated computation of the operator as
the solution a, and consequently the high-dimensional state u, is updated in
time. Efficient interpolation methods for computing the nonlinear contribution
in the ROM model are explored extensively in the next chapter of this book.

Simplifying POD-Galerkin with DMD

One method for overcoming the difficulties introduced in evaluating the non-
linear term on the right-hand side is to introduce the DMD algorithm. DMD
approximates a set of snapshots by a best-fit linear model. Thus the nonlinear-
ity can be evaluated over snapshots and a linear model constructed to approx-
imate the dynamics. Thus two matrices can be constructed:

N =

N1 N2 · · · Nm−1

 and N′ =

N2 N3 · · · Nm

 (12.84)

where Nk is the evaluation of the nonlinear term N(u,ux,uxx, . . . , x, t;β) at t =
tk. Here N denotes the input and N′ denotes the output. This gives the training
data necessary for regressing to a DMD model,

N′=ANN. (12.85)

The governing equation (12.86) can then be approximated by

ut ≈ Lu + ANu = (A + AN)u, (12.86)

where the operator L has been replaced by A. The dynamics is now completely
linear and solutions can be easily constructed from the eigenvalues and eigen-
vectors of the linear operator A + AN.

In practice, the DMD algorithm highlighted in Section 7.2 also exploits low-
dimensional structure in building a ROM model. Thus instead of the approxi-
mate linear model (12.86), we instead wish to build a low-dimensional version.
From snapshots (12.84) of the nonlinearity, the DMD algorithm can be used to
approximate the dominant rank-r nonlinear contribution to the dynamics as

N(u,ux,uxx, . . . , x, t;β) ≈
r∑

j=1

bjφj exp(ωjt) = Φ exp(Ωt)b, (12.87)

where bj determines the weighting of each mode. Here φj is the DMD mode
and ωj is the DMD eigenvalue. This approximation can be used in (12.88) to
produce the POD–DMD approximation:

da

dt
= ΨTLΨa + ΨTΦ exp(Ωt)b. (12.88)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.7. LEVERAGING DMD AND SINDY FOR POD-GALERKIN 579

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

FULL

POD

POD−DEIM

POD−DMD

Number of POD modes

C
PU

ti
m

e

0 5 10 15 20 25 30 35 40
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

POD

POD−DEIM

POD−DMD

Number of POD modes

Er
ro

r

Figure 12.18: Computation time and accuracy on a semi-linear parabolic equa-
tion. Four methods are compared: the high-fidelity simulation of the govern-
ing equations (FULL); a Galerkin–POD reduction as given in (12.88) (POD);
a Galerkin–POD reduction with the discrete empirical interpolation (DEIM) al-
gorithm for evaluation of the nonlinearity (POD–DEIM); and the POD–DMD
approximation (12.88). The left panel shows the computation times, which are
an order of magnitude faster than for traditional POD–DEIM algorithms. The
right panel shows the accuracy of the different methods for reproducing the
high-fidelity simulations. POD–DMD loses some accuracy in comparison to
Galerkin–POD methods due to the fact that DMD modes are not orthogonal,
and thus the error does not decrease as quickly as in the POD-based methods.
Modified from Alla and Kutz [10].

In this formulation, there are a number of advantageous features: (i) The non-
linearity is only evaluated once with the DMD algorithm (12.87). (ii) The prod-
ucts ΨTLΨ and ΨTΦ are also only evaluated once and both produce matrices
that are low-rank, i.e., they are independent of the original high-rank system.
Thus with a one-time, up-front evaluation of two snapshot matrices to produce
Ψ and Φ, the DMD produces a computationally efficient ROM that requires no
recourse to the original high-dimensional system.

Alla and Kutz [10] integrated the DMD algorithm into the traditional ROM
formalism to produce the POD–DMD model (12.88). The comparison of this
computationally efficient ROM with traditional model reduction is shown in
Fig. 12.18. Specifically, both the computational time and error are evaluated us-
ing this technique. Once the DMD algorithm is used to produce an approxima-
tion of the nonlinear term, it can be used for producing future state predictions
and a computationally efficient ROM. Indeed, its computational acceleration is
quite remarkable in comparison to traditional methods. Moreover, the method
is non-intrusive and does not require additional evaluation of the nonlinear
term. The entire method can be used with randomized algorithms to speed up

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

580 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

the low-rank evaluations even further [11]. Note that the computational perfor-
mance boost comes at the expense of accuracy, as shown in Fig. 12.18. This is
primarily due to the fact that additional POD modes used for standard ROMs,
which are orthogonal by construction and guaranteed to be a best fit in `2, are
now replaced by DMD modes which are no-longer orthogonal [10].

SINDy for POD-Galerkin Regression

The SINDy regression framework also allows one to build a parsimonious model
for the evolution of the temporal dynamics in the low-rank subspace. Sec-
tion 7.3 highlights the SINDy algorithm for model discovery. In the context of
ROMs, the goal is now to discover a model of the evolution dynamics of a high-
fidelity model embedded in a low-rank subspace. Recall that u(t) ≈ Ψa(t), Ψ
can be computed with the SVD. The evolution of a(t) ultimately determines
the temporal behavior of the system. Thus far, the temporal evolution has been
computed via Galerkin projection and DMD. SINDy gives yet another alterna-
tive to model

d

dt
a = f(a), (12.89)

where the right-hand side function prescribing the evolution dynamics f(·) is
unknown. SINDy provides a sparse regression framework to determine this
dynamics. The snapshots of a(t) are collected into the matrix

A =

a1 a2 · · · am

 , (12.90)

and the SINDy regression framework is then formulated as

Ȧ = Θ(A)Ξ, (12.91)

where each column ξk in Ξ is a vector of coefficients determining the active
terms in the kth row in (12.89). As in Section 7.3, leveraging parsimony provides
a dynamical model using as few terms as possible in Ξ. Such a model may be
identified using a convex `1-regularized sparse regression:

ξk = argminξ′k‖Ȧk −Θ(A)ξ′k‖2 + λ‖ξ′k‖1. (12.92)

Note that ȧk is the kth column of Ȧ, and λ is a sparsity-promoting hyperparam-
eter. Section 7.3 discusses the many variants for sparsity promotion that can be
used [53, 151, 153, 156, 157, 204, 702, 717], including the advocated sequential
least-squares thresholding to select active terms.

Applying SINDy to POD mode coefficients provides a simple regression
framework for discovering a parsimonious, and generally nonlinear, model for

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.7. LEVERAGING DMD AND SINDY FOR POD-GALERKIN 581

the evolution dynamics of the high-dimensional system in a low-dimensional
subspace. This approach, called sparse Galerkin regression [455], was illus-
trated in Fig. 7.6 in Section 7.3. For that example, the canonical example of flow
past a circular cylinder was considered. This is modeled by the two-dimensional,
incompressible Navier–Stokes equations:

∇ · u = 0, ∂tu+ (u · ∇)u = −∇p+
1

Re
∆u, (12.93)

where u is the two-component flow velocity field in 2D and p is the pressure
term. For Reynolds number Re = Rec ≈ 47, the fluid flow past a cylinder
undergoes a supercritical Hopf bifurcation, where the steady flow for Re <
Rec transitions to unsteady vortex shedding [60]. The unfolding gives the cel-
ebrated Stuart–Landau ODE, which is essentially the Hopf normal form in
complex coordinates. This has resulted in accurate and efficient reduced-order
models for this system [524, 526].

In Fig. 7.6, simulations at Re = 100 were considered. The snapshots of the
evolution dynamics can be collected as in (12.16). Noack et al. [524] showed
that the first two SVD modes and a third, orthogonal shift mode capture the
essential dynamics of this flow. In these coordinates, the discovered dynamical
model is given by

ȧ1 = µa1 − ωa2 + Aa1a3, (12.94a)
ȧ2 = ωa1 + µa2 + Aa2a3, (12.94b)
ȧ3 = −λ(a3 − a2

1 − a2
2), (12.94c)

which is the same as was found by Noack et al. [524] through a detailed asymp-
totic reduction of the flow dynamics. Thus the ROM evolution dynamics (12.94)
provide a non-intrusive, purely data-driven path to discover models similar to
those achieved via Galerkin–POD projection. Not only is this model stable, but
it also captures the correct supercritical Hopf bifurcation dynamics as a func-
tion of Reynolds number. Loiseau et al. [455, 456] also showed that it is possible
to incorporate partially known physics, such as the energy preserving skew-
symmetry of the quadratic terms, as constraints in the SINDy regression.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

582 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

Suggested Reading

Texts

(1) Certified reduced basis methods for parametrized partial differential equa-
tions, by J. Hesthaven, G. Rozza, and B. Stamm, 2015 [325].

(2) Reduced basis methods for partial differential equations: An introduc-
tion, by A. Quarteroni, A. Manzoni, and N. Federico, 2015 [578].

(3) Model reduction and approximation: Theory and algorithms, by P. Ben-
ner, A. Cohen, M. Ohlberger, and K. Willcox, 2017 [74].

(4) Turbulence, coherent structures, dynamical systems and symmetry, by P.
Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, 2012 [335].

Papers and reviews

(1) A survey of model reduction methods for parametric systems, by P. Ben-
ner, S. Gugercin, and K. Willcox, SIAM Review, 2015 [75].

(2) Model reduction using proper orthogonal decomposition, by S. Volkwein,
Lecture Notes, Institute of Mathematics and Scientific Computing, University of
Graz, 2011 [737].

(3) The proper orthogonal decomposition in the analysis of turbulent flows,
by G. Berkooz, P. Holmes, and J. L. Lumley, Annual Review of Fluid Me-
chanics, 1993 [79].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

12.7. LEVERAGING DMD AND SINDY FOR POD-GALERKIN 583

Homework

Exercise 12-1. Using the flow around a cylinder data, compute the singular
value spectrum and POD modes using the standard method of snapshots (us-
ing the trapezoidal rule when discretizing the continuous formulation) and
compare it against the modes and spectrum when using Simpson’s rule and
Boole’s rule for integration. Quantify the difference in modes using least-squares
error.

Exercise 12-2. Generate high-fidelity, well-resolved solutions for the Kuramoto–
Sivashinsky (KS) equation in a parameter regime where spatio-temporal chaos
is exhibited. Build a number of reduced-order models using the high-fidelity
data and test the models for future state prediction.

(a) Compute the leading POD modes and produce a rank-r Galerkin–POD
approximation of the PDE evolution.

(b) Compute a ROM by using the snapshots to produce a rank-r DMD model
to characterize the evolution.

(c) Compute a POD–DMD model where the nonlinear terms are approxi-
mated using a DMD model.

(d) Learn both a feedforward and LSTM network for advancing the solution
in time in a rank-r POD basis.

Compare the various architectures in terms of their stability and future state
prediction capabilities. Investigate the dynamics as a function of the rank re-
duction parameter r. Repeat the experiments by adding noise to the high-fidelity
simulation data. Repeat the experiments yet again with both noise and added
outliers (corruption) to the high-fidelity simulation data.

Exercise 12-3. Learn a deep neural network autoencoder to build a linear model
for flow around a cylinder. Use high-fidelity flow around a cylinder data to
learn a coordinate (autoencoder) transformation to an (r = 3)-dimensional sub-
space where the dynamics is linear and a Koopman operator can be constructed
[465]. In the new linear coordinates, compute the eigenvalues and eigenvectors
of the latent state representation. Use the model to forecast the future state and
compare with the high-fidelity simulations.

Exercise 12-4. Learn a deep neural network autoencoder to build a parsimo-
nious, but nonlinear, model for flow around a cylinder. Use high-fidelity flow
around a cylinder data to learn a coordinate (autoencoder) transformation to an

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

584 CHAPTER 12. REDUCED-ORDER MODELS (ROMS)

(r = 3)-dimensional subspace where the dynamics is given by a parsimonious
dynamical system [168]. In the new linear coordinates, compute the eigenval-
ues and eigenvectors of the latent state representation. Use the model to fore-
cast the future state and compare with the high-fidelity simulations.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 13

Interpolation for Parametric Reduced-
Order Models

In the last chapter, the mathematical framework of ROMs was outlined. Specif-
ically, Chapter 12 has already highlighted the POD method for projecting PDE
dynamics to low-rank subspaces where simulations of the governing PDE model
can be more readily evaluated. However, the complexity of projecting into the
low-rank approximation subspace remains challenging due to the nonlinear-
ity. Interpolation in combination with POD overcomes this difficulty by pro-
viding a computationally efficient method for discretely (sparsely) sampling
and evaluating the nonlinearity. This chapter leverages the ideas of the sparse
and compressive sampling algorithms of Chapter 3 where a small number of
samples are capable of reconstructing the low-rank dynamics of PDEs. Ulti-
mately, these methods ensure that the computational complexity of ROMs scale
favorably with the rank of the approximation, even for complex nonlinearities.
The primary focus of this chapter is to highlight sparse interpolation methods
that enable a rapid and low-dimensional construction of the ROMs. In prac-
tice, these techniques dominate the ROM community since they are critically
enabling for evaluating parametrically dependent PDEs where frequent ROM
model updates are required.

13.1 Gappy POD

The success of nonlinear model order reduction is largely dependent upon two
key innovations: (i) the well-known Galerkin–POD method [79, 335, 737, 738],
which is used to project the high-dimensional nonlinear dynamics onto a low-
dimensional subspace in a principled way; and (ii) sparse sampling of the state
space for interpolating the nonlinear terms required for the subspace projec-
tion. Thus sparsity is already established as a critically enabling mathemati-
cal framework for model reduction through methods such as gappy POD and
its variants [162, 215, 239, 754, 767]. Indeed, efficiently managing the compu-

585

586
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

tation of the nonlinearity was recognized early on in the ROMs community,
and a variety of techniques were proposed to accomplish this task. Perhaps the
first innovation in sparse sampling with POD modes was the technique pro-
posed by Everson and Sirovich for which the gappy POD moniker was derived
[239]. In their sparse sampling scheme, random measurements were used to
approximate inner products. Principled selection of the interpolation points,
through the gappy POD infrastructure [162, 215, 239, 754, 767] or missing point
(best points) estimation (MPE) [29, 522], was quickly incorporated into ROMs
to improve performance. More recently, the empirical interpolation method
(EIM) [55] and its most successful variant, the POD-tailored discrete empiri-
cal interpolation method (DEIM) [171], have provided a greedy algorithm that
allows for nearly optimal reconstructions of nonlinear terms of the original
high-dimensional system. The DEIM approach combines projection with in-
terpolation. Specifically, DEIM uses selected interpolation indices to specify an
interpolation-based projection for a nearly optimal `2 subspace approximating
the nonlinearity.

The low-rank approximation provided by POD allows for a reconstruction
of the solution u(x, t) in (13.9) with r measurements of the n-dimensional state.
This viewpoint has profound consequences on how we might consider mea-
suring our dynamical system [239]. In particular, only r � n measurements
are required for reconstruction, allowing us to define the sparse representation
variable ũ ∈ Cr,

ũ = Pu, (13.1)

where the measurement matrix P ∈ Rr×n specifies r measurement locations of
the full state u ∈ Cn. As an example, the measurement matrix might take the
form

P =

1 0 · · · · · · 0
0 · · · 0 1 0 · · · · · · 0
0 · · · · · · 0 1 0 · · · 0
... 0 · · · 0 0 1 · · · ...
0 · · · · · · 0 0 0 · · · 1

, (13.2)

where measurement locations take on the value of unity and the matrix ele-
ments are zero elsewhere. The matrix P defines a projection onto an r-dimensional
space ũ that can be used to approximate solutions of a PDE.

The insight and observation of (13.1) forms the basis of the gappy POD
method introduced by Everson and Sirovich [239]. In particular, one can use
a small number of measurements, or gappy data, to reconstruct the full state of
the system. In doing so, we can overcome the complexity of evaluating higher-
order nonlinear terms in the POD reduction.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.1. GAPPY POD 587

Sparse Measurements and Reconstruction

The measurement matrix P allows for an approximation of the state vector u
from r measurements. The approximation is obtained by using (13.1) with the
standard POD projection:

ũ ≈ P
r∑

k=1

ãkψk, (13.3)

where the coefficients ãk minimize the error in approximation: ‖ũ − Pu‖. The
challenge now is how to determine the ãk given that taking inner products of
(13.3) can no longer be performed. Specifically, the vector ũ has dimension r
whereas the POD modes have dimension n, i.e., the inner product requires in-
formation from the full range of x, the underlying discretized spatial variable,
which is of length n. Thus, the modes ψk(x) are in general not orthogonal over
the r-dimensional support of ũ. The support will be denoted as s[ũ]. More pre-
cisely, orthogonality must be considered on the full range versus the support
space. Thus the following two relationships hold:

Mkj = 〈ψk,ψj〉 = δkj, (13.4a)
Mkj = 〈ψk,ψj〉s[ũ] 6= 0 for all k, j, (13.4b)

where Mkj are the entries of the Hermitian matrix M and δkj is the Kronecker
delta function. The fact that the POD modes are not orthogonal on the support
s[ũ] leads us to consider alternatives for evaluating the vector ã.

To determine the ãk, a least-squares algorithm can be used to minimize the
error,

E =

∫

s[ũ]

[
ũ−

r∑

k=1

ãkψk

]2

dx, (13.5)

where the inner product is evaluated on the support s[ũ], thus making the two
terms in the integral of the same size r. The minimizing solution to (13.5) re-
quires the residual to be orthogonal to each mode ψk, so that

〈
ũ−

r∑

k=1

ãkψk,ψj

〉

s[ũ]

= 0 for j 6= k, j = 1, 2, . . . , r. (13.6)

In practice, we can project the full-state vector u onto the support space and
determine the vector ã:

Mã = f , (13.7)

where the elements of M are given by (13.4b) and the components of the vector
f are given by

fk = 〈u,ψk〉s[ũ]. (13.8)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

588
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

Note that if the measurement space is sufficiently dense, or if the support space
is the entire space, then M = I, implying that the eigenvalues of M approach
unity as the number of measurements becomes dense. Once the vector ã is de-
termined, a reconstruction of the solution can be performed as

u(x, t) ≈ Ψã. (13.9)

As the measurements become dense, not only does the matrix M converge to
the identity, but also ã→ a. Interestingly, these observations lead us to consider
the efficacy of the method and/or approximation by considering the condition
number of the matrix M [711]:

κ(M) = ‖M‖ ‖M−1‖ =
σ1

σm
. (13.10)

Here the 2-norm has been used. If κ(M) is small, then the matrix is said to be
well conditioned. A minimal value of κ(M) is achieved with the identity matrix
M = I. Thus, as the sampling space becomes dense, the condition number also
approaches unity. This can be used as a metric for determining how well the
sparse sampling is performing. Large condition numbers suggest poor recon-
struction, while values tending toward unity should perform well.

Harmonic Oscillator Modes

To demonstrate the gappy sampling method and its reconstruction efficacy, we
apply the technique using the first 10 modes of the Gauss–Hermite functions
defined by (12.25) and (12.26). To compute the second derivative, we use the
fact that the Fourier transform F can produce a spectrally accurate approxima-
tion, i.e., uxx = F−1[(ik)2Fu]. For the sake of producing accurate derivatives,
we consider the domain x ∈ [−10, 10] but then work with the smaller domain
of interest x ∈ [−4, 4]. Recall further that the Fourier transform assumes a 2π-
periodic domain. This is handled by a scaling factor in the k wavevectors. The
first five modes have been demonstrated in Fig. 12.3.

The mode construction is shown in the top panel of Fig. 13.1. Each colored
cell represents the discrete value of the mode in the interval x ∈ [−4, 4] with
∆x = 0.1. Thus there are 81 discrete values for each of the modes ψk. Our
objective is to reconstruct a function outside of the basis modes of the harmonic
oscillator. In particular, consider the function

f(x) = exp[−(x− 0.5)2] + 3 exp[−2(x+ 3/2)2], (13.11)

which will be discretized and defined over the same domain as the modal basis
of the harmonic oscillator. We construct this function and further numerically
construct the projection of the function onto the basis functionsψn. The original

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.1. GAPPY POD 589

−4 40

ΨT =

−4 40

x

x

sampling
−−−−−→

−−−→

..
..

..
..

..
..

..
..

..
..

..
..

..
.

..
..

..
..

..
..

..
..

..
..

..
..

..
.

..
..

..
..

..
..

..
..

..
..

..
..

..
.

P1

P2

P3

Figure 13.1: The top panel shows the first nine modes of the quantum har-
monic oscillator considered in (12.25) and (12.26). Three randomly generated
measurement matrices, Pj , with j = 1, 2, and 3, are depicted. There is a 20%
chance of performing a measurement at a given spatial location xj in the inter-
val x ∈ [−4, 4] with a spacing of ∆x = 0.1.

function is plotted in the top panel of Fig. 13.2. Note that the goal now is to
reconstruct this function both with a low-rank projection onto the harmonic
oscillator modes, and with a gappy reconstruction whereby only a sampling of
the data is used, via the measurements Pj . A test function is reconstructed in
the 10-mode harmonic oscillator basis. Further, it builds the matrix M for the
full-state measurements and computes its condition number.

Results of the low-rank and gappy reconstruction are shown in Fig. 13.2.
The low-rank reconstruction is performed using the full measurements pro-
jected to the 10 leading harmonic oscillator modes. In this case, the inner prod-
uct of the measurement matrix is given by (13.4a) and is approximately the
identity. The fact that we are working on a limited domain x ∈ [−4, 4] with a
discretization step of ∆x = 0.1 is what makes M ≈ I versus being exactly the
identity. For the three different sparse measurement scenarios Pj of Fig. 13.1,
the reconstruction is also shown along with the least-squares error and the log-
arithm of the condition number log(κ(Mj)). We also visualize the three matrices
Mj in Fig. 13.3. The condition number of each of these matrices helps determine
its reconstruction accuracy.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

590
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

−4 0 4x

f(x)
f(x)
(a)

(b)
(c)
(d)

(a) (b) (c) (d)

P1 P2 P3

Error

log(κ(M))

Figure 13.2: (top) The original function (black) along with a 10-mode recon-
struction of the test function f(x) = exp[−(x− 0.5)2] + 3 exp[−2(x+ 3/2)2] sam-
pled in the full space ((a), red) and three representative support spaces s[ũ] of
Fig. 13.1, specifically (b) P1, (c) P2, and (d) P3. Note that the error measurement
is specific to the function being considered, whereas the condition number met-
ric is independent of the specific function. Although both can serve as proxies
for performance, the condition number serves for any function, which is ad-
vantageous.

13.2 Error and Convergence of Gappy POD

As was shown in the previous section, the ability of the gappy sampling strat-
egy to accurately reconstruct a given function depends critically on the place-
ment of the measurement (sensor) locations. Given the importance of this issue,
we will discuss a variety of principled methods for placing a limited number
of sensors in detail in subsequent sections. Our goal in this section is to investi-
gate the convergence properties and error associated with the gappy method as
a function of the percentage of sampling of the full system. Random sampling
locations will be used.

Given our random sampling strategy, the results that follow will be sta-
tistical in nature, computing averages and variances for batches of randomly
selected sampling. The modal basis for our numerical experiments are again
the Gauss–Hermite functions defined by (12.25) and (12.26), and shown in the
top panel of Fig. 13.1.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.2. ERROR AND CONVERGENCE OF GAPPY POD 591

M ≈ I M1

M2 M3

Figure 13.3: Demonstration of the deterioration of the orthogonality of the
modal basis in the support space s[ũ] as given by the matrix M defined in (13.4).
The top left shows that the identity matrix is produced for full measurements,
or nearly so but with errors due to truncation of the domain over x ∈ [−4, 4].
The matrices Mj , which no longer look diagonal, correspond to the sparse sam-
pling matrices Pj in Fig. 13.1. Thus it is clear that the modes are not orthogonal
in the support space of the measurements.

Random Sampling and Convergence

Our study begins with random sampling of the modes at a level of 10%, 20%,
30%, 40%, 50%, and 100%, respectively. The latter case represents the idealized
full sampling of the system. As one would expect, the error and reconstruction
are improved as more samples are taken. To show the convergence of the gappy
sampling, we consider two error metrics: (i) the `2 error between our randomly
subsampled reconstruction, and (ii) the condition number of the matrix M for
a given measurement matrix Pj . Recall that the condition number provides a
way to measure the error without knowing the truth, i.e., (13.11).

Figure 13.4 depicts the average over 1000 trials of the logarithm of the least-
squares error, log(E+1) (unity is added to avoid negative numbers), and the log
of the condition number, log(κ(M)), as a function of percentage of random mea-
surements. Also depicted is the variance σ, with the red bars denoting µ ± σ,
where µ is the average value. The error and condition number both perform
better as the number of samples increases. Note that the error does not ap-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

592
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

4

0

50

0

log(E + 1)

log(κ(M))

100%50%40%30%20%10%

100%50%40%30%20%10%

Figure 13.4: Logarithm of the least-squares error, log(E+1) (unity is added to
avoid negative numbers), and the log of the condition number, log(κ(M)), as a
function of percentage of random measurements. For 10% measurements, the
error and condition number are largest, as expected. However, the variance of
the results, depicted by the red bars, is also quite large, suggesting that the per-
formance for a small number of sensors is highly sensitive to their placement.

proach zero since only a 10-mode basis expansion is used, thus limiting the ac-
curacy of the POD expansion and reconstruction even with full measurements.

We draw over 1000 random sensor configurations (see Fig. 13.4) using 10%,
20%, 30%, 40%, and 50% sampling. The full reconstruction (100% sampling) is
used to make the final graphic for Fig. 13.4. Note that, as expected, the error
and condition number trends are similar, thus supporting the hypothesis that
the condition number can be used to evaluate the efficacy of the sparse mea-
surements. Indeed, this clearly shows that the condition number provides an
evaluation that does not require knowledge of the function in (13.11).

Gappy Measurements and Performance

We can continue this statistical analysis of the gappy reconstruction method by
looking more carefully at 200 random trials of 20% measurements. Figure 13.5
shows three key features of the 200 random trials. In particular, as shown in the
top panel of this figure, there is a large variance in the distribution of the con-
dition number κ(M) for 20% sampling. Specifically, the condition number can
change by orders of magnitude with the same number of sensors, but simply

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.2. ERROR AND CONVERGENCE OF GAPPY POD 593

log(κ(M))

events

events

log(E+1)

log(κ(M))

40

0

0

10

0

20

0 9

0 3

0 200Number of trials

(a)

(b)

(c)

Figure 13.5: Statistics of 20% random measurements considered in Fig. 13.4.
Panel (a) depicts 200 random trials and the condition number log(κ(M)) of
each trial. Histograms of (b) the logarithm of the least-squares error, log(E+ 1),
and (c) the condition number, log(κ(M)), are also depicted for the 200 trials.
The panels illustrate the extremely high variability generated from the random,
sparse measurements. In particular, 20% measurements can produce both ex-
ceptional results and extremely poor performance depending upon the mea-
surement locations. The measurement vectors P that generate these statistics
are depicted in Fig. 13.6.

placed in different locations. A histogram of the distribution of the log error
log(E + 1) and the log of the condition number are shown in the bottom two
panels. The error appears to be distributed in an exponentially decaying fash-
ion whereas the condition number distribution is closer to a Gaussian. There are
distinct outliers whose errors and condition numbers are exceptionally high,
suggesting sensor configurations to be avoided.

In order to visualize the random, gappy measurements of the 200 samples
used in the statistical analysis of Fig. 13.5, we plot the Pj measurement masks in
each row of the matrix in Fig. 13.6. The white regions represent regions where
no measurements occur. The black regions are where the measurements are
taken. These are the measurements that generate the orders-of-magnitude vari-
ance in the error and condition number.

As a final analysis, we can sift through the 200 random measurements of
Fig. 13.6 and pick out both the 10 best and 10 worst measurement vectors Pj .
Figure 13.7 shows the results of this sifting process. The top two panels depict

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

594
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

−4 40
1

200

x

Pj

Figure 13.6: Depiction of the 200 random 20% measurement vectors Pj consid-
ered in Fig. 13.5. Each row is a randomly generated measurement trial (from
1 to 200) while the columns represent their spatial location on the domain
x ∈ [−4, 4] with ∆x = 0.1.

the best and worst measurement configurations. Interestingly, the worst mea-
surements have long stretches of missing measurements near the center of the
domain where much of the modal variance occurs. In contrast, the best mea-
surements have well-sampled domains with few long gaps between measure-
ment locations. The bottom panel shows that the best measurements (on the
left) offer an improvement of two orders of magnitude in the condition num-
ber over the poor-performing counterparts (on the right).

13.3 Gappy Measurements: Minimize Condition Num-
ber

The preceding section illustrates that the placement of gappy measurements
is critical for accurately reconstructing the POD solution. This suggests that a
principled way to determine measurement locations is of great importance. In

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.3. GAPPY MEASUREMENTS: MINIMIZE CONDITION NUMBER 595

Pj

Pj

best 10

worst 10

best 10 worst 10
0 0

400040

κ(M) −−−−−→

−−−−−→

Figure 13.7: Depiction of the 10 best and 10 worst random 20% measurement
vectors Pj considered in Figs. 13.5 and 13.6. The top panel shows that the best
measurement vectors sample fairly uniformly across the domain x ∈ [−4, 4]
with ∆x = 0.1. In contrast, the worst randomly generated measurements (mid-
dle panel) have large sampling gaps near the center of the domain, leading to
a large condition number κ(M). The bottom panel shows a bar chart of the
best and worst values of the condition number. Note that with 20% sampling,
there can be two orders of magnitude difference in the condition number, thus
suggesting the importance of prescribing good measurement locations.

what follows, we outline a method originally proposed by Willcox [754] for as-
sessing the gappy measurement locations. The method is based on minimizing
the condition number κ(M) in the placement process. As already shown, the
condition number is a good proxy for evaluating the efficacy of the reconstruc-
tion. Moreover, it is a measure that is independent of any specific function.

The algorithm proposed [754] is computationally costly, but it can be per-
formed in an offline training stage. Once the sensor locations are determined,
they can be used for online reconstruction. The algorithm is as follows:

1. Place sensor k at each spatial location possible and evaluate the condition
number κ(M). Only points not already containing a sensor are consid-
ered.

2. Determine the spatial location that minimizes the condition number κ(M).
This spatial location is now the kth sensor location.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

596
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

iteration 4

iteration 3

iteration 2

iteration 1

Sensor index k at xk0

0

0

0

40

40

40

40

81

81

81

81

C
on

di
ti

on
nu

m
be

r
κ

(M
)

Figure 13.8: Depiction of the first four iterations of the gappy measurement
location algorithm of Willcox [754]. The algorithm is applied to a 10-mode ex-
pansion given by the Gauss–Hermite functions (12.25) and (12.26) discretized
on the interval x ∈ [−4, 4] with ∆x = 0.1. The top panel shows the condition
number κ(M) as a single sensor is considered at each of the 81 discrete val-
ues xk. The first sensor minimizes the condition number (shown in red) at x23.
A second sensor is now considered at all remaining 80 spatial locations, with
the minimal condition number occurring at x52 (in red). Repeating this process
gives x37 and x77 for the third and fourth sensor locations for iterations 3 and 4
of the algorithm (highlighted in red). Once a location is selected for a sensor, it
is no longer considered in future iterations. This is represented by a gap.

3. Add sensor k + 1 and repeat the previous two steps.

The algorithm is not optimal, nor is it guaranteed to be so. However, it works
quite well in practice since sensor configurations with low condition number
produce good reconstructions with the POD modes.

We apply this algorithm to construct the gappy measurement matrix P. As
before, the modal basis for our numerical experiments are the Gauss–Hermite
functions defined by (12.25) and (12.26). The gappy measurement matrix al-
gorithm for constructing P is shown in Fig. 13.8 – specifically, the first four
iterations of the scheme. Note that the algorithm outlined above sets down one
sensor at a time, thus with the 10-POD-mode expansion, the system is under-
determined until 10 sensors are placed. This gives condition numbers on the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.3. GAPPY MEASUREMENTS: MINIMIZE CONDITION NUMBER 597

order of 1016 for the first nine sensor placements. It also suggests that the first
10 sensor locations may be generated from inaccurate calculations of the con-
dition number.

Using a 10-mode expansion of the Gauss–Hermite functions, we minimize
the condition number and identify the first 20 sensor locations. Specifically, this
provides a principled way of producing a measurement matrix P that allows
for good reconstruction of the POD mode expansion with limited measure-
ments. In addition to identifying the placement of the first 20 sensors, recon-
struction of the example function given by (13.11) is computed at each itera-
tion of the routine. Note the use of the setdiff command, which removes the
condition number minimizing sensor location from consideration in the next
iteration.

To evaluate the gappy sensor location algorithm, we track the condition
number as a function of the number of iterations, up to 20 sensors. Additionally,
at each iteration, a reconstruction of the test function (13.11) is computed and a
least-squares error evaluated. Figure 13.9 shows the progress of the algorithm
as it evaluates the sensor locations for up to 20 sensors. By construction, the
algorithm minimizes the condition number κ(M) at each step of the iteration;
thus, as sensors are added, the condition number steadily decreases (top panel
of Fig. 13.9). Note that there is a significant decrease in the condition number
once 10 sensors are selected, since the system is no longer under-determined
with theoretically infinite condition number. The least-squares error for the re-
construction of the test function (13.11) follows the same general trend, but the
error does not monotonically decrease like the condition number. The least-
squares error also makes a significant improvement once 10 measurements are
made. In general, if an r-mode POD expansion is to be considered, then reason-
able results using the gappy reconstruction cannot be achieved until r sensors
are placed.

We now consider the placement of the sensors as a function of iteration in
the bottom panel of Fig. 13.9. Specifically, we depict when sensors are identi-
fied in the iteration. The first sensor location is x23 followed by x52, x37, and x77,
respectively. The process is continued until the first 20 sensors are identified.
The pattern of sensors depicted is important, as it illustrates a fairly uniform
sampling of the domain. Alternative schemes will be considered in the follow-
ing.

As a final illustration of the gappy algorithm, we consider the reconstruc-
tion of the test function (13.11) as the number of iterations (sensors) increases.
As expected, the more sensors that are used in the gappy framework, the better
the reconstruction is, especially if the sensors are placed in a principled way as
outlined by Willcox [754]. Figure 13.10 shows the reconstructed function with
increasing iteration number. In the left panel, iterations 1–20 are shown with
the z-axis set to illustrate the extremely poor reconstruction in the early stages

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

598
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

log(κ(M))

log(E + 1)

Iteration

Sensor index k at xk1 40 81

1 10 20

1 10 20

Iteration

Iteration

0

20

0

6

0

40

Figure 13.9: Condition number and least-squares error (logarithms) as a func-
tion of the number of iterations in the gappy sensor placement algorithm. The
log of the condition number log(κ(M)) monotonically decreases, since this is
being minimized at each iteration step. The log of the least-squares error in the
reconstruction of the test function (13.11) also shows a trend towards improve-
ment as the number of sensors are increased. Once 10 sensors are placed, the
system is of full rank and the condition number drops by orders of magnitude.
The bottom panel shows the sensors as they turn on (black squares) over the
first 20 iterations. The first measurement location is, for instance, at x23.

of the iteration. The right panel highlights the reconstruction from iteration 9
to 20, and on a more limited z-axis scale, where the reconstruction converges to
the test function. The true test function is also shown in order to visualize the
comparison. This illustrates in a tangible way the convergence of the iteration
algorithm to the test solution with a principled placement of sensors.

Proxy Measures to the Condition Number

We end this section by considering alternative measures to the condition num-
ber κ(M). The computation of the condition number itself can be computation-
ally expensive. Moreover, until r sensors are chosen in an r-POD-mode expan-
sion, the condition number computation is itself numerically unstable. How-
ever, it is clear what the condition-number-minimization algorithm is trying to
achieve: make the measurement matrix M as near to the identity as possible.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.3. GAPPY MEASUREMENTS: MINIMIZE CONDITION NUMBER 599

test function

−−−→ −−−
−−−
−→

1

20
9

20

f(x)

-4
0

4

f(x)

-4
0

4ite
rat

ion

ite
rat

ion

Figure 13.10: Convergence of the reconstruction to the test function (13.11). The
left panel shows iterations 1–20 and the significant reconstruction errors of the
early iterations and limited number of sensors. Indeed, for the first nine iter-
ations, the condition number and least-squares error are quite large since the
system is not full rank. The right panel shows a zoom-in of the solution from
iteration 9 to 20 where the convergence is clearly observed. Comparison in both
panels can be made to the test function.

This suggests the following alternative algorithm, which was also developed
by Willcox [754].

1. Place sensor k at each spatial location possible and evaluate the differ-
ence in the sum of the diagonal entries of the matrix M minus the sum
of the off-diagonal components; call this κ2(M). Only points not already
containing a sensor are considered.

2. Determine the spatial location that generates the maximum value of the
above quantity. This spatial location is now the kth sensor location.

3. Add sensor k + 1 and repeat the previous two steps.

Modification of two lines of code can enact a new metric which circumvents
the computation of the condition number.

To evaluate this new gappy sensor location algorithm, we track the new
proxy metric we are trying to maximize as a function of the number of itera-
tions along with the least-squares error of our test function (13.11). In this case,
up to 60 sensors are considered, since the convergence is slower than before.
Figure 13.11 shows the progress of the algorithm as it evaluates the sensor lo-
cations for up to 60 sensors. By construction, the algorithm maximizes the sum
of the diagonals minus the sum of the off-diagonals at each step of the itera-
tion; thus, as sensors are added, this measure steadily increases (top left panel
of Fig. 13.11). The least-squares error for the reconstruction of the test function
(13.11) decreases, but not monotonically. Further, the convergence is very slow.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

600
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

κ2(M)

log(E + 1)

It
er

at
io

n

1 40 81
Sensor index k at xk

1 61
Iteration

1 61

1

61

0

15

0

12

Figure 13.11: Sum of diagonals minus off-diagonals (top left) and least-squares
error (logarithm) as a function of the number of iterations in the second
gappy sensor placement algorithm. The new proxy metric for condition num-
ber monotonically increases, since this is being maximized at each iteration
step. The log of the least-squares error in the reconstruction of the test func-
tion (13.11) shows a trend towards improvement as the number of sensors is
increased, but convergence is extremely slow in comparison to minimizing the
condition number. The right panel shows the sensors as they turn on (black
squares) over the first 60 iterations. The first measurement location is, for in-
stance, at x37.

At least for this example, the method does not work as well as the condition
number metric. However, it can improve performance in certain cases [754],
and it is much more computationally efficient to compute.

As before, we also consider the placement of the sensors as a function of it-
eration in the right panel of Fig. 13.11. Specifically, we depict the turning on
process of the sensors. The first sensor location is x37 followed by x38, x36,
and x31, respectively. The process is continued until the first 60 sensors are
turned on. The pattern of sensors depicted is significantly different than in the
condition-number-minimization algorithm. Indeed, this algorithm, and with
these modes, turns on sensors in local locations without sampling uniformly
from the domain.

13.4 Gappy Measurements: Maximal Variance

The previous section developed principled ways to determine the location of
sensors for gappy POD measurements. This was a significant improvement
over simply choosing sensor locations randomly. Indeed, the minimization of
the condition number through location selection performed quite well, quickly

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.4. GAPPY MEASUREMENTS: MAXIMAL VARIANCE 601

improving accuracy and least-squares reconstruction error. The drawback to
the proposed method was two-fold: Firstly, the algorithm itself is expensive to
implement, requiring a computation of the condition number for every sen-
sor location selected under an exhaustive search. Secondly, the algorithm was
ill-conditioned until the rth sensor was chosen in an r-POD-mode expansion.
Thus the condition number was theoretically infinite, but on the order of 1017

for computational purposes.
Karniadakis and co-workers [767] proposed an alternative to the Willcox

[754] algorithm to overcome the computational issues outlined. Specifically, in-
stead of placing one sensor at a time, the new algorithm places r sensors, for an
r-POD-mode expansion, at the first step of the iteration. Thus the matrix gener-
ated is no longer ill-conditioned with a theoretically infinite condition number.

The algorithm by Karniadakis further proposes a principled way to select
the original r sensor locations. This method selects locations that are extrema
points of the POD modes, which are designed to maximally capture variance
in the data. Specifically, the following algorithm is suggested:

1. Place r sensors initially.

2. Determine the spatial locations of these first r sensors by considering the
maximum of each of the POD modes ψk.

3. Add additional sensors at the next largest extrema of the POD modes.

The performance of this algorithm is not strong for only r measurements, but
it at least produces stable condition number calculations. To improve perfor-
mance, one could also use the minimum of each of the modes ψk. Thus the
maximal value and minimal value of variance are considered. For the harmonic
oscillator code, the first mode produces no minimum, as the minima are at
x→ ±∞.

More generally, the Karniadakis algorithm [767] advocates randomly select-
ing p sensors from M potential extrema, and then modifying the search posi-
tions with the goal of improving the condition number. In this case, one must
identify all the maxima and minima of the POD modes in order to make the
selection. The harmonic oscillator modes and their maxima and minima are
illustrated in Fig. 13.12.

In this example, there are 55 possible extrema. This computation assumes
the data is sufficiently smooth so that extrema are simply found by considering
neighboring points, i.e., a maximum exists if its two neighbors have a lower
value, whereas a minimum exists if its neighbors have a higher value.

The maximal-variance algorithm suggests trying different configurations of
the sensors at the extrema points. In particular, if 20 gappy measurements are
desired, then we would need to search through various configurations of the 55

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

602
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

ΨT =

PT =

−4 40 x
Figure 13.12: The top panel shows the mode structures of the Gauss–Hermite
polynomials Ψ in the low-rank approximation of a POD expansion. The dis-
cretization interval is x ∈ [−4, 4] with a spacing of ∆x = 0.1. The color map
shows the maximum (white) and minimum (black) that occur in the mode
structures. The bottom panel shows the grid cells corresponding to maxima
and minima (extrema) of POD mode variance. The extrema are candidates for
sensor locations, or the measurement matrix P, since they represent maximal
variance locations. Typically, one would take a random subsample of these ex-
trema to begin the evaluation of the gappy placement.

locations using 20 sensors. This combinatorial search is intractable. However, if
we simply attempt 100 random trials and select the best-performing configura-
tion, it is quite close to the performance of the condition-number-minimization
algorithm. A full execution of this algorithm, along with a computation of the
condition number and least-squares fit error with (13.11), is generated. The con-
dition number and least-squares error for the 100 trials are shown in Fig. 13.13.
The configurations perform well compared with random measurements, al-
though some have excellent performance.

A direct comparison of all these methods is shown in Fig. 13.14. Specifi-
cally, what is illustrated are the results from using (a) the maximum locations
of the POD modes, (b) the maximum and minimum locations of each POD
mode, and (c) a random selection of 20 of the 55 extremum locations of the
POD modes. These are compared against (d) the best five sensor placement
locations of 20 sensors selected from the extremum over 100 random trials,
and (e) the condition-number-minimization algorithm (in red). The maximal-
variance algorithm performs approximately as well as the condition-number-
minimization algorithm. However, the algorithm is faster and never computes
condition numbers on ill-conditioned matrices. Karniadakis and co-workers
[767] also suggest innovations on this basic implementation. Specifically, it is

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.5. POD AND THE DISCRETE EMPIRICAL INTERPOLATION METHOD
(DEIM) 603

log(κ(M))

0

5

10

log(E + 1)

0

1

2

3

1 50 100Iteration

1 50 100Iteration

Figure 13.13: Condition number and least-squares error to test function (13.11)
over 100 random trials that draw 20 sensor locations from the possible 55 ex-
trema depicted in Fig. 13.12. The 100 trials produce a number of sensor config-
urations that perform close to the level of the condition-number-minimization
algorithm of the last section. However, the computational costs in generating
such trials can be significantly lower.

suggested that one consider each sensor, one-by-one, and try placing it in all
other available spatial locations. If the condition number is reduced, the sensor
is moved to that new location and the next sensor is considered.

13.5 POD and the Discrete Empirical Interpolation
Method (DEIM)

The POD method illustrated thus far aims to exploit the underlying low-dimensional
dynamics observed in many high-dimensional computations. POD is often used
for reduced-order models (ROMs), which are of growing importance in scien-
tific applications and computing. ROMs reduce the computational complexity
and time needed to solve large-scale, complex systems [24, 75, 325, 578]. Specifi-
cally, ROMs provide a principled approach to approximating high-dimensional
spatio-temporal systems [185], typically generated from numerical discretiza-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

604
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

lo
g
(κ
(M

))
lo
g
(E

+
1)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
0

1

2

0

11

22

(a) max of each mode ψj (10 sensors)
(b) max and min of each mode ψj (19 sensors)
(c) 20 random sensors from extremum of Ψ

(d) 5 best performers of 100 realizations of (c)
(e) condition number minimization (20 sensors)

Figure 13.14: Performance metrics for placing sensors based upon the extrema
of the variance of the POD modes. Both the least-squares error for the recon-
struction of the test function (13.11) and the condition number are considered.
Illustrated are the results from using (a) the maximum locations of the POD
modes, (b) the maximum and minimum locations of each POD mode, and
(c) a random selection of 20 of the 55 extremum locations of the POD modes.
These are compared against (d) the five top selections of 20 sensors from the
100 random trials, and (e) the condition-number-minimization algorithm (red
bar). The random placement of sensors from the extremum locations provides
performance close to that of the condition number minimization without the
same high computational costs.

tion, by low-dimensional subspaces that produce nearly identical input/out-
put characteristics of the underlying nonlinear dynamical system. However,
despite the significant reduction in dimensionality with a POD basis, the com-
plexity of evaluating higher-order nonlinear terms may remain as challenging
as the original problem [55, 171]. The empirical interpolation method (EIM) and
the simplified discrete empirical interpolation method (DEIM) for the proper
orthogonal decomposition (POD) [335, 463] overcome this difficulty by provid-
ing a computationally efficient method for discretely (sparsely) sampling and
evaluating the nonlinearity. These methods ensure that the computational com-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.5. POD AND THE DISCRETE EMPIRICAL INTERPOLATION METHOD
(DEIM) 605

plexity of ROMs scale favorably with the rank of the approximation, even with
complex nonlinearities.

EIM has been developed for the purpose of efficiently managing the com-
putation of the nonlinearity in dimensionality reduction schemes, with DEIM
specifically tailored to POD with Galerkin projection. Indeed, DEIM approxi-
mates the nonlinearity by using a small, discrete sampling of points that are
determined in an algorithmic way. This ensures that the computational cost of
evaluating the nonlinearity scales with the rank of the reduced POD basis. As
an example, consider the case of an r-mode Galerkin–POD truncation. A sim-
ple cubic nonlinearity requires that the Galerkin–POD approximation be cubed,
resulting in r3 operations to evaluate the nonlinear term. DEIM approximates
the cubic nonlinearity by using O(r) discrete sample points of the nonlinearity,
thus preserving a low-dimensional (O(r)) computation, as desired. The DEIM
approach combines projection with interpolation. Specifically, DEIM uses se-
lected interpolation indices to specify an interpolation-based projection for a
nearly `2 optimal subspace approximating the nonlinearity. EIM/DEIM are not
the only methods developed to reduce the complexity of evaluating nonlinear
terms; see for instance the missing point estimation (MPE) [29, 522] or gappy
POD [162, 619, 754, 767] methods. However, they have been successful in a
large number of diverse applications and models [171]. In any case, the MPE,
gappy POD, and EIM/DEIM use a small selected set of spatial grid points to
avoid evaluation of the expensive inner products required to evaluate nonlin-
ear terms.

POD and DEIM

Consider a high-dimensional system of nonlinear differential equations that
can arise, for example, from the finite-difference discretization of a partial dif-
ferential equation. In addition to constructing a snapshot matrix (13.12) of the
solution of the PDE so that POD modes can be extracted, the DEIM algorithm
also constructs a snapshot matrix of the nonlinear term of the PDE:

N =

N1 N2 · · · Nm

 , (13.12)

where the columns Nk ∈ Cn are evaluations of the nonlinearity at time tk.
To achieve high-accuracy solutions, n is typically very large, making the

computation of the solution expensive and/or intractable. The Galerkin–POD
method is a principled dimensionality reduction scheme that approximates the
function u(t) with rank-r optimal basis functions, where r � n. As shown in
the previous chapter, these optimal basis functions are computed from a sin-
gular value decomposition of a series of temporal snapshots of the complex
system.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

606
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

The standard POD procedure [335] is a ubiquitous algorithm in the reduced-
order modeling community. However, it also helps illustrate the need for in-
novations such as DEIM, gappy POD, and/or MPE. Consider the nonlinear
component of the low-dimensional evolution (12.21): ΨTN(Ψa(t)). For a sim-
ple nonlinearity such as N(u(x, t)) = u(x, t)3, consider its impact on a spatially
discretized, two-mode POD expansion: u(x, t) = a1(t)ψ1(x) + a2(t)ψ2(x). The
algorithm for computing the nonlinearity requires the evaluation:

u(x, t)3 = a3
1ψ

3
1 + 3a2

1a2ψ
2
1ψ2 + 3a1a

2
2ψ1ψ

2
2 + a3

2ψ
3
2. (13.13)

The dynamics of a1(t) and a2(t) would then be computed by projecting onto the
low-dimensional basis by taking the inner product of this nonlinear term with
respect to both ψ1 and ψ2. Thus not only does the number of computations
double, but also the inner products must be computed with the n-dimensional
vectors. Methods such as DEIM overcome this high-dimensional computation.
Figure 13.15 gives an overview of the algorithm that is detailed below.

DEIM

As outlined in the previous section, the shortcomings of the Galerkin–POD
method are generally due to the evaluation of the nonlinear term N(Ψa(t)).
To avoid this difficulty, DEIM approximates N(Ψa(t)) through projection and
interpolation instead of evaluating it directly. Specifically, a low-rank represen-
tation of the nonlinearity is computed from the singular value decomposition,

N = ΞΣNV∗N, (13.14)

where the matrix Ξ contains the optimal basis for spanning the nonlinearity.
Specifically, we consider the rank-p basis

Ξp = [ξ1 ξ2 · · · ξp] (13.15)

that approximates the nonlinear function (p� n and p ∼ r). The approximation
to the nonlinearity N is given by

N ≈ Ξpc(t), (13.16)

where c(t) is similar to a(t) in (12.20). Since this is a highly over-determined
system, a suitable vector c(t) can be found by selecting p rows of the system.
The DEIM algorithm was developed to identify which p rows to evaluate.

The DEIM algorithm begins by considering the vectors eγj ∈ Rn, which are
the γjth column of the n-dimensional identity matrix. We can then construct
the projection matrix P = [eγ1 eγ2 · · · eγp], which is chosen so that PTΞp is
non-singular. Then c(t) is uniquely defined from PTN = PTΞpc(t), and thus

N ≈ Ξp(P
TΞp)

−1PTN. (13.17)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.5. POD AND THE DISCRETE EMPIRICAL INTERPOLATION METHOD
(DEIM) 607

Ξp =

p = 10

ξ1 ξ2 . . . ξ10

−−→ −−→−−→
N = ΞΣNV∗N

Decomposition
Ξ1 R2

PT
1

Steps

1. Calculate cj : PT
j Ξjcj = PT

j ξj+1

2. Compute residual: Rj+1 = ξj+1 −Ξjcj

3. Max index of residual: [ρ, γj] = max |Rj+1|
4. Update measurement matrix: Pj+1 = [Pj eγj]

maximum index

Iteration 1

−−
→

−−−−−−−−→
max−→

Ξ2 R3

PT
2

Iteration 2

−−
−−
−−
−→

−−−−−
−−→

second measurement

max−→

Ξ3 R4

PT
3

Iteration 3
−−
→

−−−−−
−−−→

third measurement

max−→

Figure 13.15: Demonstration of the first three iterations of the DEIM algorithm.
For illustration only, the nonlinearity matrix N = ΞΣNV∗N is assumed to be
composed of harmonic oscillator modes with the first 10 modes comprising Ξp.
The initial measurement location is chosen at the maximum of the first mode
ξ1. Afterwards, there is a three-step process for selecting subsequent measure-
ment locations based upon the location of the maximum of the residual vector
Rj . The first (red), second (green), and third (blue) measurement locations are
shown along with the construction of the sampling matrix P.

The tremendous advantage of this result for nonlinear model reduction is that
the term PTN requires evaluation of the nonlinearity only at p � n indices.
DEIM further proposes a principled method for choosing the basis vectors ξj
and indices γj . The DEIM algorithm, which is based on a greedy search, is de-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

608
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

Table 13.1: DEIM algorithm for finding approximation basis for the nonlinear-
ity and its interpolation indices. The algorithm first constructs the nonlinear
basis modes and initializes the first measurement location, and the matrix P1,
as the maximum of ξ1. The algorithm then successively constructs columns of
Pj by considering the location of the maximum of the residual Rj .

DEIM algorithm
Basis construction and initialization

collect data, construct snapshot matrix X = [u(t1) u(t2) · · · u(tm)]

construct nonlinear snapshot matrix N = [N(u(t1)) N(u(t2)) · · · N(u(tm))]

singular value decomposition of N N = ΞΣNV∗N
construct rank-p approximating basis Ξp = [ξ1 ξ2 · · · ξp]
choose the first index (initialization) [ρ, γ1] = max |ξ1|
construct first measurement matrix P1 = [eγ1]

Interpolation indices and iteration loop (j = 2, 3, . . . , p)
calculate cj PT

j Ξjcj = PT
j ξj+1

compute residual Rj+1 = ξj+1 −Ξjcj
find index of maximum residual [ρ, γj] = max |Rj+1|
add new column to measurement matrix Pj+1 = [Pj eγj]

tailed in [171] and further demonstrated in Table 13.1.
POD and DEIM provide a number of advantages for nonlinear model re-

duction of complex systems. POD provides a principled way to construct an
r-dimensional subspace Ψ characterizing the dynamics. DEIM augments POD
by providing a method to evaluate the problematic nonlinear terms using a p-
dimensional subspace Ξp that represents the nonlinearity. Thus a small number
of points can be sampled to approximate the nonlinear terms in the ROM.

13.6 DEIM Algorithm Implementation

To demonstrate model reduction with DEIM, we again consider the NLS equa-
tion (12.29). Specifically, the data set considered is a matrix whose rows repre-
sent the time snapshots and whose columns represent the spatial discretization
points. As in the first section of this chapter, our first step is to transpose this
data so that the time snapshots are columns instead of rows. The following
code transposes the data and also performs a singular value decomposition to
get the POD modes.

Code 13.1: [MATLAB] Dimensionality reduction for NLS.
X=usol.’; % data matrix X
[U,S,W]=svd(X,0); % SVD reduction

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.6. DEIM ALGORITHM IMPLEMENTATION 609

Code 13.1: [Python] Dimensionality reduction for NLS.
X = usol.T # data matrix X
U,S,WT = np.linalg.svd(X,full_matrices=0) # SVD reduction

In addition to the standard POD modes, the singular value decomposition
of the nonlinear term is also required for the DEIM algorithm. This computes
the low-rank representation of N(u) = |u|2u directly as N = ΞΣNV∗N.

Code 13.2: [MATLAB] Dimensionality reduction for nonlinearity of NLS.
NL=i*(abs(X).ˆ2).*X;
[XI,S_NL,W]=svd(NL,0);

Code 13.2: [Python] Dimensionality reduction for nonlinearity of NLS.
NL = (1j)*np.power(np.abs(X),2)*X
XI,S_NL,WT = np.linalg.svd(NL,full_matrices=0)

Once the low-rank structures are computed, the rank of the system is chosen
with the parameter r. In what follows, we choose r = p = 3 so that both the
standard POD modes and nonlinear modes, Ψ and Ξp, have three columns
each. The following code selects the POD modes for Ψ and projects the initial
condition onto the POD subspace.

Code 13.3: [MATLAB] Rank selection and POD modes.
r=3; % select rank truncation
Psi=U(:,1:r); % select POD modes
a=Psi’*u0; % project initial conditions

Code 13.3: [Python] Rank selection and POD modes.
r = 3 # select rank truncation
Psi = U[:,:r] # select POD modes
a0 = Psi.T @ u0 # project initial conditions

We now build the interpolation matrix P by executing the DEIM algorithm
outlined in the last section. The algorithm starts by selecting the first interpola-
tion point from the maximum of the first most dominant mode of Ξp.

Code 13.4: [MATLAB] First DEIM point.
[Xi_max,nmax]=max(abs(XI(:,1)));
XI_m=XI(:,1);
z=zeros(n,1);
P=z; P(nmax)=1;

Code 13.4: [Python] First DEIM point.
nmax = np.argmax(np.abs(XI[:,0]))
XI_m = XI[:,0].reshape(n,1)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

610
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

z = np.zeros((n,1))
P = np.copy(z)
P[nmax] = 1

The algorithm iteratively builds P one column at a time. The next step of
the algorithm is to compute the second to rth interpolation point via the greedy
DEIM algorithm. Specifically, the vector cj is computed from PT

j Ξjcj = PT
j ξj+1,

where ξj are the columns of the nonlinear POD modes matrix Ξp. The ac-
tual interpolation point comes from looking for the maximum of the residual
Rj+1 = ξj+1 − Ξjcj . Each iteration of the algorithm produces another column
of the sparse interpolation matrix P. The integers nmax give the location of the
interpolation points.

Code 13.5: [MATLAB] DEIM points 2 through r.
for j=2:r

c=(P’*XI_m)\(P’*XI(:,j));
res=XI(:,j)-XI_m*c;
[Xi_max,nmax]=max(abs(res));
XI_m=[XI_m,XI(:,j)];
P=[P,z]; P(nmax,j)=1;

end

Code 13.5: [Python] DEIM points 2 through r.
for jj in range(1,r):

c=np.linalg.solve(P.T@XI_m, P.T@XI[:,jj].reshape(n,1))
res = XI[:,jj].reshape(n,1) - XI_m @ c
nmax = np.argmax(np.abs(res))
XI_m=np.concatenate((XI_m,XI[:,jj].reshape(n,1)),axis=1)
P = np.concatenate((P,z),axis=1)
P[nmax,jj] = 1

With the interpolation matrix, we are ready to construct the ROM. The first
part is to construct the linear term ΨTLΨ of (12.21) where the linear opera-
tor for NLS is the Laplacian. The derivatives are computed using the Fourier
transform.

Code 13.6: [MATLAB] Projection of linear terms.
for j=1:r % linear derivative terms

Lxx(:,j)=ifft(-k.ˆ2.*fft(Psi(:,j)));
end
L=(i/2)*(Psi’)*Lxx; % projected linear term

Code 13.6: [Python] Projection of linear terms.
Lxx = np.zeros((n,r),dtype=’complex_’)
for jj in range(r):

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.6. DEIM ALGORITHM IMPLEMENTATION 611

Lxx[:,jj] = np.fft.ifft(-np.power(k,2)*np.fft.fft(Psi[:,
jj]))

L = 0.5 * (1j) * Psi.T @ Lxx # projected linear term

The projection of the nonlinearity is accomplished using the interpolation
matrix P with the formula (13.17). Recall that the nonlinear term in (12.21) is
multiplied by ΨT . Also computed is the interpolated version of the low-rank
subspace spanned by Ψ.

Code 13.7: [MATLAB] Projection of nonlinear terms.
P_NL=Psi’*(XI_m*inv(P’*XI_m)); % nonlinear projection
P_Psi=P’*Psi; % interpolation of Psi

Code 13.7: [Python] Projection of nonlinear terms.
P_NL = Psi.T @ (XI_m @ np.linalg.inv(P.T @ XI_m))
P_Psi = P.T @ Psi # interpolation of Psi

It only remains now to advance the solution in time using a numerical time-
stepper. This is done with a fourth-order Runge–Kutta routine.

Code 13.8: [MATLAB] Time-stepping of ROM.
[tt,a]=ode45(’rom_deim_rhs’,t,a,[],P_NL,P_Psi,L);
Xtilde=Psi*a’; % DEIM approximation
waterfall(x,t,abs(Xtilde’)), shading interp, colormap gray

Code 13.8: [Python] Time-stepping of ROM.
a0_split = np.concatenate((np.real(a0),np.imag(a0))) #

Separate real/complex pieces
a_split = integrate.odeint(rom_deim_rhs,a0_split,t,mxstep

=10**6)
a = a_split[:,:r] + (1j)*a_split[:,r:]
Xtilde = Psi @ a.T # DEIM approximation

The right-hand side of the time-stepper is now completely low-dimensional.

Code 13.9: [MATLAB] Right-hand side of ROM.
function rhs=rom_deim_rhs(tspan, a,dummy,P_NL,P_Psi,L)
N=P_Psi*a;
rhs=L*a + i*P_NL*((abs(N).ˆ2).*N);

Code 13.9: [Python] Right-hand side of ROM.
def rom_deim_rhs(a_split,tspan,P_NL=P_NL,P_Psi=P_Psi,L=L):

a = a_split[:r] + (1j)*a_split[r:]
N = P_Psi @ a
rhs = L @ a + (1j) * P_NL @ (np.power(np.abs(N),2)*N)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

612
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

(a)

(c)

(b)

t x

|u|

x

ψj(x)

−−→third −−→first

−−→ second

Figure 13.16: Comparison of the (a) full simulation dynamics and (b) rank r = 3
ROM using the three DEIM interpolation points. (c) A detail of the three POD
modes used for simulation is shown along with the first, second, and third
DEIM interpolation point locations. These three interpolation points are capa-
ble of accurately reproducing the evolution dynamics of the full PDE system.

rhs_split = np.concatenate((np.real(rhs),np.imag(rhs)))
return rhs_split

A comparison of the full simulation dynamics and rank r = 3 ROM using
the three DEIM interpolation points is shown in Fig. 13.16. Additionally, the
location of the DEIM points relative to the POD modes is shown. Aside from
the first DEIM point, the other locations are not on the minima or maxima of
the POD modes. Rather, the algorithm places them to maximize the residual.

QDEIM Algorithm

Although DEIM is an efficient greedy algorithm for selecting interpolation points,
there are other techniques that are equally efficient. The recently proposed QDEIM
algorithm [215] leverages the QR decomposition to provide efficient, greedy
interpolation locations. This has been shown to be a robust mathematical ar-
chitecture for sensor placement in many applications [481]. See Section 3.8 for
a more general discussion. The QR decomposition can also provide a greedy
strategy to identify interpolation points. In QDEIM, the QR pivot locations are
the sensor locations. The following code can replace the DEIM algorithm to
produce the interpolation matrix P.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.7. DECODER NETWORKS FOR INTERPOLATION 613

Code 13.10: [MATLAB] QR-based interpolation points.
[Q,R,pivot]=qr(NL.’);
P=pivot(:,1:r);

Code 13.10: [Python] QR-based interpolation points.
Q,R,pivot = qr(NL.T,pivoting=True)
P_qr = np.zeros_like(x)
P_qr[pivot[:3]] = 1

Using this interpolation matrix gives identical interpolation locations as shown
in Fig. 13.16. More generally, there are estimates that show that the QDEIM may
improve error performance over standard DEIM [215]. The ease of use of the
QR algorithm makes this an attractive method for sparse interpolation.

13.7 Decoder Networks for Interpolation

The gappy interpolation methods presented thus far are all based upon lin-
ear mappings between the measurement space and the full-state reconstruc-
tion. Equation (13.1) provides a mathematical representation of this mapping,
which dictates how measurements in an r-dimensional (low-rank) space can be
related to the original n-dimensional (high-dimensional) state space. The focus
thus far is in leveraging SVD modes Ψ for reconstruction tasks. Specifically, if
the original state space is represented in the low-dimensional subspace so that
u = Ψa, then the suite of gappy interpolation methods can be executed in order
to approximate the high-fidelity solution.

To be more precise, recall that, in the gappy POD formulation, the measure-
ment matrix specifies the interpolation to be used:

ũ = Pu ≈ PΨa, (13.18)

where the state vector is expressed in terms of POD modes in the second ap-
proximation. Given measurements ũ along with a measurement matrix P and
POD modes Ψ, the coefficients for reconstruction can now be computed by
least-squares:

a = (PΨ)†ũ, (13.19)

where † is the Moore–Penrose pseudo-inverse. In terms of an optimization prob-
lem, this is alternatively formulated as

a ∈ argmin
ã
‖ũ−PΨã‖2

2. (13.20)

This is the standard POD reconstruction error formulation. This is revisited
here since the optimization formulation can be improved to stabilize POD re-
constructions. Specifically, just like neural networks, additional regularizations

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

614
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

can be applied in order to ensure a more stable solution. The improved formu-
lation adds an elastic net [777] regularization, which is a combination of `1 and
`2 penalties:

a ∈ argmin
ã
‖ũ−PΨã‖2

2 + λ1‖ã‖1 + λ2‖ã‖2
2, (13.21)

where λ1,2 are hyperparameters that control the `1- and `2-norms, respectively.
In what follows, this is referred to as POD PLUS, since it is an augmentation of
standard POD. As will be shown, such a regularization improves the standard
linear mapping from measurements to the state space.

Instead of linear mappings between measurements and state space, we lever-
age the universal approximation properties of neural networks to construct
nonlinear mappings between measurements and state space. Specifically, we
construct a decoder neural network so that [235]

û = fθ(ũ), (13.22)

where û is an approximation to the full state u and fθ(·) is a decoder neural
network. The optimization procedure evaluates the expression

argmin
θ

N∑

j=1

‖uj − fθ(ũj)‖2
2 (13.23)

with N training data pairs {uj, ũj} for j = 1, 2, . . . , N . This supervised algo-
rithm uses the N sample pairs from measurement ũj to its corresponding full
state-space representation uj in order to build a nonlinear mapping between
them.

Figure 13.17 shows the architecture of the decoder mapping from measure-
ments to the state space. The only thing that needs to be determined is the num-
ber of layers and their widths along with the activation functions. Erichson et
al. [235] showed that a shallow decoder, in which only a few layers were used,
provides an effective nonlinear mapping while using only modest amounts
of training data. In addition, the optimization was modified to regularize the
weights so that

argmin
θ

N∑

j=1

‖uj − fθ(ũj)‖2
2 + λ‖θ‖2

2, (13.24)

where λ is a hyperparameter that determines the strength of the norm (`2) reg-
ularization. The Adam optimization algorithm [386] was used to train the shal-
low decoder. Various hyperparameters can be fine-tuned in practice, but the
choice of parameters used worked well in practice for several physics-related
examples.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.7. DECODER NETWORKS FOR INTERPOLATION 615

Measurements

ũ

Full state

u
Decoder

fθ

ũ ∈ Rr u ∈ Rn

r � n

Figure 13.17: Decoder network providing a nonlinear map from measurements
to the high-dimensional state space: û = fθ(ũ). The decoder trains on data
pairs {uj, ũj} for j = 1, 2, . . . , N . The network is implemented in Python
using PyTorch; research code for flow behind the cylinder is available via
https://github.com/erichson/ShallowDecoder.

Modal Comparison: POD versus Shallow Decoder

ROMs exploit low-rank features of the data, which are often interpreted as
modes [689] that characterize physical processes. POD modes provide optimal
representations in an `2 sense. However, this does not guarantee that they are
the best modes in a broader sense when considering noisy and dynamic data.
Indeed, POD modes can be easily corrupted by outliers and noise so that they
are compromised in producing accurate reconstructions of the underlying high-
dimensional data from which they are extracted.

The shallow decoder network highlighted above also produces modal struc-
tures. In contrast with POD modes, which can be linearly superimposed to pro-
duce an approximation, the decoder network is a nonlinear transformation and
linear superposition does not hold. Figure 13.18 shows the contrasting domi-
nant modal structures that are generated from the flow around a cylinder exam-
ple. Note that for POD modes, the dominant modes alternate between symmet-
ric and antisymmetric modes in the vertical direction. Linearly superimposing
these modes in time generates the canonical dynamics of von Kármán vortex
shedding. In contrast, the shallow decoder modes are not symmetric. Rather,
their shapes are very much like what is observed in the fluid flows, i.e., the
modes look like snapshots of the fluid itself. The modes are not orthogonal, yet

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/erichson/ShallowDecoder

616
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

sn
ap

sh
ot

s
sh

al
lo

w
de

co
de

r
(a) Modes of proper orthogonal decomposition (POD)

(b) Modes of the learned output layer of the SD

Figure 13.18: Dominant modes learned by the shallow decoder in comparison
with dominant POD modes. The modal features show that the shallow decoder
network constructs a reasonable characterization of the flow behind a cylinder
using very different modal structures. Indeed, by not constraining the modes
to be linear and orthogonal, as is enforced with POD, a potentially more inter-
pretable feature space can be extracted from data. Such modes can be exploited
for reconstruction of the state space from limited measurements and limited
data. From Erichson et al. [235].

they are used in the nonlinear shallow encoder to reconstruct the fluid dynam-
ics.

There is more than just a distinct difference in modal profiles between the
POD and shallow decoder. The robustness of the linear versus nonlinear encod-
ing strategies is remarkably different. To characterize the robustness and flexi-
bility of the shallow decoder, we consider flow reconstruction in the presence
of additive white noise. In practical experimental settings, noisy measurements
are common and can have significant impact on building ROMs. Figure 13.19
shows the difference between the POD and POD PLUS methods in contrast
to the shallow decoder. The shallow decoder shows a clear advantage and a
de-noising effect. Indeed, the reconstructed snapshots allow for a meaningful
interpretation of the underlying structure while also being highly robust. Inter-
estingly, POD PLUS also significantly outperforms the standard gappy meth-
ods typically used in ROMs, while still maintaining linear superposition. Thus
POD PLUS offers a hybrid method where performance is increased while re-
taining the advantageous features of linearity. But, overall, the shallow decoder
shows that a neural network model fθ(·) can provide significant performance
gains.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.8. RANDOMIZATION AND COMPRESSION FOR ROMS 617

Figure 13.19: Reconstruction results for the flow around the cylinder with noise.
For this simulation, the signal-to-noise ratio is 10. In (a) the target snapshot and
the corresponding sensor configuration (using 10 sensors) is shown. Both POD
and POD PLUS are not able to reconstruct the flow field, as shown in (b) and
(c). The shallow decoder is able to reconstruct the coherent structure of the flow
field, as shown in (d). From Erichson et al. [235].

13.8 Randomization and Compression for ROMs

This chapter has been largely concerned with the interpolation problem associ-
ated with ROMs. Specifically, how does one construct a ROM without recourse
to the high-dimensional state. Gappy interpolation techniques aim to construct
ROMs and compute nonlinear terms in PDEs in an efficient manner. Specifi-
cally, we recall that we are interested in building ROMs for (12.13). Assuming
a solution ansatz u = Ψa allows for the construction of POD and DMD ROMs
for the evolution dynamics of a(t). Specifically, we have the following ROM
models:

da

dt
= ΨTLΨa + ΨTN(Ψa,β) (POD), (13.25a)

da

dt
= ΨTLΨa + ΨTΦ exp(Ωt)b (POD–DMD). (13.25b)

The computational bottleneck addressed in this chapter is the repeated evalua-
tion of the nonlinear term ΨTN(Ψa,β), which is done using a gappy (e.g., the
DEIM or Q-DEIM) methods. The greedy algorithms outlined in the preceding

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

618
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

sections highlight how a small number of measurements can be used with the
low-rank modes Ψ to accomplish this task of evaluating inner products repeat-
edly.

Ignored overall in the ROM formulation is the offline cost of producing low-
rank embeddings, manifest here by Ψ and Φ. The high-fidelity simulation data
X ∈ Cn×m used to produce ROMs is often exceptionally high-dimensional.
Thus the cost of producing a full or economy SVD is large when n,m� 1. This
often is not a problem if only a single SVD needs to be performed, but often the
ROM needs to be updated, and recourse to the original high-dimensional sys-
tem is required in order to update Ψ and Φ. To avoid costly re-computations,
randomized linear algebra [309, 471] and compressive sampling [153, 156, 278]
techniques can be used for enhanced computational efficiency.

The main idea is to consider basis functions Ψ not from the full set of mea-
surements but from a few spatially incoherent measurements. The measure-
ment matrix C ∈ Rp×m, which was originally used as a matrix for defining
gappy interpolation points, is now used to characterize the random measure-
ments of the system and produce the compressed matrix Z ∈ Rp×n such that

Z = CX.

Here, we consider sparse measurements of the snapshots matrix in order to
compute POD and DMD from this new compressed snapshot matrix. To start,
it is assumed that the snapshot matrix X is almost square, e.g., n ≈ m, and one
can imagine this is a realistic situation working with an explicit time scheme
or in a many-query context. Section 1.8 shows that the smaller matrix is now
decomposed using QR so that Z = QR. The original data is then projected onto
the QR basis Y = Q∗X and the SVD of the much smaller matrix is computed,
Y = UYΣV∗. This allows one to transform the low-rank matrix UY back to
the original coordinates and approximate the POD basis Ψ = QUY. This pro-
vides a computationally efficient method for extracting the POD modes. ROMs
constructed from randomized POD methods have now been investigated by
several groups [11, 43, 141], with all them demonstrating the computational
performance advantages gained by randomization.

The randomized architecture can also be used to produce DMD approxima-
tions represented by Φ [135]. Thus, instead of performing the DMD algorithm
on snapshot pairs associated with X, DMD is instead performed on the com-
pressively sampled matrices

Z′ = AZZ, (13.26)

where Z = [z1 z2 · · · zm] and Z′ = [z′1 z′2 · · · z′m] as in Section 7.2. The DMD
algorithm computes the DMD eigenvalues and DMD modes (ΛZ,ΦZ) along
with the eigenvectors matrix WZ of the similarity matrix ÃZ. The DMD eigen-
values are self-similar so that Λ ≈ ΛZ and the DMD modes are given by

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.9. MACHINE LEARNING ROMS 619

Φ = X′VZΣ−1
Z WZ. Thus the computation avoids an expensive SVD by per-

forming the SVD in the low-rank subspace of Z. Like POD-based randomiza-
tion, DMD with randomization provides a scalable architecture for building
ROMs, as demonstrated by a number of groups [28, 93, 135, 234]

Overall, randomized techniques are a promising approach to circumvent
expensive offline computations in model order reduction. In particular, when
dealing with large snapshot matrices, there is now abundant evidence to sug-
gest the use of randomized SVD methods for POD- and DMD-based decompo-
sitions. They both provide very accurate solutions and promise significant com-
putational savings in the offline stage, which turns out to be the most expensive
part of constructing the surrogate model. Indeed, the rapid computation of Ψ
and Φ through such techniques can greatly aid in solving the surrogate mod-
els (13.25)

13.9 Machine Learning ROMs

Inspired by machine learning methods, the various POD bases for a parame-
terized system are merged into a master library of POD modes ΨL which con-
tains all the low-rank subspaces exhibited by the dynamical system. This lever-
ages the fact that POD provides a principled way to construct an r-dimensional
subspace Ψr characterizing the dynamics while sparse sampling augments the
POD method by providing a method to evaluate the problematic nonlinear
terms using a p-dimensional subspace projection matrix P. Thus a small num-
ber of points can be sampled to approximate the nonlinear terms in the ROM.
Figure 13.20 illustrates the library building procedure whereby a dynamical
regime is sampled in order to construct an appropriate POD basis Ψ.

The method introduced here capitalizes on these methods by building low-
dimensional libraries associated with the full nonlinear system dynamics as
well as the specific nonlinearities. Interpolation points, as will be shown in
what follows, can be used with sparse representation and compressive sens-
ing to (i) identify dynamical regimes, (ii) reconstruct the full state of the system,
and (iii) provide an efficient nonlinear model reduction and Galerkin–POD pre-
diction for the future state.

The concept of library building of low-rank features from data is well estab-
lished in the computer science community. In the reduced-order modeling com-
munity, it has recently become an enabling computational strategy for paramet-
ric systems. Indeed, a variety of recent works have produced libraries of ROM
models [15, 112, 136, 179, 553, 554, 555, 619] that can be selected and/or inter-
polated through measurement and classification. Alternatively, cluster-based
reduced-order models use a k-means clustering to build a Markov transition
model between dynamical states [367]. These recent innovations are similar to

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

620
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

Xµ= ΨL==

Ψ Σ W ∗

Ψµ
r

Figure 13.20: Library construction from numerical simulations of the governing
equations (12.1). Simulations are performed of the parameterized system for
different values of a bifurcation parameter µ. For each regime, low-dimensional
POD modes Ψr are computed via an SVD decomposition. The various rank-r
truncated subspaces are stored in the library of modes matrix ΨL. This is the
learning stage of the algorithm. Reproduced from Kutz et al. [424].

the ideas advocated here. However, our focus is on determining how a suitably
chosen P can be used across all the libraries for POD mode selection and recon-
struction. One can also build two sets of libraries: one for the full dynamics and
a second for the nonlinearity so as to make it computationally efficient with the
DEIM strategy [619]. Before these more formal techniques based on machine
learning were developed, it was already realized that parameter domains could
be decomposed into subdomains and a local ROM/POD computed in each sub-
domain. Patera and co-workers [229] used a partitioning based on a binary tree,
whereas Amsallem et al. [16] used a Voronoi tessellation of the domain. Such
methods were closely related to the work of Du and Gunzburger [216] where
the data snapshots were partitioned into subsets and multiple reduced bases
computed. The multiple bases were then recombined into a single basis, so it
does not lead to a library, per se. For a review of these domain partitioning
strategies, please see [17].

POD Mode Selection

Although there are a number of techniques for selecting the correct POD li-
brary elements to use, including the workhorse k-means clustering algorithm
[15, 179, 553, 554, 555], one can also instead make use of sparse sampling and
the sparse representation for classification (SRC) innovations outlined in Chap-
ter 3 to characterize the nonlinear dynamical system [112, 136, 619]. Specifically,
the goal is to use a limited number of sensors (interpolation points) to classify
the dynamical regime of the system from a range of potential POD library ele-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.9. MACHINE LEARNING ROMS 621

ments characterized by a parameter β. Once a correct classification is achieved,
a standard `2 reconstruction of the full state space can be accomplished with
the selected subset of POD modes, and a Galerkin–POD prediction can be com-
puted for its future.

In general, we will have a sparse measurement vector ũ given by (13.1). The
full-state vector u can be approximated with the POD library modes (u = ΨLa),
therefore

ũ = PΨLa, (13.27)

where ΨL is the low-rank matrix whose columns are POD basis vectors con-
catenated across all β regimes and c is the coefficient vector giving the projec-
tion of u onto these POD modes. If PΨL obeys the restricted isometry property
and u is sufficiently sparse in ΨL, then it is possible to solve the highly under-
determined system (13.27) with the sparsest vector a. Mathematically, this is
equivalent to an `0 optimization problem, which is NP-hard. However, under
certain conditions, a sparse solution of (13.27) can be found (see Chapter 3) by
minimizing the l1-norm instead, so that

c = argmin
a′
||a′||1 subject to ũ = PΨLa. (13.28)

The last equation can be solved through standard convex optimization meth-
ods. Thus the `1-norm is a proxy for sparsity. Note that we use the sparsity only
for classification, not for reconstruction. Figure 13.21 demonstrates the sparse
sampling strategy and prototypical results for the sparse solution a.

Example: Flow Around a Cylinder

To demonstrate the sparse classification and reconstruction algorithm devel-
oped, we consider the canonical problem of flow around a cylinder. This prob-
lem is well understood and has already been the subject of studies concerning
sparse spatial measurements [112, 122, 136, 376, 491, 619, 732]. Specifically, it is
known that, for low to moderate Reynolds numbers, the dynamics are spatially
low-dimensional and POD approaches have been successful in quantifying the
dynamics. The Reynolds number, Re, plays the role of the bifurcation parame-
ter β in (12.1), i.e., it is a parameterized dynamical system.

The data we consider comes from numerical simulations of the incompress-
ible Navier–Stokes equation:

∂u

∂t
+ u · ∇u +∇p− 1

Re
∇2u = 0, (13.29)

∇ · u = 0, (13.30)

where u(x, y, t) ∈ R2 represents the 2D velocity, and p(x, y, t) the corresponding
pressure field. The boundary conditions are as follows: (i) constant flow of u =

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

622
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

ũ =

P ΨL a

=
a

(t)

Ψµ
r

m
ode

Figure 13.21: The sparse representation for classification (SRC) algorithm for
library mode selection; see Section 3.6 for more details. In this mathematical
framework, a sparse measurement is taken of the system (12.1) and a highly
under-determined system of equations PΨLa = ũ is solved subject to `1 pe-
nalization so that ‖a‖1 is minimized. Illustrated is the selection of the µth POD
modes. The bar plot on the right depicts the non-zero values of the vector a,
which correspond to the Ψr library elements. Note that the sampling matrix
P that produces the sparse sample ũ = Pu is critical for success in classifica-
tion of the correct library elements Ψr and the corresponding reconstruction.
Reproduced from Kutz et al. [424].

(1, 0)T at x = −15, i.e., the entry of the domain; (ii) constant pressure of p = 0
at x = 25, i.e., the end of the domain; and (iii) Neumann boundary conditions,
i.e., ∂u/∂n = 0 on the boundary of the domain and the cylinder (centered at
(x, y) = (0, 0) and of radius unity).

For each relevant value of the parameterRe, we perform an SVD on the data
matrix in order to extract POD modes. It is well known that, for relatively low
Reynolds number, a fast decay of the singular values is observed so that only a
few POD modes are needed to characterize the dynamics. Figure 13.22 shows
the three most dominant POD modes for Reynolds numbers Re = 40, 150, 300,
and 1000. Note that 99% of the total energy (variance) is selected for the POD
mode selection cut-off, giving a total of one, three, three, and nine POD modes
to represent the dynamics in the regimes shown. For a threshold of 99.9%, more
modes are required to account for the variability.

Classification of the Reynolds number is accomplished by solving the op-
timization problem (13.28) and obtaining the sparse coefficient vector a. Note
that each entry in a corresponds to the energy of a single POD mode from
our library. For simplicity, we select a number of local minima and maxima

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.9. MACHINE LEARNING ROMS 623

Re	 Re	 Re	 Re	

Figure 13.22: Time dynamics of the pressure field (top panels) for flow around
a cylinder for Reynolds numbers Re = 40, 150, 300, and 1000. Collecting snap-
shots of the dynamics reveals that low-dimensional structures dominate the
dynamics. The dominant three POD pressure modes for each Reynolds num-
ber regime are shown (bottom panels) in polar coordinates. The pressure scale
is in magenta (bottom right). Reproduced from Kutz et al. [424].

of the POD modes as sampling locations for the matrix P. The classification
of the Reynolds number is done by summing the absolute value of the coeffi-
cient that corresponds to each Reynolds number. To account for the large num-
ber of coefficients allocated for the higher Reynolds number (which may be 16
POD modes for 99.9% variance at Re = 1000, rather than a single coefficient
for Reynolds number 40), we divide by the square root of the number of POD
modes allocated in a for each Reynolds number. The classified regime is the
one that has the largest magnitude after this process.

Although the classification accuracy is high, many of the false classifica-
tions are due to categorizing a Reynolds number from a neighboring flow, i.e.,
Reynolds number 1000 is often mistaken for Reynolds number 800. This is due
to the fact that these two Reynolds numbers are strikingly similar and the algo-
rithm has a difficult time separating their modal structures. Figure 13.23 shows
a schematic of the sparse sensing configuration along with the reconstruction of
the pressure field achieved at Re = 1000 with 15 sensors. Classification and re-
construction performance can be improved using other methods for construct-
ing the sensing matrix P [112, 122, 136, 376, 491, 619, 732]. Regardless, this ex-
ample demonstrates the usage of sparsity-promoting techniques for POD mode

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

624
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

x1
x2 x3

x4

x5
x6

xm-‐1

xm

true	 pressure reconstruction

Figure 13.23: Illustration of m sparse sensor locations (left panel) for classifica-
tion and reconstruction of the flow field. The selection of sensory/interpolation
locations can be accomplished by various algorithms [112, 122, 136, 376, 491,
619, 732]. For a selected algorithm, the sensing matrix P determines the classi-
fication and reconstruction performance. Reproduced from Kutz et al. [424].

selection (`1 optimization) and subsequent reconstruction (`2 projection).
Finally, to visualize the entire sparse sensing and reconstruction process

more carefully, Fig. 13.24 shows both the Reynolds number reconstruction for
the time-varying flow field along with the pressure field and flow field recon-
structions at select locations in time. Note that the SRC scheme along with
the supervised ML library provide an effective method for characterizing the
flow strictly through sparse measurements. For higher Reynolds numbers, it
becomes much more difficult to accurately classify the flow field with such a
small number of sensors. However, this does not necessarily jeopardize the
ability to reconstruct the pressure field, as many of the library elements at
higher Reynolds numbers are fairly similar.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.9. MACHINE LEARNING ROMS 625

Figure 13.24: Sparse-sensing Reynolds-number identification and pressure-
field reconstruction for a time-varying flow. The top panel shows the actual
Reynolds number used in the full simulation (thick solid lines) along with its
compressive sensing identification (crosses). Panels A–E show the reconstruc-
tion of the pressure field at five different locations in time (top panel) demon-
strating an accurate (qualitatively) reconstruction of the pressure field. (The left
side the simulated pressure field is presented, while the right side contains the
reconstruction.) Note that, for higher Reynolds numbers, the classification be-
comes more difficult. Reproduced from Bright et al. [112].

Suggested Reading

Texts

(1) Certified reduced basis methods for parametrized partial differential equa-
tions, by J. Hesthaven, G. Rozza, and B. Stamm, 2015 [325].

(2) Reduced basis methods for partial differential equations: An introduc-
tion, by A. Quarteroni, A. Manzoni, and N. Federico, 2015 [578].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

626
CHAPTER 13. INTERPOLATION FOR PARAMETRIC REDUCED-ORDER

MODELS

(3) Model reduction and approximation: Theory and algorithms, by P. Ben-
ner, A. Cohen, M. Ohlberger, and K. Willcox, 2017 [74].

Papers and reviews

(1) A survey of model reduction methods for parametric systems, by P. Ben-
ner, S. Gugercin, and K. Willcox, SIAM Review, 2015 [75].

(2) Model reduction using proper orthogonal decomposition, by S. Volkwein,
Lecture Notes, Institute of Mathematics and Scientific Computing, University of
Graz, 2011 [737].

(3) Nonlinear model reduction for dynamical systems using sparse sensor
locations from learned libraries, by S. Sargsyan, S. L. Brunton, and J. N.
Kutz, Physical Review E, 2015 [619].

(4) An online method for interpolating linear parametric reduced-order mod-
els, by D. Amsallem and C. Farhat, SIAM Journal of Scientific Computing,
2011 [15].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

13.9. MACHINE LEARNING ROMS 627

Homework

Exercise 13-1. Consider the three functions:

f(x) = x exp(−x2), (13.31)
f(x) = exp[−(x− 0.5)2] + 3 exp[−2(x+ 3/2)2], (13.32)
f(x) = sin(πx/8) cos(πx/4), (13.33)

on the interval x ∈ [−4, 4]. Approximate each function with n � 1 points and
use r random point measurements to reconstruct the function using (i) the
first r Gauss–Hermite functions, and (ii) the first r/2 cosine and sine modes
cos(nπx/L) and sin(nπx/L), where n = 0, 2, . . . , r/2. For the reconstruction, pro-
duce the least-squares error as a function of the rank r. Ensemble the results by
considering a large number of random point measurements to produce a mean
and variance of the error statistics.

Repeat the experiment above but use the QR algorithm and the DEIM algo-
rithm to compute the r random point measurement locations. Compare the
error to the statistical distribution of errors for random measurement locations.

Exercise 13-2. Train a decoder network that maps high-fidelity, well-resolved
solutions for the Kuramoto–Sivashinsky (KS) equation in a parameter regime
where spatio-temporal chaos is exhibited to randomly chosen point measure-
ments of the system. With test data, evaluate the performance of the decoder as
a function of the r point measurements. Also evaluate statistically the stability
of the decoder for reconstruction as a function of the random point measure-
ment locations.

Exercise 13-3. Consider the nonlinear Schrödinger equation solver with DEIM
and QDEIM integration. Repeat the experiment of constructing a ROM using
r random measurements. Determine the value of r for which the ROM model
gives similar performance to DEIM and QDEIM with high probability.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Chapter 14

Physics-Informed Machine Learning

In this chapter, many of the critically enabling aspects of machine learning are
brought together for modeling problems in science and engineering. Specifi-
cally, the goal of this chapter is to highlight a number of methods that have
been recently developed under the aegis of physics-informed machine learn-
ing. The process of machine learning may be broken down into a number of key
stages, each of which provides an opportunity to embed or enforce prior phys-
ical knowledge: (1) formulating a problem to model, (2) collecting and curating
the data used to train the model, (3) choosing an architecture to best represent
or model the data, (4) designing a loss function to assess the performance of the
model and guide the learning process, and (5) selecting and implementing an
optimization algorithm to train the model to minimize the loss function over
the training data. In the following, several of these physics-informed machine
learning strategies will be investigated.

These techniques often involve the training of neural networks in the over-
all workflow. The neural networks will be denoted by

fθ(x), (14.1)

where θ are the neural network weights and f(·) characterizes the network ar-
chitecture (number of layers, structure, regularizers). The weights θ are then
optimized to minimize a loss function over training data X:

θ∗ = argminθL(θ,X). (14.2)

The various physics-informed networks highlight interesting structures and
constraints imposed on the model fθ and loss function L. Often multiple neural
networks are trained simultaneously in order to exploit a structural constraint
of a spatio-temporal system. Moreover, targeting the use of deep learning is
important to retain interpretability and explainability of models in the discov-
ery process. This is not an exhaustive survey, but rather a targeted exploration
of some methods that have had broad appeal in the community due to their

628

14.1. MATHEMATICAL FOUNDATIONS 629

effectiveness, ease of use and/or interpretability. More details can be found in
recent reviews [224, 111, 131, 375].

Importantly, parsimony has long been a guiding principle in physical mod-
eling, favoring the simplest model that describes the data to avoid overfitting
and promote generalization. This principle of parsimony has been central in
physics for centuries, from Aristotle to Einstein. In modern machine learning,
parsimony is still a guiding principle for interpretable and generalizable mod-
els, and it may be enforced through (i) a low-dimensional coordinate system,
(ii) a sparse representation of governing equations, or (iii) in capturing para-
metric dependencies.

14.1 Mathematical Foundations

Data-driven models are an emerging and important paradigm for science and
engineering. They also provide the foundational mathematical framing required
for virtual instantiations of physical systems, i.e., the digital twin. Specifically,
digital twins integrate with Kalman filtering architectures, which together pro-
duce predictions that are a combination of models and data. These data-driven
discovery tools are achieved using simple regression techniques outlined in
previous chapters that can often lead to improved interpretable and general-
izable models. Although DNN architectures are used to learn physics, there
remain critical issues concerning generalizability, interpretability, overfitting,
and significant data requirements, limiting their usefulness and computational
tractability for data-driven models. Regardless of the method used, they are
compromised in practice by limited data, corruption due to noise, unmeasured
latent variables, parametric dependences, and unaccounted-for physics. The
targeted use of data-driven techniques provides a structure for model reduc-
tion, much like autoencoder structures, which facilitates a rapid and adaptive
ROM construction paradigm with a diversity of potential methods for learning
time evolution (DMD, Koopman, SINDy, etc.).

An overarching goal in data-driven modeling is to leverage machine learn-
ing algorithms to learn physically interpretable and generalizable models of
spatio-temporal systems from offline and/or online streaming data. There are
three critical scenarios to consider, corresponding to when the baseline physical
model, or parametric form, is known, unknown, or only partially known. Thus
we seek to perform system identification from data y ∈ Rp to learn a model
in a high-dimensional state space x ∈ X ⊆ Rn, where n � 1; often p � n.
Specifically,

dx

dt
= f(x, t,θ,wd), (14.3a)

y = h(t,x(t)) + wn, (14.3b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

630 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

where the dynamics are prescribed by f : X → Rn, and the observation op-
erator is h : X → Rp. The measurements typically occur at discrete times tk,
in which case they are denoted by yk. Observations are compromised by mea-
surement noise wn, which is typically described by a probability distribution
(e.g., a normal distribution wn ∼ N (µ, σ)). The dynamics are prescribed by a
set of parameters θ. Moreover, the dynamics may be subject to stochastic effects
characterized by wd.

The goal is as follows: Given m measurements yk arranged in the matrix
Y = [y1 y2 · · · ym] ∈ Rp×m, infer the dynamics f(·) (or unknown portion of
dynamics) with parameterization θ, the measurement operator h(·), or a proxy
model of the true system, so that tasks such as control and forecasting can be
accomplished. Adding to the difficulty of the task are multi-scale and multi-
physics phenomena. Even the simplest multi-scale system can challenge many
data-driven methodologies. To be more specific, a simple two-scale system,
for example, represents difficulties in trying to extract the governing equations
which are modified to:

dx1

dt
= f1(x1,x2, t, τ,θ1,wd,1) and

dx2

dτ
= f2(x1,x2, t, τ,θ2,wd,2), (14.4)

where τ = εt (with ε� 1) is a slow scale.
If h(·) is not the identity and/or wn is not zero, then we have imperfect data.

In general, inferring f(x) is an ill-posed problem whose solution must be ac-
complished through judiciously chosen regularization. In the case of (14.4), this
is accomplished through first decomposing the data into its constitutive fast
and slow timescales.

Solving the ill-posed problem (14.3) is a fundamental scientific and math-
ematical challenge. To date, it has only been accomplished in highly special-
ized settings, typically with full-state measurements and high-quality (low-
noise) data. Significant mathematical innovations are still required in order to
make this a general and robust architecture. The multi-scale equation (14.4) re-
mains exceptionally challenging since it requires the integration of a broad set
of mathematical tools.

Sensors and Limited Data

Everything starts with data acquisition. This is often overlooked in machine
learning methods, which assume that access to the correct variables is avail-
able. Thus the mapping h(·) and its inverse are important to learn. For many
complex systems, the latent variable space is an important aspect of the dis-
covery process. For instance, time-delay embeddings [126], and recourse to
Taken’s theorem, help establish a critical connection to dynamical systems the-
ory and a potential reconstruction of the full state space with limited measure-
ments. There are four critical aspects to developing a robust sensing frame-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.1. MATHEMATICAL FOUNDATIONS 631

work: (i) sensor placement, (ii) sensor cost, (iii) discovery of the measurement
map h(·), and (iv) multi-modal data integration from diverse sensor types (video,
audio, thermal, etc.).

Recent efforts have established some of the earliest rigorous mathematical
results on formulating optimal sensor placement and minimal cost strategies
for complex spatio-temporal systems [481]. New fundamental mathematical
innovations are required to identify near optimal sensor locations for systems
with nonlinear manifold embeddings, which are typical of real data. DNNs can
be used for decoder networks capable of producing a highly improved map-
ping between the data and the underlying state space [235]. It would also be ad-
vantageous to use the time-delay embedding structure to try and reconstruct,
as best as possible, the latent variables and to reframe the greedy algorithms
based upon the time-delay data. To date, it is unknown what the limits and
mathematical possibilities are for using such a method to extract the full-state
variable x from measurements y. In addition to extracting critical information
on the state space, DNNs have been recently shown to be capable of de-noising
data sets in a manner that is comparable to, and in many cases better than,
Kalman filtering methods. Potentially helping improve these results are multi-
modal data fusion techniques which can be potentially used to help improve
decision making or predictions. Sensors are critical for determining h(·), and
targeted use of DNNs [235] suggests robust architectures for making the best
use of data collected for model discovery.

Coordinate Discovery and Data Representation

Data processed from the multi-modal sensors can discover a transformation
z = g(x) for parsimonious, low-dimensional dynamics [168, 465]

ż = F(z, t,θ,wd), (14.5)

where z ∈ Z ⊆ Rr is an r-dimensional (r � n) model of the physics speci-
fied by F(·). Ultimately, the discovery of the nonlinear transform g(·), through
training neural network autoencoders, gives the coordinates for parsimonious
dynamics F(·).

If only limited data is available, then it may be required to produce a low-
fidelity, online model using a linear map. This can be done with an r-rank
SVD/POD mode truncation of the snapshots of x. Dynamic mode decompo-
sition, or a Koopman approximation using augmented state-space measure-
ments, can then be used on this low-rank subspace to produce the best-fit lin-
ear model through the data. This provides a baseline architecture for diagnos-
tics and forecasting. As more data is required, a full nonlinear mapping and
nonlinear model can be used to refine the results, both in terms of building
a lower-rank nonlinear subspace and for producing a parsimonious nonlinear

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

632 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

dynamics. As sufficient data is acquired from the sensors, the data-discovery
pipeline then produces the flow

y ∈ Rp (measurements) −→ x ∈ Rn (state space) −→ z ∈ Rr (ROM),(14.6)

with two mappings to discover, h and g. With limited data, SVD provides a lin-
ear approximation. Refinement of the linear approximation can be learned over
time using architectures where the identity (linear) mapping is the leading-
order approximation [279, 544].

Overall, solving the ill-posed problem (14.3) is the central aim of physics-informed
machine learning. In what follows, a diversity of techniques are presented which
leverage the data to build advantageous models (neural networks, for instance)
that can be used for forecasting and characterization.

14.2 SINDy Autoencoder: Coordinates and Dynam-
ics

In this first vignette on physics-informed machine learning, we explore an ar-
chitecture capable of jointly and simultaneously learning coordinates and par-
simonious dynamics. Specifically, Champion et al. [168] present a method for
the simultaneous discovery of sparse dynamical models (SINDy) and coordi-
nates (autoencoders) that enable these simple representations. The aim in the
architecture is to leverage the parsimony and interpretability of SINDy with
the universal approximation capabilities of deep neural networks to discover
an appropriate coordinate system in which to embed the dynamics. This can
produce interpretable and generalizable models capable of extrapolation and
forecasting, since the dynamical model is minimally parameterized. The archi-
tecture is shown in Fig. 14.1, where an autoencoder is used to embed the origi-
nal data x into a new coordinate z amenable to a parsimonious representation.

While in the original coordinate system a dynamical model may be dense in
terms of functions of the original measurement coordinates x, this method de-
termines through an autoencoder a reduced coordinate system z(t) = ϕ(x(t)) ∈
Rr (r � n) where the following dynamical model holds:

dz(t)

dt
= g(z(t)). (14.7)

Specifically, a parsimonious description of the dynamics is sought where g con-
tains only a few active terms from a SINDy library. Thus, in addition to a dy-
namical model, the method learns coordinate transforms ϕ and ψ that map the
measurements to intrinsic coordinates via z = ϕ(x) (encoder) and back via
x ≈ ψ(z) (decoder).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.2. SINDY AUTOENCODER: COORDINATES AND DYNAMICS 633

Figure 14.1: Schematic of the SINDy autoencoder method for simultaneous dis-
covery of coordinates and parsimonious dynamics. (a) An autoencoder archi-
tecture is used to discover intrinsic coordinates z from high-dimensional in-
put data x. The network consists of two components: an encoder ϕ(x), which
maps the input data to the intrinsic coordinates z, and a decoder ψ(z), which
reconstructs x from the intrinsic coordinates. (b) A SINDy model captures the
dynamics of the intrinsic coordinates. The active terms in the dynamics are
identified by the non-zero elements in Ξ, which are learned as part of the NN
training. The time derivatives of z are calculated using the derivatives of x and
the gradient of the encoder ϕ. The bottom panel shows the pointwise loss func-
tion used to train the network. The loss function encourages the network to
minimize both the autoencoder reconstruction error and the SINDy loss in z
and x. Also L1 regularization on Ξ is included to encourage parsimonious dy-
namics. From Champion et al. [168].

The autoencoder is a flexible, feedforward neural network that allows one
to discover underlying low-dimensional coordinates in which to represent the
data. Thus the layers of the autoencoder learn a latent representation of a new
variable in which to express the data, in this case the evolution dynamics. Of-
ten an autoencoder is used for classification and prediction. However, here,
its targeted use is for learning a new coordinate system. Section 6.8 highlights
the use of an autoencoder to discover a low-dimensional modal embedding
for flow around a cylinder. The network is trained to output an approximate
reconstruction of its input, and the restrictions placed on the network archi-
tecture (e.g., the type, number, and size of the hidden layers) characterize the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

634 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

intrinsic coordinates [290]. The autoencoder gives a nonlinear generalization of
a principal component analysis (PCA) [46].

In many science and engineering applications, the goal is to determine the
underlying intrinsic coordinate system that best characterizes the data. For in-
stance, in celestial mechanics, it took one and a half millennia to discover that
a heliocentric coordinate system was a more appropriate choice of coordinates.
This quickly led to the discovery of the F = ma model of gravitation. Indeed,
this pairing of coordinates and model is exactly what the SINDy autoencoder
attempts to automate. In practice, it is common to discover intrinsic coordi-
nates z that are much lower in dimension than the original state-space obser-
vations x. The autoencoder learns a nonlinear embedding from measurement
data x(t) ∈ Rn to an intrinsic coordinate z(t) ∈ Rr, where r � n is chosen as a
hyperparameter prior to training the network.

Autoencoders can learn a low-dimensional representation in isolation with-
out need to specify any other constraints. This is exactly what was done in Sec-
tion 6.8 to embed fluid flow in a nonlinear coordinate system. Without further
specifications, the intrinsic coordinates learned have no particular meaning or
interpretation. However, if, in the latent space, additional constraints are im-
posed, then additional structure and meaning can be imposed on the model.
For the SINDy autoencoder model, the network is required to learn coordinates
associated with parsimonious dynamics. Thus it integrates the sparse regres-
sion framework of SINDy in the latent space, or intrinsic coordinates z. This
constraint in the autoencoder provides a regularization framework whereby
model discovery is achieved by constructing a library Θ(z) = [θ1(z),θ2(z), . . . ,θp(z)]
of candidate basis functions, e.g., polynomials, and learning a sparse set of co-
efficients Ξ = [Ξ1, . . . ,Ξr] that defines the dynamical system

dz(t)

dt
= g(z(t)) = Θ(z(t))Ξ.

Typical of SINDy, the library is specified before training occurs, where li-
brary loadings (coefficients) Ξ are learned along with the autoencoder weights
during training (optimization). Importantly, the derivatives ẋ(t) of the original
states are computed in order to pass these along to the encoder variables as
ż(t) = ∇xϕ(x(t))ẋ(t). This helps enforce accurate prediction of the dynamics
by incorporating the loss function:

Ldz/dt = ‖∇xϕ(x)ẋ−Θ(ϕ(x)T)Ξ‖2
2. (14.8)

This term uses both the typical SINDy regression along with the gradient of
the encoder to promote learning of a sparse dynamical model which accurately
predicts the time derivatives of the encoder variables. Additional loss terms
require that the SINDy predictions accurately reconstruct the time derivatives

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.2. SINDY AUTOENCODER: COORDINATES AND DYNAMICS 635

of the original data:

Ldx/dt = ‖ẋ− (∇zψ(ϕ(x)))(Θ(ϕ(x)T)Ξ)‖2
2. (14.9)

These loss terms (14.8) and (14.9) are added to the standard autoencoder loss

Lrecon = ‖x− ψ(ϕ(x))‖2
2,

which ensures that the autoencoder can accurately reconstruct the original in-
put data. To help promote sparsity in the SINDy architecture, an `1 regulariza-
tion penalty is included on the SINDy coefficients Ξ. This promotes a parsimo-
nious model for the dynamics by selecting only a small number of terms. The
combination of the above four terms gives the following overall loss function:

Lrecon + λ1Ldx/dt + λ2Ldz/dt + λ3Lreg,

where the hyperparameters λ1, λ2, and λ3 determine the relative weighting of
the three terms in the loss function.

In addition to the `1 regularization, sequential thresholding has been shown
to be an effective proxy for the `0-norm [775]. This technique is inspired by
the original algorithm used for SINDy [132], which combined least-squares fit-
ting with sequential thresholding to obtain a sparse model. Thresholding is
applied at fixed intervals throughout the training, with all coefficients below
the threshold being set to zero and training resuming using only the terms
left in the model. The Adam optimizer [386] provides a robust framework for
the optimization procedure. In addition to the loss function weightings and
SINDy coefficient threshold, training requires the choice of several other hyper-
parameters, including learning rate, number of intrinsic coordinates r, network
size, and activation functions [168]. Figure 14.2 shows the SINDy autoencoder
method applied to a video of a pendulum. From the video, it is able to learn
the underlying variables that characterize the pendulum motion, i.e., the an-
gle and its angular velocity. These latent state-space variables are learned by
enforcing SINDy, thus producing the coordinates and dynamics z̈ = − sin z of
the model correctly. This framework allows for going straight from videos to
physics discovery models.

The basic architecture developed by Champion et al. [168] is highly flexible.
Indeed, it has already been illustrated in Section 7.4 to encode a Koopman op-
erator [465]. Figure 14.3 shows how it can also be used to embed the dynamics
into its normal-form dynamics near instabilities [369]. Normal forms are excep-
tional representations of the dynamics, as they capture the underlying intrinsic
behavior with minimal parameterization. They also highlight the nature of un-
derlying instabilities, which is a critical component for understanding pattern
forming systems, for instance.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

636 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

Input video

Nonlinear pendulum

x(t) ∈ Rn Coordinate
discovery

SINDy

Figure 14.2: Illustration of the SINDy autoencoder method whereby high-
dimensional input data x(t) ∈ Rn (video of a pendulum) is used as the input
data stream. The autoencoder constructs a low-rank embedding and enforces
SINDy. As such, it discovers a latent variable space z(t) ∈ Rr where r = 2.
Specifically, it discovers the angle of the pendulum (z) and its angular velocity
ż. SINDy then learns (approximates) the underlying dynamics z̈ = − sin z.

14.3 Koopman Forecasting

Dynamic mode decomposition and Koopman theory have already been in-
troduced in previous chapters. Highlighted here is an extension of Koopman
theory whereby neural networks transform time-series data into a form more
amenable to a Koopman representation [428]. Thus, instead of transforming the
spatial coordinate system as in the last section, here a transformation of time is
learned, whereby the temporal evolution is made to be as sinusoidal as possi-
ble. In its simplest form, the underlying optimization is given by

argmin
A,B

m∑

k=1

(xk −Azk)
2 subject to zk+1 = Bzk (14.10)

for data snapshots xk, model snapshots zk, and k = 1, 2, . . . ,m. This optimiza-
tion framework is similar to DMD [422] which regresses to a best fit linear

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.3. KOOPMAN FORECASTING 637

Figure 14.3: Instabilities lead to canonical pattern formation in various physical
systems that are characterized by underlying normal forms. The autoencoder
collapses data to the underlying normal-form coordinates (z, β), with bifurca-
tion parameter β. The dynamics on the reduced coordinates (z, β) are given by
normal-form equations, which are typically given by four different canonical
forms. From Kalia et al. [369].

model. However, in this formulation, both a linear dynamic model B is learned
along with a linear mapping to the data A, allowing the mapping to be gener-
alized to a neural network embedding. It is assumed that the data is collected
over a time frame t ∈ [0, T]. In the context of forecasting, it is typically advanta-
geous to produce long-term forecasts of a system, which would further require
enforcing<{Eig(B)} = 0. Such a constraint guarantees that the solutions do not
decay to zero or grow to infinity. Enforcing this constraint allows us to rewrite

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

638 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

the original optimization problem as

argmin
A,ω

m∑

k=1

xk −A

sin(ω1tk)
...

sin(ωN tk)
cos(ω1tk)

...
cos(ωN tk)

2

= argmin
A,ω

m∑

k=1

(xk−A(Ω(ωtk)))
2, (14.11)

where the model fit is to N distinct frequencies. This is a constrained version
of Koopman. Koopman generically fits to exponentials, allowing for real and
imaginary parts of the eigenvalues. This fitting procedure is constrained only
to the imaginary part, which, as will be shown, allows for an exceptional fore-
casting tool for data that is periodic or quasi-periodic in nature.

An obvious connection to make is with the Fourier transform, and more
specifically its computational engine, the fast Fourier transform (FFT). FFT also
transforms a given time series into a frequency representation. The FFT con-
structs its representation with frequencies that are periodic on the time interval
t ∈ [0, T]. This is problematic for signals that display only a fraction of a period.
Specifically, the Gibbs phenomenon is generated due to the periodic continu-
ation enforced by the FFT. Thus many high frequencies are generated which
are artificial in nature, since the solution is forced to be periodic on t ∈ [0, T].
This makes forecasting with FFT difficult and inaccurate unless the data is sam-
pled perfectly on periodic data. The regression (14.11) provides a more gen-
eral framework, as the frequencies are determined during optimization and no
underlying periodicity on the time interval t ∈ [0, T] is assumed. As a con-
sequence, a non-convex optimization must then be performed, which is often
detrimental for gradient descent methods, which get stuck in local minima. To
overcome the issues with non-convex optimization, the FFT is used to seed the
gradient descent algorithm used for (14.11), thus providing a more stable al-
gorithm for the frequency fitting procedure. This allows the global properties
of the FFT to inform the local frequencies that should be optimized upon in
gradient descent [428].

In addition to generalizing the FFT, Lange et al. [428] go further and warp the
time-series data to be more amenable to Fourier analysis. Specifically, neural
networks are used to transform data from its original form into data that is
more sinusoidal in nature with as few frequencies as possible. This is done by
replacing the linear operator A in (14.11) with a nonlinear (neural network)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.3. KOOPMAN FORECASTING 639

Table 14.1: Performance in long-term forecasting of distribution-level energy
consumption as measured by the relative cumulative error for various algo-
rithms. Note that long-term predictions are obtained by recursively feeding
predictions back into algorithms where applicable. Furthermore, the column
“Patterns” indicates whether the algorithms at hand have successfully ex-
tracted daily (D), weekly (W) or yearly (Y) patterns.

Algorithm Forecast horizon Patterns
25% 50% 75% 100% D W Y

Koopman forecast 0.19 0.21 0.19 0.19 3 3 3

Fourier forecast 0.31 0.39 0.33 0.30 3 3 3

LSTM 0.37 0.4 0.42 0.45 3 7 7

GRU 0.53 0.55 0.52 0.50 3 7 7

Echo state network 0.67 0.73 0.76 0.73 3 7 7

AR(1, 12, 24, 168, 4380, 8760) 0.75 0.95 1.07 1.13 3 3 3

CW-RNN (data clocks) 1.10 1.14 1.14 1.15 (3) 7 7

CW-RNN 1.05 1.08 1.08 1.09 (3) 7 7

AutoARIMA 0.83 1.11 1.18 1.26 7 7 7

Temporal convolutional nets 0.96 1.69 1.87 2.33 3 (3) 7

Fourier neural networks 1.10 1.15 1.21 1.21 3 7 7

transformation

argmin
A,ω

m∑

k=1

xk − fθ

sin(ω1tk)
...

sin(ωN tk)
cos(ω1tk)

...
cos(ωN tk)

2

= argmin
A,ω

m∑

k=1

(xk − fθ(Ω(ωtk)))
2,

(14.12)
where fθ defines the neural network that is learned for best representing the
signal in N learned frequencies. This problem is nonlinear and non-convex, yet
global optima can be computed [428]. Indeed, the loss function is periodic in
nature, and this is exploited in the training process as well.

The Koopman forecasting method that is enabled by training (14.12) pro-
vides a mid- to long-term forecasting algorithm that has superior performance.
Table 14.1 compares a number of techniques on power grid data, from leading
statistical time-series methods to state-of-the-art machine learning algorithms
for time series, against the Koopman forecasting tool (14.12) along with its
Fourier forecasting counterpart (14.11). Both methods provide superior perfor-
mance, with the Koopman forecasting producing improvements that are sig-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

640 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

nificant.
A number of further examples are given in Fig. 14.4. Specifically, it shows

the performance of the Fourier-based algorithm graphically, predicting the last
time frame for a Kolmogorov 2D flow, flow around a cylinder, flow over a cav-
ity, and a video of a fan. The data from the Kolmogorov 2D flow was taken
from the experiments conducted in [705]. Note that the Kolmogorov 2D flow
and the data for the video frame prediction task constitute real measurements
and therefore exhibit a considerable amount of noise, whereas the cylinder and
cavity flow data are from simulation. The codes for the Fourier and Koopman
forecasting algorithms are available at https://github.com/helange23/
from_fourier_to_koopman.

14.4 Learning Nonlinear Operators

The universal approximation capabilities of neural networks are well known.
Specifically, neural networks can generically approximate any continuous func-
tion. More recently, Lu et al. [461] (DeepONet) and Kovachki et al. [407] (neural
operator) have highlighted results by Chen and Chen [174] that prove that neu-
ral networks with a single hidden layer can accurately approximate any non-
linear continuous operator. Thus a nonlinear operator is learned mapping func-
tions to functions. In practice, this is perhaps an even more impactful theory, as
the operator is often the more important quantity to compute, since the oper-
ator contains information about the physics and dynamics of the system. Note
that this approach is fundamentally different than what was considered in the
previous section with Koopman theory. Koopman theory attempts to approxi-
mate the dynamics with a linear operator while Lu et al. [461] and Kovachki et
al. [407] directly construct a nonlinear operator using neural networks.

The original work of Chen and Chen [174] constructs a universal approx-
imation proof of an operator that DeepONet constructs through training. The
theorem is the following:

Theorem (Universal approximation theorem for operators). Suppose that σ is
a continuous non-polynomial function, X is a Banach space, K1 ⊂ X and K2 ⊂ Rd

are two compact sets in X and Rd, respectively, V is a compact set in C(K1), and G
is a nonlinear continuous operator, which maps V into C(K2). Then, for any ε > 0,
there are positive integers n, p,m, constants cki , ξkij, θki , ζk ∈ R, ωk ∈ Rd, and xj ∈ K1,
where i = 1, 2, . . . , n, k = 1, 2, . . . , p, and j = 1, 2, . . . ,m, such that

∣∣∣∣∣G(u)(y)−
p∑

k=1

n∑

i=1

cki σ

(
m∑

j=1

ξkiju(xj) + θki

)
σ(ωky + ζk)

∣∣∣∣∣ < ε (14.13)

holds for all u ∈ V and y ∈ K2.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/helange23/from_fourier_to_koopman
https://github.com/helange23/from_fourier_to_koopman

14.4. LEARNING NONLINEAR OPERATORS 641

Figure 14.4: The last frame as predicted by PCA in conjunction with the
Fourier-based algorithm of fluid flows and video frame prediction. For a video
that shows the performance, visit https://www.youtube.com/watch?v=
trbXYMqi2Tw. From Lange et al. [428].

The theorem provides theoretical bounds on the ability of a neural network to
approximate the operator G(·). The theorem also highlights the construction of
two neural networks, so that it can be more compactly represented as

|G(u)(y)− fθ1(u) · f̃θ2(y)| < ε (14.14)

when considering the discretized representation of u(x)→ u and new measure-
ment (function evaluation) locations y → y. Figure 14.5 highlights the neural

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://www.youtube.com/watch?v=trbXYMqi2Tw
https://www.youtube.com/watch?v=trbXYMqi2Tw

642 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

X

Branch net

Trunk net

sensor locations
xk

x1

x2

...

xm fθ1

f̃θ2

arbitrary locations
yk

Input data (uk=u(xk)→ u)
u

y

G = fθ1 · f̃θ2

Figure 14.5: Architecture for learning nonlinear operators. The DeepONet
trains two networks: (i) a branch network fθ1 that maps the original field vari-
able u evaluated at m measurement points xk (where uk = u(xk)) to a latent
representation Hb; and (ii) a trunk network f̃θ2 that maps arbitrary and new
spatial locations y to a latent representation Ht ∈ p. The operator is then given
by the expression from Chen and Chen [174] as G = fθ1 · f̃θ2 .

network trained by Lu et al. [461] that leverages the universal operator ap-
proximation theorem of Chen and Chen [174]. The two simultaneously trained
networks are called the branch network fθ1(u) and the trunk network f̃θ2(y).

Mathematically, the concept is quite simple. Given a number of measure-
ment (sensor) locations xk (usually selected from a computational grid) which
prescribes the input function uk = u(xk), a vector of training input data u can
be constructed. The input data has corresponding output data G(u). In addi-
tion, training data mapping selections of random measurement points y to
the output G(u)(y) is required. Thus the input functions u are encoded in a
separate network than the location variables y. These are merged at the end,
as shown in the universal approximation proof of Chen and Chen [174]. Fig-
ure 14.6 shows the results of training from the original DeepONet paper of
Lu et al. [441, 461] on a reaction–diffusion system. DeepONet also can achieve
small generalization errors by employing inductive biases. Remarkably, expo-
nential convergence is observed in the deep learning algorithm. The code is

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.4. LEARNING NONLINEAR OPERATORS 643

Figure 14.6: Learning a reaction–diffusion system with DeepONet. (A) An ex-
ample of a random sample of the input function u(x) (left). The corresponding
output function s(x, t) at P different (x, t) locations (middle). Pairing of inputs
and outputs at the training data points (right). The total number of training
data points is the product of P times the number of samples of u. (B) Training
error (blue) and test error (red) for different values of the number of random
points P when 100 random u samples are used. (C) Training error (blue) and
test error (red) for different number of u samples when P = 100. The shaded
regions denote one standard deviation. From Lu et al. [461].

available at https://github.com/lululxvi/deepxde.
Neural operators are a closely related method for producing mappings be-

tween function spaces, thus allowing for the approximation of operators that
encode governing equations and physics [407, 441, 442, 443]. Neural operators
generalize standard feedforward neural networks to learn mappings between
infinite-dimensional spaces of functions defined on bounded domains of Rd.
The non-local component of the architecture is instantiated either through a pa-
rameterized integral operator or through multiplication in the spectral domain,
which is a specific form of the kernel in the integral operator. As with Deep-
ONet, neural operators, once trained, have the property of being discretization-
invariant: sharing the same network parameters between different discretiza-
tions of the underlying functional data. This is their specific advantage: neural
operators and DeepONets are mesh-free methods once trained.

Neural operators have a different structure than DeepONet. Specifically,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github. com/lululxvi/deepxde

644 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

they leverage an integral kernel representation in their approximation of the
operator. For instance, neural operators can make explicit use of multi-pole
[442] and Fourier [441] kernels in order to construct operator representations.
Thus nonlocal representations of the solution are parameterized by the inte-
gral operator. Recall that learning a nonlinear operator G(·) is equivalent to
learning the inverse of the PDE evolution u̇ = N(u). Thus kernel operators are
intuitively appealing for the construction of the nonlinear operator. The overall
representation of the operator is a trained neural network

G = fθ (14.15)

where individual layers of the neural network are constructed from learned
integral representations that are updated according to the following:

uk+1(x) = σk+1

(
Wtuk +

∫

Dk

K(k)(x, y)uk(y) dνk(y) + bk(x)

)
(14.16)

where νk is a Lebesgue measure on Rdt . The kernel K(k)(x, y) is typically cho-
sen to leverage advantageous representations, such as the multi-pole or Fourier
kernels. Thus each layer of the network is trained using a physics-inspired con-
cept of an integral (inverse) representation of the PDE dynamics. The kernel
representation is strongly motivated by the concept of the Green’s function,
which provides a fundamental solution for linear PDEs by expressing the solu-
tion as an integration over the Green’s function kernel.

Although both neural operators and DeepONets accomplish the same goal,
they do so with different architectures. Neural operators exploit the kernel
structure of generic operators, while DeepONets train by separating the input
function from the spatial locations. Both have achieved promising results, high-
lighting the fact that the learning of operators can potentially allow for mesh-
free models of physics systems. Of course, in order for this to be viable in prac-
tice, exceptional large training data that resolves all scales is required for train-
ing. Figure 14.7 highlights the results from Kovachki et al. [407] where neural
operators are used to model fluid flows. The codes are available at https://
github.com/zongyi-li/graph-pde and https://github.com/zongyi-li/
fourier_neural_operator.

14.5 Physics-Informed Neural Networks (PINNs)

An elegant solution technique for solving many physics-based problems is the
physics-informed neural network (PINN) pioneered by Raissa, Perdikaris, and
Karniadakis [584]. The method is simple in concept: find a solution to a PDE
by enforcing satisfaction of the PDE in the neural network loss function. The

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/zongyi-li/graph-pde
https://github.com/zongyi-li/graph-pde
https://github. com/zongyi-li/fourier_neural_operator
https://github. com/zongyi-li/fourier_neural_operator

14.5. PHYSICS-INFORMED NEURAL NETWORKS (PINNS) 645

Figure 14.7: Zero-shot super-resolution. The vorticity field of the solution to
the two-dimensional Navier–Stokes equation with viscosity 104 (Re = O(200)).
The ground truth is on the top and prediction on the bottom. The model is
trained on data that is discretized on a uniform 64 × 64 spatial grid and a 20-
point uniform temporal grid. The model is evaluated with a different initial
condition that is discretized on a uniform 256×256 spatial grid and an 80-point
uniform temporal grid. From Kovachki et al. [407].

method can be used both for approximating the solution of a PDE and also for
system identification, much like the SINDy algorithm.

To be more mathematically precise, we again consider generically a system
of nonlinear PDEs of a single spatial variable that can be modeled as

ut = N(u,ux,uxx, . . . , x, t;β) + g, (14.17)

where the subscripts denote partial differentiation, g is a forcing, and N(·) pre-
scribes the generically nonlinear evolution. The parameter β will represent
a bifurcation parameter for our later considerations. Further, associated with
(14.17) are a set of initial and boundary conditions on a domain x ∈ [−L,L].

PINNs define the function

f := ut −N(u,ux,uxx, . . . , x, t;β). (14.18)

The original formulation by Raissa et al. [584] was generalized to the represen-
tation of the PDE as L(u,θ). Figure 14.8 highlights the basic architecture. The
goal is to determine an approximation ũ to the spatio-temporal data u. Not only
should the approximation satisfy the PDE, it should also fit the actual data and
its boundary and initial conditions. To be more precise, there is a neural net-
work trained to map the spatio-temporal location to the data. The loss function
for this is given by

Lu =
N∑

k=1

‖u− ũ‖. (14.19)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

646 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

Figure 14.8: Schematic of a PINN architecture, where the loss function of the
trained neural network contains a mismatch in the given data on the state vari-
ables and/or boundary and initial conditions. In addition, the loss function is
required to minimize the loss satisfying the PDE evolution. From Meng et al.
[496].

Note that by choosing data points at x = ±L and/or t = 0, the boundary
and initial conditions are satisfied, respectively. In addition, the approximation
should satisfy the PDE

Lf =
N∑

k=1

‖f − g‖. (14.20)

The neural network is then trained to minimize the loss functions. In summary:
one trains the network to find a solution ũ that best matches the data and satis-
fies the PDE.

The PINN architecture was also used to perform system identification tasks,
i.e., discover the underlying governing equations [584]. In this case, the PDE is
formulated in much the same way as the SINDy algorithm, where now

f := ut − θ(u)Ξ, (14.21)

and the coefficients Ξ are also determined in the regression process. Figure 14.8
shows the potential library terms in green, which can be used to construct the
governing equations. The loadings Ξ dictate which terms contribute. In the
original work, the library of dynamic terms θ was quite limited, unlike SINDy,
which builds a large library of potential terms.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.5. PHYSICS-INFORMED NEURAL NETWORKS (PINNS) 647

Figure 14.9: Burgers’ equation. (top) Predicted solution u(x, t) along with the
initial and boundary training data. In addition, 10 000 collocation points were
used as data generated using a Latin hypercube sampling strategy. (bottom)
Comparison of the predicted and exact solutions corresponding to the three
temporal snapshots depicted by the white vertical lines in the top panel. From
Raissa et al. [584].

Two figures illustrate the power of the PINNs. In the first (Fig. 14.9), training
data is used to build a representation of Burgers’ equation. The PINN model
converges to an accurate representation of the PDE dynamics and can then
serve as a proxy to computational data. In fact, one simply needs to specify time
and space to produce a value of the field u. In the second example (Fig. 14.10),
the Korteweg–de Vries (KdV) equation is analyzed with the PINN. The PINN
not only produces an accurate neural network proxy for the spatio-temporal
field, but also further identifies the PDE dynamics by identifying the parame-
ters in front of the appropriate terms. The success, modularity, and simplicity
of PINNs has led to significant advancements and extensions of the method,
many of which are reviewed by Karniadakis et al. [375]. Krishnapriyan et al.
[413] have also recently modified PINN architectures with improved regular-
ization to help make them more amenable to complex systems.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

648 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

Figure 14.10: KdV equation. (top) Solution u(x, t) along with the temporal loca-
tions of the two training snapshots. (middle) Training data and exact solution
corresponding to the two temporal snapshots depicted by the dashed vertical
lines in the top panel. (bottom) Correct partial differential equation along with
the identified one obtained by learning Ξ. From Raissa et al. [584].

14.6 Learning Coarse-Graining for PDEs

The modeling of multi-scale physics remains particularly challenging due to
the need of numerical algorithms to resolve spatial and temporal scales that
can vary across many orders of magnitude. Even if one is interested in macro-
scale phenomena, accurate models are only produced by resolving the fastest
timescales and finest spatial resolutions. This generates significant computa-
tional expense. Two common methods have been used to circumvent this com-
putational expense: multi-grid methods and coarse graining. Multi-grid meth-
ods [494, 721], for instance, have been extensively developed for physics-based
simulation models, where coarse-grained models must be progressively refined

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.6. LEARNING COARSE-GRAINING FOR PDES 649

in order to achieve a required numerical precision while keeping the simula-
tion tractable. Multi-grid architectures provide a principled method for target-
ing the refinement process, constituting a mature field with widespread appli-
cations in the engineering and physical sciences. In contrast, coarse-graining
methods attempt to construct a macro-scale physics model by progressive con-
struction of coarse-grained variables and their dynamics. Mathematical algo-
rithms such as the heterogeneous multi-scale modeling (HMM) [748, 749] and equation-
free method [383] provide principled methods for multi-scale systems. Addi-
tional work has focused on testing for the presence of multi-scale dynamics,
so that analyzing and simulating multi-scale systems is more computationally
efficient [254, 255].

Deep learning and neural networks provide an alternative to these multi-
scale modeling efforts. In this case, the goal is to train a neural network to
coarse-grain a model directly from data. Featured here is work by Bar-Sinai
et al. [52], who, instead of deriving an approximate coarse-grained continuum
model and discretizing it, suggest directly learning low-resolution discrete mod-
els that encapsulate unresolved physics. Consider the governing PDE (14.17).
Numerical discretization immediately turns the continuous PDE into an n-
dimensional system of coupled differential equations. This is best illustrated
by finite-difference discretization. Finite-difference methods generate a solu-
tion vector u = [u1 u2 · · · un]T , where uk = u(xk). Derivatives are then com-
puted by using differences in uk. For instance, the first derivative is given by

∂uk
∂x
≈ uk+1 − uk−1

2∆x
, (14.22)

where ∆x = xk+1 − xk. Thus the value of the field at uk depends on the neigh-
bors uk±1. This creates a global coupling between all discretization points. Of
course, there are alternatives to differentiation using finite differences, includ-
ing polynomial expansions and spectral methods. But each, in turn, generates
coupling between n differential equations. For instance, spectral methods gen-
erate coupling in global Fourier modes [420].

Ultimately, differentiation schemes result in a general expression of the form

∂puk
∂xp

≈
n∑

k=1

α
(p)
k uk, (14.23)

where α(p)
k are pre-computed coefficients from a prescribed differentiation scheme.

Importantly, error estimates are directly related to the spatial discretization ∆x.
The discretization must be small enough to resolve all spatial scales, and thus
it sets the resolution limit and computational time required to solve the PDE.
Similarly, discretization of time generates a corresponding ∆t, which is related
to ∆x through a Courant–Friedrichs–Lewy (CFL) condition for the stability of
a numerical scheme [420].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

650 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

Figure 14.11: Neural network architecture. During training, the model is op-
timized to predict cell-average time derivatives or time-evolved solution val-
ues from cell-average values, based on a pre-computed data set of snapshots
from high-resolution simulations. During inference, the optimized model is re-
peatedly applied to predict the time evolution using the method of lines. From
Bar-Sinai et al. [52].

Standard schemes use one set of pre-computed coefficients for all points
in space, while more sophisticated methods alternate between different sets of
coefficients according to local rules. Regardless, the governing PDE (14.17) is
now the high-dimensional system of ODEs

duk
dt

= N(u,u1,u2, . . . ,un, x, t;β). (14.24)

One criticism of this discretized model is the computational cost of simulating
it if there are significant time and space scales that need to be resolved.

Bar-Sinai et al. [52] learn directly from data a flexible parameterization of the
derivative (14.23). The training data in this case are highly resolved simulations
of the multi-scale dynamics. From such simulations, a model can be learned for
the coefficients α(p)

k . Indeed, the coefficients α(p)
k are learned (chosen) in order

to model the coarse-grained dynamics most accurately. Figure 14.11 shows the
architecture used to train such a model. The philosophy behind this parameter-
ization can be carried over to time integration as well. Importantly, the integra-
tor must be numerically stable and also generalize as best as possible. This is
achieved in Bar-Sinai et al. [52] by leveraging a multi-layer neural network to
parameterize the solution manifold. The multi-layer network’s flexibility also
allows one to impose physical constraints and interpretability through choice
of model architecture. Details of the neural network and its implementation can

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.6. LEARNING COARSE-GRAINING FOR PDES 651

be found at https://github.com/google/data-driven-discretization-1d.
Figure 14.12 compares the integration results for a particular realization of

the forcing of Burgers’ equation for different values of the resampling factor,
that is, the ratio between the number of grid points in the low-resolution cal-
culation and that of the fully converged solution. The learned models, with
both constant and solution-dependent coefficients, can propagate the solution
in time and dramatically outperform the baseline method at low resolution.
Importantly, the ringing effect around the shocks, which leads to numerical in-
stabilities, is practically eliminated. Since the model is trained on fully resolved
simulations, a crucial requirement for the method to be of practical use is that
training can be done on small systems, but still produce models that perform
well on larger ones. This is expected to be the case, since the models, being
based on convolutional neural networks, use only local features and by con-
struction are translation-invariant. Figure 14.12B illustrates the performance of
the model trained on the domain [0, 2π] for predictions on a 10-times larger spa-
tial domain of size [0, 20π]. The learned model generalizes well. For example,
it shows good performance when function values are all positive in a region
of size greater than 2π, which, due to the conservation law, cannot occur in the
training data set. Overall, the work of Bar-Sinai et al. [52] provides an elegant
closure solution for the parameterization of fine-scale physics, something that
is of high value for producing reasonable solution times for multi-scale physics
systems.

An alternative deep learning approach uses a multi-resolution convolutional
autoencoder (MrCAE) [450] architecture that integrates and leverages three highly
successful mathematical architectures: (i) multi-grid methods, (ii) convolutional
autoencoders, and (iii) transfer learning. The method provides an adaptive,
hierarchical architecture that capitalizes on a progressive training approach
for multi-scale spatio-temporal data. This framework allows for inputs across
multiple scales: starting from a compact (small number of weights) network
architecture and low-resolution data, this network progressively deepens and
widens itself in a principled manner to encode new information in the higher-
resolution data based on its current performance of reconstruction. Basic trans-
fer learning techniques are applied to ensure information learned from previ-
ous training steps can be rapidly transferred to the larger network. As a re-
sult, the network can dynamically capture different scaled features at different
depths of the network. For details, see https://github.com/luckystarufo/
MrCAE.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/google/data-driven-discretization-1d
https://github.com/luckystarufo/MrCAE
https://github.com/luckystarufo/MrCAE

652 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

Figure 14.12: Time integration results for Burgers’ equation. (A) A particu-
lar realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, weighted essentially non-oscillatory (WENO), op-
timized constant coefficients with Godunov flux (Opt. God.), and the neural
network (NN), with the white region indicating times when the solution di-
verged. Both learned methods manifestly outperform the baseline method and
even outperform WENO at coarse resolutions. (B) Inference predictions for the
32× neural network model, on a 10 times larger spatial domain (only partially
shown). The box surrounded by the dashed line shows the spatial domain
used for training. (C) Mean absolute error between integrated solutions and
the ground truth, averaged over space, times less than 15, and 10 forcing real-
izations on the 10-times larger inference domain. These metrics almost exactly
match results on the smaller training domain [0, 2π]. As ground truth, we use
WENO simulations on a 1× grid. Markers are omitted if some simulations di-
verged or if the average error is worse than fixing u = 0. From Bar-Sinai et al.
[52].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.7. DEEP LEARNING AND BOUNDARY VALUE PROBLEMS 653

14.7 Deep Learning and Boundary Value Problems

Thus far, boundary value problems (BVPs) have not been discussed. How-
ever, the differential and partial differential equations that represent BVPs are
amenable to all the data-driven methods discussed thus far. As an example of
how deep learning can be used in the context of BVPs, we consider the ubiq-
uitous Green’s function. The Green’s function constructs the solution to a BVP
for any given forcing by linear superposition. Specifically, consider the classical
linear BVP [673]

L[v(x)] = f(x), (14.25)

where L is a linear differential operator, f is a forcing, x ∈ Ω is the spatial co-
ordinate, and Ω is an open set. The boundary conditions B(x) = 0 are imposed
on ∂Ω with a linear operator B. The fundamental solution is constructed by
considering the adjoint equation

L†[G(x, ξ)] = δ(x− ξ), (14.26)

whereL† is the adjoint operator (along with its associated boundary conditions)
and δ(x−ξ) is the Dirac delta function. Taking the inner product of (14.25) with
respect to the Green’s function gives the fundamental solution

v(x) = (f(ξ), G(ξ,x)) =

∫

Ω

G(ξ,x)f(ξ) dξ, (14.27)

which is valid for any forcing f(x). Thus, once the Green’s function is com-
puted, the solution for arbitrary forcing functions can be extracted from inte-
gration. This integration represents a superposition of a continuum of delta
function forcings that are used to represent f(x). The Green’s function was a
motivating example in the neural operator approach [407, 441, 442, 443] since it
provides a kernel representation of the solution. Of course, the Green’s function
only works for linear problems, since superposition of solutions must hold.

Neural networks can, however, transform our view of Green’s functions.
Specifically, as already illustrated in previous sections, data-driven modeling
can jointly learn coordinates and models. Thus, for BVPs, one can learn a coor-
dinate transformation and kernel representation jointly, which would allow for
the Green’s function methodology. Thus we can turn nonlinear problems lin-
ear so as to exploit linear superposition. Indeed, in many modern applications,
nonlinearity plays a fundamental role so that the BVP is of the form

N [u(x)] = F (x), (14.28)

where N [·] is a nonlinear differential operator. For this case, the principle of
linear superposition no longer holds and the notion of a fundamental solution

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

654 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

Figure 14.13: DeepGreen architecture. Two autoencoders learn invertible coor-
dinate transformations that linearize a nonlinear boundary value problem. The
latent space is constrained to exhibit properties of a linear system, including
linear superposition, which enables discovery of a Green’s function for nonlin-
ear boundary value problems. From Gin et al. [280].

is lost. However, modern deep learning algorithms allow us the flexibility of
learning coordinate transformations (and their inverses) of the form

v = ψ(u), (14.29a)
f = φ(F), (14.29b)

such that v and f satisfy the linear BVP (14.25) for which we generated the fun-
damental solution (14.27). This gives a nonlinear fundamental solution through
use of this deep learning transformation.

DeepGreen [280] leverages the success of DNNs for dynamical systems to
discover coordinate transformations that linearize nonlinear BVPs so that the
Green’s function solution can be recovered. This allows for the discovery of
the fundamental solutions for nonlinear BVPs, opening many opportunities for
the engineering and physical sciences. DeepGreen exploits physics-informed
learning by using autoenconders (AEs) to take data from the original high-
dimensional input space to the new coordinates at the intrinsic rank of the un-
derlying physics [168, 465, 544]. The architecture also leverages the success of
deep residual networks (DRNs) [317], which enables our approach to efficiently

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

14.7. DEEP LEARNING AND BOUNDARY VALUE PROBLEMS 655

Figure 14.14: Summary of results for three one-dimensional models. The mod-
els are provided with the Green’s function learned by DeepGreen. A summary
box plot shows the relative losses for all three model systems. The loss func-
tions are shown in Fig. 14.13 and are associated with the autoencoder, linearity,
and cross-mapping. From Gin et al. [280].

handle near-identity coordinate transformations [279]. Figure 14.13 highlights
the deep learning approach which leverages a dual autoencoder architecture.
DeepGreen transforms a nonlinear BVP to a linear BVP, solves the linearized
BVP, and then inverse-transforms the linear solution to solve the nonlinear BVP.
Figure 14.14 highlights the nonlinear Green’s functions found for a number of
prototype nonlinear BVPs. The success of the algorithm again shows how mul-
tiple neural networks can be simultaneously trained to produce high-quality
characterizations of physics-based problems.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

656 CHAPTER 14. PHYSICS-INFORMED MACHINE LEARNING

Suggested Reading and Homework

Exercise 14-1. Read and reproduce the results of Champion et al. [168]:

https://github.com/kpchamp/SindyAutoencoders

Exercise 14-2. Read and reproduce the results of Lange et al. [428]:

https://github.com/helange23/from_fourier_to_koopman

Exercise 14-3. Read and reproduce the results of Lu et al. [461]:

https://github.com/lululxvi/deepxde

Exercise 14-4. Read and reproduce the results of Kovachki et al. [407]:

https://github.com/zongyi-li/graph-pde

https://github.com/zongyi-li/fourier_neural_operator

Exercise 14-5. Read and reproduce the results of Raissa et al. [584]:

https://github.com/maziarraissi/PINNs

Exercise 14-6. Read and reproduce the results of Bar-Sinai et al. [52]:

https://github.com/google/data-driven-discretization-1d

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/kpchamp/SindyAutoencoders
https://github.com/helange23/from_fourier_to_koopman
https://github.com/lululxvi/deepxde
https://github.com/zongyi-li/graph-pde
https://github.com/zongyi-li/fourier_neural_operator
https://github.com/maziarraissi/PINNs
https://github.com/google/data-driven-discretization-1d

Glossary

Actor–critic – A reinforcement learning algorithm that simultaneously learns a
policy function and a value function, with the goal of taking the best from both.

Adjoint – For a finite-dimensional linear map (i.e., a matrix A), the adjoint
A∗ is given by the complex conjugate transpose of the matrix. In the infinite-
dimensional context, the adjoint A∗ of a linear operator A is defined so that
〈Af, g〉 = 〈f,A∗g〉, where 〈·, ·〉 is an inner product.

Agent – In reinforcement learning (RL), an agent senses the state s of its envi-
ronment and learns to take appropriate actions a to achieve an optimal future
reward r.

Akaike information criterion (AIC) – An estimator of the relative quality of
statistical models for a given set of data. Given a collection of models for the
data, AIC estimates the quality of each model, relative to each of the other mod-
els. Thus, AIC provides a means for model selection.

Autoencoder – Autoencoders are a class of machine learning models that are
used to learn efficient latent codings of unlabeled data (unsupervised learning).
Autoencoders learn efficient codings by performing nonlinear dimensionality
reduction. Autoencoders are typically trained with both an encoding layer and
a decoding layer so that one can map to the latent representation and back.

Backpropagation (backprop) – A method used for computing the gradient de-
scent required for the training of neural networks (NNs). Based upon the chain
rule, backprop exploits the compositional nature of NNs in order to frame an
optimization problem for updating the weights of the network. It is commonly
used to train deep neural networks (DNNs).

Balanced input–output model – A model expressed in a coordinate system
where the states are ordered hierarchically in terms of their joint controllability
and observability. The controllability and observability Gramians are equal and
diagonal for such a system.

657

658 Glossary

Bayesian information criterion (BIC) – An estimator of the relative quality of
statistical models for a given set of data. Given a collection of models for the
data, BIC estimates the quality of each model, relative to each of the other mod-
els. Thus, BIC provides a means for model selection.

Bellman optimality – A cornerstone of dynamic programming, stating that an
optimal multi-step sequence must also be locally optimal in every sub-sequence
of steps.

Classification – A general process related to categorization, the process in which
ideas and objects are recognized, differentiated, and understood. Classification
is a common task for machine learning algorithms.

Closed-loop control – A control architecture where the actuation is informed
by sensor data about the output of the system.

Clustering – A task of grouping a set of objects in such a way that objects in
the same group (called a cluster) are more similar (in some sense) to each other
than to those in other groups (clusters). It is a primary goal of exploratory data
mining, and a common technique for statistical data analysis.

Coherent structure – A spatial mode that is correlated with the data from a
system.

Compressed sensing – The process of reconstructing a high-dimensional vec-
tor signal from a random undersampling of the data using the fact that the
high-dimensional signal is sparse in a known transform basis, such as the Fourier
basis.

Compression – The process of reducing the size of a high-dimensional vec-
tor or array by approximating it as a sparse vector in a transformed basis. For
example, MP3 and JPG compression use the Fourier basis or wavelet basis to
compress audio or image signals.

Control theory – The framework for modifying a dynamical system to conform
to desired engineering specification through sensing and actuation.

Controllability – A system is controllable if it is possible to steer the system to
any state with actuation. Degrees of controllability are determined by the con-
trollability Gramian.

Convex optimization – An algorithmic framework for minimizing convex func-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Glossary 659

tions over convex sets.

Convolutional neural network (CNN) – A class of deep, feedforward neural
networks that is especially amenable to analyzing natural images. The convo-
lution is typically a spatial filter which synthesizes local (neighboring) spatial
information.

Cross-validation – A model validation technique for assessing how the results
of a statistical analysis will generalize to an independent (withheld) data set.

Data matrix – A matrix where each column vector is a snapshot of the state of
a system at a particular instant in time. These snapshots may be sequential in
time, or they may come from an ensemble of initial conditions or experiments.

Deep learning – A class of machine learning algorithms that typically uses
deep convolutional neural networks (CNNs) for feature extraction and trans-
formation. Deep learning can leverage supervised (e.g., classification) and/or
unsupervised (e.g., pattern analysis) algorithms, learning multiple levels of
representations that correspond to different levels of abstraction; the levels form
a hierarchy of concepts.

Deep reinforcement learning – Reinforcement learning algorithms that lever-
age deep neural networks, such as deep policy networks and deep Q-learning.

DeepONet – DeepONets are a class of machine learning models for sequential
data typically generated by a deterministic dynamical system. Specifically, a
DeepONet learns the underlying operator associated with the dynamical sys-
tem or PDE. DeepONets train two neural networks simultaneously: one for en-
coding the input function at a fixed number of sensors/measurement locations
(branch net), and another for encoding the locations for the output function
(trunk net).

DMD amplitude – The amplitude of a given DMD mode (see Dynamic mode
decomposition) as expressed in the data. These amplitudes may be interpreted
as the significance of a given DMD mode, similar to the power spectrum in the
fast Fourier transform (FFT).

DMD eigenvalue – Eigenvalues of the best-fit DMD operator A (see Dynamic
mode decomposition) representing an oscillation frequency and a growth or de-
cay term.

DMD mode (also dynamic mode) – An eigenvector of the best-fit DMD opera-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

660 Glossary

tor A (see Dynamic mode decomposition). These modes are spatially coherent and
oscillate in time at a fixed frequency and a growth or decay rate.

Dynamic mode decomposition (DMD) – The leading eigendecomposition of
a best-fit linear operator A = X′X† that propagates the data matrix X into a
future data matrix X′. The eigenvectors of A are DMD modes and the corre-
sponding eigenvalues determine the time dynamics of these modes.

Dynamic programming – A powerful optimization approach used extensively
for optimal nonlinear control and reinforcement learning. Dynamic program-
ming reformulates large multi-step optimization problems into a recursive op-
timization of smaller sub-problems, relying on Bellman’s principle of optimal-
ity.

Dynamical system – A mathematical model for the dynamic evolution of a
system. Typically, a dynamical system is formulated in terms of ordinary dif-
ferential equations (ODEs) on a state space. The resulting equations may be
linear or nonlinear and may also include the effect of actuation inputs and rep-
resent outputs as sensor measurements of the state.

Eigensystem realization algorithm (ERA) – A system identification technique
that produces balanced input–output models of a system from impulse-response
data. ERA has been shown to produce equivalent models to balanced proper
orthogonal decomposition (BPOD) and dynamic mode decomposition (DMD)
under some circumstances.

Emission – The measurement functions for a hidden Markov model.

Environment – The external system or world in which a reinforcement learn-
ing agent takes actions to interact with. Often, the environment is a Markov
decision process.

Fast Fourier transform (FFT) – A numerical algorithm to compute the discrete
Fourier transform (DFT) in O(n log(n)) operations. The FFT has revolutionized
modern computations, signal processing, compression, and data transmission.

Feedback control – Closed-loop control where sensors measure the downstream
effect of actuators, so that information is fed back to the actuators. Feedback is
essential for robust control where model uncertainty and instability may be
counteracted with fast sensor feedback.

Feedforward control – Control where sensors measure the upstream distur-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Glossary 661

bances to a system, so that information is fed forward to actuators to cancel
disturbances proactively.

Fourier transform – A change of basis used to represent a function in terms of
an infinite series of sines and cosines.

Galerkin projection – A process by which governing partial differential equa-
tions (PDEs) are reduced into ordinary differential equations (ODEs) in terms
of the dynamics of the coefficients of a set of orthogonal basis modes that are
used to approximate the solution.

Gated recurrent unit (GRU) – GRUs are a class of machine learning models
for sequential data. GRUs are a subset of RNNs and LSTMs, but with a forget
gate and with fewer parameters than an LSTM, since a GRU does not have an
output gate.

Generative adversarial network (GAN) – GANs are a class of machine learn-
ing models that learn to generate new data with the same statistics as the train-
ing set. GANs include a generative network that learns to map from a latent
space to a data distribution of interest, while a second discriminator network
classifies data candidates produced by the generator from the true data distri-
bution. The generative network’s training objective is to increase the error rate
of the discriminative network. Thus the generator can fool the discriminator
network by producing novel candidates that the discriminator thinks are not
synthesized data.

Gramian – The controllability (respectively, observability) Gramian determines
the degree to which a state is controllable (respectively, observable) via actua-
tion (respectively, estimation). The Gramian establishes an inner product on the
state space.

Hidden Markov model (HMM) – A Markov model where there is a hidden
state that is only observed through a set of measurements known as emissions.

Hilbert space – A generalized vector space with an inner product. When re-
ferred to in this text, a Hilbert space typically refers to an infinite-dimensional
function space. These spaces are also complete metric spaces, providing a suf-
ficient mathematical framework to enable calculus on functions.

Hindsight experience replay – The process of learning from past experiences
in off-policy reinforcement learning algorithms, such as Q-learning.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

662 Glossary

Imitation learning – The process of learning from other more experienced
agents in off-policy reinforcement learning algorithms, such as Q-learning.

Incoherent measurements – Measurements that have a small inner product
with the basis vectors of a sparsifying transform. For instance, single-pixel mea-
surements (i.e., spatial delta functions) are incoherent with respect to the spa-
tial Fourier transform basis, since these single-pixel measurements excite all
frequencies and do not preferentially align with any single frequency.

Kalman filter – An estimator that reconstructs the full state of a dynamical sys-
tem from measurements of a time series of the sensor outputs and actuation
inputs. A Kalman filter is itself a dynamical system that is constructed for ob-
servable systems to stably converge to the true state of the system. The Kalman
filter is optimal for linear systems with Gaussian process and measurement
noise of a known magnitude.

Koopman eigenfunction – An eigenfunction of the Koopman operator. These
eigenfunctions correspond to measurements on the state space of a dynamical
system that form intrinsic coordinates. In other words, these intrinsic measure-
ments will evolve linearly in time despite the underlying system being nonlin-
ear.

Koopman operator – An infinite-dimensional linear operator that propagates
measurement functions from an infinite-dimensional Hilbert space through a
dynamical system.

Laplace transform – A generalization of the Fourier transform for a larger class
of functions that are not Lebesgue-integrable, such as exponential functions.
The Laplace transform may be thought of as a weighted, one-sided Fourier
transform for badly behaved functions.

Least-squares regression – A regression technique where a best-fit line or vec-
tor is found by minimizing the sum of squares of the error between the model
and the data.

Linear–quadratic regulator (LQR) – An optimal proportional feedback con-
troller for full-state feedback, which balances the objectives of regulating the
state while not expending too much control energy. The proportional gain ma-
trix is determined by solving an algebraic Riccati equation.

Linear system – A system where superposition of any two inputs results in the
superposition of the two corresponding outputs. In other words, doubling the

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Glossary 663

input doubles the output. Linear time-invariant dynamical systems are charac-
terized by linear operators, which are represented as matrices.

Long short-term memory (LSTM) – LSTMs are a class of machine learning
models for sequential data. LSTMs are a subset of RNNs, with specific filter-
ing functions for improving sequential (temporal) modeling. A common LSTM
unit is composed of a cell, an input gate, an output gate, and a forget gate. The
cell remembers values over arbitrary time intervals and the three gates regulate
the flow of information into and out of the cell.

Low rank – A property of a matrix where the number of linearly independent
rows and columns is small compared with the size of the matrix. Generally,
low-rank approximations are sought for large data matrices.

Machine learning – A set of statistical tools and algorithms that are capable of
extracting the dominant patterns in data. The data mining can be supervised or
unsupervised, with the goal of clustering, classification and prediction.

Markov decision process (MDP) – A common environment in reinforcement
learning, in which the probability of the system being in the next state is deter-
mined entirely by the current state and action.

Markov model – A probabilistic dynamical system where the state vector con-
tains the probability that the system will be in a given state; thus, this state
vector must always sum to unity. The dynamics are given by the Markov tran-
sition matrix, which is constructed so that each row sums to unity.

Markov parameters – The output measurements of a dynamical system in re-
sponse to an impulsive input.

Max pooling – A data downsampling strategy whereby an input representa-
tion (image, hidden-layer output matrix, etc.) is reduced in dimensionality, thus
allowing for assumptions to be made about features contained in the downsam-
pled sub-regions.

Model predictive control (MPC) – A form of optimal control that optimizes a
control policy over a finite-time horizon, based on a model. The models used
for MPC are typically linear and may be determined empirically via system
identification.

Moore’s law – The observation that transistor density, and hence processor
speed, increases exponentially in time. Moore’s law is commonly used to pre-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

664 Glossary

dict future computational power and the associated increase in the scale of
problem that will be computationally feasible.

Multi-scale – The property of having many scales in space and/or time. Many
systems, such as turbulence, exhibit spatial and temporal scales that vary across
many orders of magnitude.

Neural operator – Neural operators are a class of machine learning models
for sequential data typically generated by a deterministic dynamical system.
Like DeepONet, neural networks are tailored to learn operators by mapping
between infinite-dimensional function spaces.

Observability – A system is observable if it is possible to estimate any system
state with a time history of the available sensors. Degrees of observability are
determined by the observability Gramian.

Observable function – A function that measures some property of the state of
a system. Observable functions are typically elements of a Hilbert space.

Off-policy reinforcement learning – Reinforcement learning algorithms, such
as Q-learning, where the agent is able to take sub-optimal actions while learn-
ing, enabling imitation learning and hindsight replay.

On-policy reinforcement learning – Reinforcement learning algorithms where
the agent must take the best action according to its current policy as it learns.

Optimization – Generally a set of algorithms that find the “best available” val-
ues of some objective function given a defined domain (or input), including a
variety of different types of objective functions and different types of domains.
Mathematically, optimization aims to maximize or minimize a real function by
systematically choosing input values from within an allowed set and comput-
ing the value of the function. The generalization of optimization theory and
techniques to other formulations constitutes a large area of applied mathemat-
ics.

Over-determined system – A system Ax = b where there are more equations
than unknowns. Usually, there is no exact solution x to an over-determined
system, unless the vector b is in the column space of A.

Pareto front – The allocation of resources from which it is impossible to reallo-
cate so as to make any one individual or preference criterion better off without
making at least one individual or preference criterion worse off.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Glossary 665

Perron–Frobenius operator – The adjoint of the Koopman operator, the Perron–
Frobenius operator is an infinite-dimensional operator that advances probabil-
ity density functions (PDFs) through a dynamical system.

Physics-informed neural network (PINN) – PINNs are a class of machine
learning models for sequential data typically generated by a deterministic dy-
namical system. PINNs enforce governing equations, initial conditions, and
boundary conditions in the training loss function. Thus the neural network is
trained to solve a supervised learning task while respecting any given laws of
physics described by general nonlinear partial differential equations.

Policy iteration – A form of dynamic programming in which the policy func-
tion and value function are iteratively updated, while the other is held fixed.

Policy function – A set of rules about what action an agent should take given
the current state of the environment.

Power spectrum – The squared magnitude of each coefficient of a Fourier trans-
form of a signal. The power corresponds to the amount of each frequency re-
quired to reconstruct a given signal.

Principal component – A spatially correlated mode in a given data set, often
computed using the singular value decomposition (SVD) of the data after the
mean has been subtracted.

Principal component analysis (PCA) – A decomposition of a data matrix into a
hierarchy of principal component vectors that are ordered from most correlated
to least correlated with the data. PCA is computed by taking the singular value
decomposition (SVD) of the data after subtracting the mean. In this case, each
singular value represents the variance of the corresponding principal compo-
nent (singular vector) in the data.

Proper orthogonal decomposition (POD) – The decomposition of data from a
dynamical system into a hierarchical set of orthogonal modes, often using the
singular value decomposition (SVD). When the data consists of velocity mea-
surements of a system, such as an incompressible fluid, then the POD orders
modes in terms of the amount of energy these modes contain in the given data.

Pseudo-inverse – The pseudo-inverse generalizes the matrix inverse for non-
square matrices, and is often used to compute the least-squares solution to a
system of equations. The singular value decomposition (SVD) is a common

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

666 Glossary

method to compute the pseudo-inverse: given the SVD X = UΣV∗, the pseudo-
inverse is X† = VΣ−1U∗.

Q learning – A leading model-free reinforcement learning algorithm based on
the quality function Q(s, a).

Quality function – The joint quality of being in a particular state s and taking
a given action a. The quality function Q(s, a) extends the value function, by-
passing the need to know the next optimal state s′ and providing the basis for
Q-learning.

Recurrent neural network (RNN) – RNNs are a class of machine learning mod-
els for sequential data, typically a temporal sequence, where connections be-
tween nodes form a directed or undirected graph along the sequence. Although
similar to feedforward neural networks, RNNs use their internal state (mem-
ory) to process variable-length sequences of inputs.

Reduced-order model (ROM) – A model of a high-dimensional system in terms
of a low-dimensional state. Typically, a reduced-order model balances accuracy
with computational cost of the model.

Regression – A statistical model that represents an outcome variable in terms of
indicator variables. Least-squares regression is a linear regression that finds the
line of best fit to data; when generalized to higher dimensions and multi-linear
regression, this generalizes to principal components regression. Nonlinear re-
gression, dynamic regression, and functional or semantic regression are used
in system identification, model reduction, and machine learning.

Reinforcement learning (RL) – A major branch of machine learning that is con-
cerned with how to learn control laws and policies to interact with a complex
environment from experience.

Restricted isometry property (RIP) – The property that a matrix acts like a
unitary matrix, or an isometry map, on sparse vectors. In other words, the dis-
tance between any two sparse vectors is preserved if these vectors are mapped
through a matrix that satisfies the restricted isometry property.

Reward – A positive reinforcement signal in reinforcement learning (RL), to be
maximized by an agent’s policy π(s, a).

Reward shaping – The process of constructing a customized proxy reward sig-
nal that may be used to improve the learning rate for systems with sparse re-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Glossary 667

wards.

Robust control – A field of control that penalizes worst-case scenario control
outcomes, thus promoting controllers that are robust to uncertainties, distur-
bances, and unmodeled dynamics.

Robust statistics – Methods for producing good statistical estimates for data
drawn from a wide range of probability distributions, especially for distribu-
tions that are not normal and where outliers compromise predictive capabili-
ties.

SARSA – SARSA (state–action–reward–state–action) learning is a form of on-
policy temporal difference learning closely related to Q-learning.

Singular value decomposition (SVD) – Given a matrix X ∈ Cn×m, the SVD is
given by X = UΣV∗, where U ∈ Cn×n, Σ ∈ Cn×m, and V ∈ Cm×m. The matri-
ces U and V are unitary, so that UU∗ = U∗U = I and VV∗ = V∗V = I. The
matrix Σ has entries along the diagonal corresponding to the singular values
that are ordered from largest to smallest. This produces a hierarchical matrix
decomposition that splits a matrix into a sum of rank-one matrices given by
the outer product of a column vector (left singular vector) with a row vector
(conjugate transpose of a right singular vector). These rank-one matrices are
ordered by the singular value, so that the first r rank-one matrices form the best
rank-r matrix approximation of the original matrix in a least-squares sense.

Snapshot – A single high-dimensional measurement of a system at a particular
time. A number of snapshots collected at a sequence of times may be arranged
as column vectors in a data matrix.

Sparse identification of nonlinear dynamics (SINDy) – A nonlinear system
identification framework used to simultaneously identify the nonlinear struc-
ture and parameters of a dynamical system from data. Various sparse optimiza-
tion techniques may be used to determine SINDy models.

Sparsity – A vector is sparse if most of its entries are zero or nearly zero. Spar-
sity refers to the observation that most data are sparse when represented as
vectors in an appropriate transformed basis, such as Fourier or proper orthog-
onal decomposition (POD) bases.

Spectrogram – A short-time Fourier transform computed on a moving win-
dow, which results in a time–frequency plot of which frequencies are active at
a given time. The spectrogram is useful for characterizing non-periodic signals,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

668 Glossary

where the frequency content evolves over time, as in music.

State space – The set of all possible system states. Often the state space is a vec-
tor space, such as Rn, although it may also be a smooth manifoldM.

Stochastic gradient descent – Also known as incremental gradient descent, it
allows one to approximate the gradient with a single data point instead of all
available data. At each step of the gradient descent, a randomly chosen data
point is used to compute the gradient direction.

System identification – The process by which a model is constructed for a sys-
tem from measurement data, possibly after perturbing the system.

Temporal difference error – The difference between the estimated future re-
ward (i.e., the target) and the actual future reward, which is used to update the
value or quality function in TD learning.

Temporal difference (TD) learning – A sample-based reinforcement learning
strategy, in which the current value or quality function is updated based on the
rewards obtained in the subsequent events. TD learning is designed to mimic
the learning process in animals.

Temporal difference target – The estimated future reward in TD learning.

Time delay coordinates – An augmented set of coordinates constructed by con-
sidering a measurement at the current time along with a number of times in
the past at fixed intervals from the current time. Time delay coordinates are
often useful in reconstructing attractor dynamics for systems that do not have
enough measurements, as in the Takens embedding theorem.

Total least-squares – A least-squares regression algorithm that minimizes the
error on both the inputs and the outputs. Geometrically, this corresponds to
finding the line that minimizes the sum of squares of the total distance to all
points, rather than the sum of squares of the vertical distance to all points.

Uncertainty quantification (UQ) – The principled characterization and man-
agement of uncertainty in engineering systems. Uncertainty quantification of-
ten involves the application of powerful tools from probability and statistics to
dynamical systems.

Under-determined system – A system Ax = b where there are fewer equations
than unknowns. Generally, the system has infinitely many solutions x unless b

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Glossary 669

is not in the column space of A.

Unitary matrix – A matrix whose complex conjugate transpose is also its in-
verse. All eigenvalues of a unitary matrix are on the complex unit circle, and
the action of a unitary matrix may be thought of as a change of coordinates that
preserves the Euclidean distance between any two vectors.

Value function – A function quantifying the desirability of being in a given
state s, as calculated by the discounted sum of future rewards, given an op-
timal policy starting from this state. The value function is often written in a
recursive form, based on Bellman’s equation.

Value iteration – A form of dynamic programming that iteratively updates the
value function, after which an optimal policy may be extracted.

Wavelet – A generalized function, or family of functions, used to generalize the
Fourier transform to approximate more complex and multi-scale signals.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

References

[1] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics
through apprenticeship learning. International Journal of Robotics Research,
29(13):1608–1639, 2010.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of rein-
forcement learning to aerobatic helicopter flight. In Advances in Neural
Information Processing Systems, 19, 8pp., 2007.

[3] R. Abraham and J. E. Marsden. Foundations of Mechanics, 2nd edition,
volume 36 of Benjamin/Cummings Advanced Book Program. Benjam-
in/Cummings, 1978.

[4] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis,
and Applications, volume 75 of Applied Mathematical Sciences. Springer,
1988.

[5] M. Agrawal, S. Vidyashankar, and K. Huang. On-chip implementation
of ECoG signal data decoding in brain–computer interface. In 2016 IEEE
21st International Mixed-Signal Testing Workshop, pages 1–6. IEEE, 2016.

[6] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In Proceedings of the 20th International Conference on
Very Large Data Bases, pages 487–499. ACM, 1994.

[7] H.-S. Ahn, Y. Chen, and K. L. Moore. Iterative learning control: Brief
survey and categorization. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), 37(6):1099–1121, 2007.

[8] H. Akaike. Fitting autoregressive models for prediction. Annals of the
Institute of Statistical Mathematics, 21(1):243–247, 1969.

[9] H. Akaike. A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, 19(6):716–723, 1974.

[10] A. Alla and J. N. Kutz. Nonlinear model order reduction via dynamic
mode decomposition. SIAM Journal on Scientific Computing, 39(5):B778–
B796, 2017.

670

REFERENCES 671

[11] A. Alla and J. N. Kutz. Randomized model order reduction. Advances in
Computational Mathematics, 45(3):1251–1271, 2019.

[12] E. P. Alves and F. Fiuza. Data-driven discovery of reduced
plasma physics models from fully-kinetic simulations. Preprint
arXiv:2011.01927, 2020.

[13] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z. Kolter. Differen-
tiable MPC for end-to-end planning and control. In Advances in Neural
Information Processing Systems, 31, pages 8299–8310, 2018.

[14] W. Amrein and A.-M. Berthier. On support properties of Lp-functions
and their Fourier transforms. Journal of Functional Analysis, 24(3):258–267,
1977.

[15] D. Amsallem and C. Farhat. An online method for interpolating linear
parametric reduced-order models. SIAM Journal on Scientific Computing,
33(5):2169–2198, 2011.

[16] D. Amsallem, J. Cortial, and C. Farhat. On-demand CFD-based aeroelas-
tic predictions using a database of reduced-order bases and models. In
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum
and Aerospace Exposition, page 800, 2009.

[17] D. Amsallem, M. J. Zahr, and K. Washabaugh. Fast local reduced ba-
sis updates for the efficient reduction of nonlinear systems with hyper-
reduction. Advances in Computational Mathematics, 41(5):1187–1230, 2015.

[18] J. Andén and S. Mallat. Deep scattering spectrum. IEEE Transactions on
Signal Processing, 62(16):4114–4128, 2014.

[19] E. Anderson, Z. Bai, C. Bischof, et al. LAPACK Users’ Guide, volume 9.
SIAM, 1999.

[20] J. L. Anderson. An ensemble adjustment Kalman filter for data assimila-
tion. Monthly Weather Review, 129(12):2884–2903, 2001.

[21] C. A. Andersson and R. Bro. The n-way toolbox for Matlab. Chemometrics
and Intelligent Laboratory Systems, 52(1):1–4, 2000.

[22] M. Andrychowicz, F. Wolski, A. Ray, et al. Hindsight experience replay.
Preprint arXiv:1707.01495, 2017.

[23] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding
using wavelet transform. IEEE Transactions on Image Processing, 1(2):205–
220, 1992.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

672 REFERENCES

[24] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM,
2005.

[25] H. Arbabi and I. Mezić. Ergodic theory, dynamic mode decomposition
and computation of spectral properties of the Koopman operator. SIAM
Journal on Applied Dynamical Systems, 16(4):2096–2126, 2017.

[26] K. B. Ariyur and M. Krstić. Real-Time Optimization by Extremum-Seeking
Control. Wiley-Interscience, 2003.

[27] T. Askham and J. N. Kutz. Variable projection methods for an optimized
dynamic mode decomposition. SIAM Journal on Applied Dynamical Sys-
tems, 17(1):380–416, 2018.

[28] T. Askham, P. Zheng, A. Aravkin, and J. N. Kutz. Robust and
scalable methods for the dynamic mode decomposition. Preprint
arXiv:1712.01883, 2017.

[29] P. Astrid. Fast reduced order modeling technique for large scale LTV
systems. In Proceedings of the 2004 American Control Conference, volume 1,
pages 762–767. IEEE, 2004.

[30] K. J. Aström and R. M. Murray. Feedback Systems: An Introduction for Sci-
entists and Engineers. Princeton University Press, 2010.

[31] M. Azeez and A. Vakakis. Proper orthogonal decomposition (POD)
of a class of vibroimpact oscillations. Journal of Sound and Vibration,
240(5):859–889, 2001.

[32] O. Azencot, W. Yin, and A. Bertozzi. Consistent dynamic mode decom-
position. SIAM Journal on Applied Dynamical Systems, 18(3):1565–1585,
2019.

[33] K. Bache and M. Lichman. UCI Machine Learning Repository, 2013.

[34] P. J. Baddoo, B. Herrmann, B. J. McKeon, and S. L. Brunton. Kernel learn-
ing for robust dynamic mode decomposition: Linear and nonlinear dis-
ambiguation optimization (LANDO). Preprint arXiv:2106.01510, 2021.

[35] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing,
30(1):205–231, 2007.

[36] S. Bagheri. Koopman-mode decomposition of the cylinder wake. Journal
of Fluid Mechanics, 726:596–623, 2013.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 673

[37] S. Bagheri. Effects of weak noise on oscillating flows: Linking qual-
ity factor, Floquet modes, and Koopman spectrum. Physics of Fluids,
26(9):094104, 2014.

[38] S. Bagheri, L. Brandt, and D. Henningson. Input–output analysis, model
reduction and control of the flat-plate boundary layer. Journal of Fluid
Mechanics, 620:263–298, 2009.

[39] S. Bagheri, J. Hoepffner, P. J. Schmid, and D. S. Henningson. Input–output
analysis and control design applied to a linear model of spatially devel-
oping flows. Applied Mechanics Reviews, 62(2):020803 (27pp.), 2009.

[40] Z. Bai, S. L. Brunton, B. W. Brunton, et al. Data-driven methods in fluid
dynamics: Sparse classification from experimental data. Invited chapter
in Whither Turbulence and Big Data in the 21st Century, 2015.

[41] Z. Bai, E. Kaiser, J. L. Proctor, J. N. Kutz, and S. L. Brunton. Dynamic
mode decomposition for compressive system identification. Preprint
arXiv:1710.07737, 2017.

[42] Z. Bai, T. Wimalajeewa, Z. Berger, et al. Low-dimensional approach for
reconstruction of airfoil data via compressive sensing. AIAA Journal,
53(4):920–933, 2014.

[43] O. Balabanov and A. Nouy. Randomized linear algebra for model reduc-
tion. Part I: Galerkin methods and error estimation. Advances in Compu-
tational Mathematics, 45(5):2969–3019, 2019.

[44] M. J. Balajewicz, E. H. Dowell, and B. R. Noack. Low-dimensional mod-
elling of high-Reynolds-number shear flows incorporating constraints
from the Navier–Stokes equation. Journal of Fluid Mechanics, 729:285–308,
2013.

[45] M. Balasubramanian, S. Zabic, C. Bowd, et al. A framework for detecting
glaucomatous progression in the optic nerve head of an eye using proper
orthogonal decomposition. IEEE Transactions on Information Technology in
Biomedicine, 13(5):781–793, 2009.

[46] P. Baldi and K. Hornik. Neural networks and principal component anal-
ysis: Learning from examples without local minima. Neural Networks,
2(1):53–58, 1989.

[47] B. Bamieh and L. Giarré. Identification of linear parameter varying mod-
els. International Journal of Robust and Nonlinear Control, 12:841–853, 2002.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

674 REFERENCES

[48] A. Banaszuk, K. B. Ariyur, M. Krstić, and C. A. Jacobson. An adaptive
algorithm for control of combustion instability. Automatica, 40(11):1965–
1972, 2004.

[49] A. Banaszuk, S. Narayanan, and Y. Zhang. Adaptive control of flow sep-
aration in a planar diffuser. AIAA Paper 2003-617, 2003.

[50] A. Banaszuk, Y. Zhang, and C. A. Jacobson. Adaptive control of com-
bustion instability using extremum-seeking. In Proceedings of the 2000
American Control Conference, volume 1, pages 416–422. IEEE, 2000.

[51] S. Banks. Infinite-dimensional Carleman linearization, the Lie series and
optimal control of non-linear partial differential equations. International
Journal of Systems Science, 23(5):663–675, 1992.

[52] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National
Academy of Sciences, USA, 116(31):15 344–15 349, 2019.

[53] R. G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine,
24(4):118–120, 2007.

[54] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based
compressive sensing. IEEE Transactions on Information Theory, 56(4):1982–
2001, 2010.

[55] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An empirical
interpolation method: Application to efficient reduced-basis discretiza-
tion of partial differential equations. Comptes Rendus Mathematique,
339(9):667–672, 2004.

[56] J. Basley, L. R. Pastur, N. Delprat, and F. Lusseyran. Space–time aspects of
a three-dimensional multi-modulated open cavity flow. Physics of Fluids,
25(6):064105, 2013.

[57] J. Basley, L. R. Pastur, F. Lusseyran, T. M. Faure, and N. Delprat. Experi-
mental investigation of global structures in an incompressible cavity flow
using time-resolved PIV. Experiments in Fluids, 50(4):905–918, 2011.

[58] T. Baumeister, S. L. Brunton, and J. N. Kutz. Deep learning and model
predictive control for self-tuning mode-locked lasers. Journal of the Optical
Society of America B, 35(3):617–626, 2018.

[59] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical
Computer Science, 22(3):317–330, 1983.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 675

[60] P. W. Bearman. On vortex shedding from a circular cylinder in the critical
Reynolds number regime. Journal of Fluid Mechanics, 37(3):577–585, 1969.

[61] J.-F. Beaudoin, O. Cadot, J.-L. Aider, and J.-E. Wesfreid. Bluff-body drag
reduction by extremum-seeking control. Journal of Fluids and Structures,
22:973–978, 2006.

[62] J.-F. Beaudoin, O. Cadot, J.-L. Aider, and J.-E. Wesfreid. Drag reduc-
tion of a bluff body using adaptive control methods. Physics of Fluids,
18(8):085107, 2006.

[63] R. Becker, R. King, R. Petz, and W. Nitsche. Adaptive closed-loop con-
trol on a high-lift configuration using extremum seeking. AIAA Journal,
45(6):1382–92, 2007.

[64] S. Beetham and J. Capecelatro. Formulating turbulence closures using
sparse regression with embedded form invariance. Physical Review Fluids,
5(8):084611, 2020.

[65] S. Beetham, R. O. Fox, and J. Capecelatro. Sparse identification of mul-
tiphase turbulence closures for coupled fluid–particle flows. Journal of
Fluid Mechanics, 914, 2021.

[66] G. Beintema, A. Corbetta, L. Biferale, and F. Toschi. Controlling Rayleigh–
Bénard convection via reinforcement learning. Preprint arXiv:2003.14358,
2020.

[67] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fish-
erfaces: Recognition using class specific linear projection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997.

[68] G. Bellani. Experimental studies of complex flows through image-based
techniques. Doctoral Thesis, KTH, Stockholm, 2011.

[69] R. Bellman. On the theory of dynamic programming. Proceedings of the
National Academy of Sciences, USA, 38(8):716–719, 1952.

[70] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[71] B. A. Belson, J. H. Tu, and C. W. Rowley. Algorithm 945: modred – a
parallelized model reduction library. ACM Transactions on Mathematical
Software, 40(4):30, 2014.

[72] M. Benedicks. On Fourier transforms of functions supported on sets of
finite Lebesgue measure. Journal of Mathematical Analysis and Applications,
106(1):180–183, 1985.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

676 REFERENCES

[73] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise
training of deep networks. In Advances in Neural Information Processing
Systems, 20, pages 153–160, 2007.

[74] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox. Model Reduction and
Approximation: Theory and Algorithms, volume 15. SIAM, 2017.

[75] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based
model reduction methods for parametric dynamical systems. SIAM Re-
view, 57(4):483–531, 2015.

[76] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale Lya-
punov equations, Riccati equations, and linear–quadratic optimal control
problems. Numerical Linear Algebra with Applications, 15(9):755–777, 2008.

[77] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. Slicot – a
subroutine library in systems and control theory. In Applied and Compu-
tational Control, Signals, and Circuits, pages 499–539. Springer, 1999.

[78] E. Berger, M. Sastuba, D. Vogt, B. Jung, and H. B. Amor. Estimation of
perturbations in robotic behavior using dynamic mode decomposition.
Journal of Advanced Robotics, 29(5):331–343, 2015.

[79] G. Berkooz, P. Holmes, and J. Lumley. The proper orthogonal decompo-
sition in the analysis of turbulent flows. Annual Review of Fluid Mechanics,
25:539–575, 1993.

[80] D. P. Bertsekas. Nonlinear programming. Journal of the Operational Re-
search Society, 48(3):334–334, 1997.

[81] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.
Academic Press, 2014.

[82] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an
overview. In Proceedings of 1995 34th IEEE Conference on Decision and Con-
trol, volume 1, pages 560–564. IEEE, 1995.

[83] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and
numerical algorithms I. Communications on Pure and Applied Mathematics,
44(2):141–183, 1991.

[84] K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz, and M. Dellnitz. Deep model
predictive flow control with limited sensor data and online learning. The-
oretical and Computational Fluid Dynamics, 34:577–591, 2020.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 677

[85] L. Biferale, F. Bonaccorso, M. Buzzicotti, P. Clark Di Leoni, and K. Gus-
tavsson. Zermelo’s problem: Optimal point-to-point navigation in 2D
turbulent flows using reinforcement learning. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 29(10):103138, 2019.

[86] S. A. Billings. Nonlinear System Identification: NARMAX Methods in the
Time, Frequency, and Spatio-temporal Domains. John Wiley & Sons, 2013.

[87] P. Binetti, K. B. Ariyur, M. Krstić, and F. Bernelli. Formation flight opti-
mization using extremum seeking feedback. Journal of Guidance, Control,
and Dynamics, 26(1):132–142, 2003.

[88] G. D. Birkhoff. Proof of the ergodic theorem. Proceedings of the National
Academy of Sciences, USA, 17(12):656–660, 1931.

[89] G. D. Birkhoff and B. O. Koopman. Recent contributions to the ergodic
theory. Proceedings of the National Academy of Sciences, USA, 18(3):279–282,
1932.

[90] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[91] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[92] D. A. Bistrian and I. M. Navon. An improved algorithm for the shal-
low water equations model reduction: Dynamic mode decomposition vs
POD. International Journal for Numerical Methods in Fluids, 78(9):552–580,
2015.

[93] D. A. Bistrian and I. M. Navon. Randomized dynamic mode decompo-
sition for nonintrusive reduced order modelling. International Journal for
Numerical Methods in Engineering, 112(1):3–25, 2017.

[94] P. Bondi, G. Casalino, and L. Gambardella. On the iterative learning con-
trol theory for robotic manipulators. IEEE Journal on Robotics and Automa-
tion, 4(1):14–22, 1988.

[95] J. Bongard and H. Lipson. Automated reverse engineering of nonlinear
dynamical systems. Proceedings of the National Academy of Sciences, USA,
104(24):9943–9948, 2007.

[96] L. Boninsegna, F. Nüske, and C. Clementi. Sparse learning of stochastic
dynamical equations. Journal of Chemical Physics, 148(24):241723, 2018.

[97] J. L. Borges. The library of Babel. Collected Fictions. Viking, 1998.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

678 REFERENCES

[98] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pages 144–152. ACM, 1992.

[99] H. Boulard and Y. Kamp. Autoassociative memory by multilayer percep-
tron and singular values decomposition. Biological Cybernetics, 59:291–
294, 1989.

[100] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time Series
Analysis: Forecasting and Control. John Wiley & Sons, 2015.

[101] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2009.

[102] S. Boyd, L. O. Chua, and C. A. Desoer. Analytical foundations of volterra
series. IMA Journal of Mathematical Control and Information, 1(3):243–282,
1984.

[103] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for tempo-
ral difference learning. Machine Learning, 22(1):33–57, 1996.

[104] J. J. Bramburger and J. N. Kutz. Poincaré maps for multiscale physics
discovery and nonlinear Floquet theory. Physica D: Nonlinear Phenomena,
408:132479, 2020.

[105] J. J. Bramburger, J. N. Kutz, and S. L. Brunton. Data-driven stabilization
of periodic orbits. IEEE Access, 9:43 504–43 521, 2021.

[106] A. I. Bratcu, I. Munteanu, S. Bacha, and B. Raison. Maximum power point
tracking of grid-connected photovoltaic arrays by using extremum seek-
ing control. Journal of Control Engineering and Applied Informatics, 10(4):3–
12, 2008.

[107] L. Breiman. Better subset regression using the nonnegative garrote. Tech-
nometrics, 37(4):373–384, 1995.

[108] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[109] L. Breiman. Statistical modeling: The two cultures (with comments and
a rejoinder by the author). Statistical Science, 16(3):199–231, 2001.

[110] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
Regression Trees. CRC Press, 1984.

[111] M. Brenner, J. Eldredge, and J. Freund. Perspective on machine learning
for advancing fluid mechanics. Physical Review Fluids, 4(10):100501, 2019.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 679

[112] I. Bright, G. Lin, and J. N. Kutz. Compressive sensing and machine learn-
ing strategies for characterizing the flow around a cylinder with limited
pressure measurements. Physics of Fluids, 25(12):127102 (15pp.), 2013.

[113] I. Bright, G. Lin, and J. N. Kutz. Classification of spatio-temporal data via
asynchronous sparse sampling: Application to flow around a cylinder.
SIAM Multiscale Modeling and Simulation, 14(2):823–838, 2016.

[114] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[115] D. Bristow, M. Tharayil, and A. G. Alleyne. A survey of iterative learning
control. IEEE Control Systems Magazine, 26(3):96–114, 2006.

[116] R. Bro. PARAFAC. Tutorial and applications. Chemometrics and Intelligent
Laboratory Systems, 38(2):149–171, 1997.

[117] A. Broad, T. Murphey, and B. Argall. Learning models for shared control
of human–machine systems with unknown dynamics. Robotics: Science
and Systems Proceedings, 2017.

[118] R. W. Brockett. Volterra series and geometric control theory. Automatica,
12(2):167–176, 1976.

[119] G. Brockman, V. Cheung, L. Pettersson, et al. OpenAI gym. Preprint
arXiv:1606.01540, 2016.

[120] D. Broomhead and R. Jones. Time-series analysis. Proceedings of the Royal
Society A, 423:103–121, 1989.

[121] D. S. Broomhead and D. Lowe. Radial basis functions, multi-variable
functional interpolation and adaptive networks. Technical Report, Royal
Signals and Radar Establishment, Malvern, UK, 1988.

[122] B. W. Brunton, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse sensor
placement optimization for classification. SIAM Journal on Applied Math-
ematics, 76(5):2099–2122, 2016.

[123] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz. Extracting
spatial–temporal coherent patterns in large-scale neural recordings using
dynamic mode decomposition. Journal of Neuroscience Methods, 258:1–15,
2016.

[124] S. L. Brunton and B. R. Noack. Closed-loop turbulence control: Progress
and challenges. Applied Mechanics Reviews, 67:050801 (48pp.), 2015.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

680 REFERENCES

[125] S. L. Brunton and C. W. Rowley. Maximum power point tracking for
photovoltaic optimization using ripple-based extremum seeking control.
IEEE Transactions on Power Electronics, 25(10):2531–2540, 2010.

[126] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz. Chaos
as an intermittently forced linear system. Nature Communications, 8(19):1–
9, 2017.

[127] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz. Koopman in-
variant subspaces and finite linear representations of nonlinear dynami-
cal systems for control. PLoS ONE, 11(2):e0150171, 2016.

[128] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz. Modern Koopman
theory for dynamical systems. Preprint arXiv:2102.12086, 2021 (to appear
in SIAM Review).

[129] S. L. Brunton, X. Fu, and J. N. Kutz. Extremum-seeking control of a mode-
locked laser. IEEE Journal of Quantum Electronics, 49(10):852–861, 2013.

[130] S. L. Brunton, X. Fu, and J. N. Kutz. Self-tuning fiber lasers. IEEE Journal
of Selected Topics in Quantum Electronics, 20(5):464–471, 2014.

[131] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. Machine learning for
fluid mechanics. Annual Review of Fluid Mechanics, 52:477–508, 2020.

[132] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equa-
tions from data by sparse identification of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, USA, 113(15):3932–3937,
2016.

[133] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse identification of nonlin-
ear dynamics with control (SINDYc). IFAC-PapersOnLine, 49(18):710–715,
2016 (10th IFAC Symposium on Nonlinear Control Systems, NOLCOS).

[134] S. L. Brunton, J. L. Proctor, J. H. Tu, and J. N. Kutz. Compressed sensing
and dynamic mode decomposition. Journal of Computational Dynamics,
2(2):165–191, 2015.

[135] S. L. Brunton, J. L. Proctor, J. H. Tu, and J. N. Kutz. Compressed sensing
and dynamic mode decomposition. Journal of Computational Dynamics,
2(2):165, 2015.

[136] S. L. Brunton, J. H. Tu, I. Bright, and J. N. Kutz. Compressive sensing
and low-rank libraries for classification of bifurcation regimes in non-
linear dynamical systems. SIAM Journal on Applied Dynamical Systems,
13(4):1716–1732, 2014.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 681

[137] D. Buche, P. Stoll, R. Dornberger, and P. Koumoutsakos. Multiobjective
evolutionary algorithm for the optimization of noisy combustion pro-
cesses. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, 32(4):460–473, 2002.

[138] M. Budišić and I. Mezić. An approximate parametrization of the ergodic
partition using time averaged observables. In Proceedings of the 48th IEEE
Conference on Decision and Control, held jointly with the 28th Chinese Control
Conference, pages 3162–3168. IEEE, 2009.

[139] M. Budišić and I. Mezić. Geometry of the ergodic quotient reveals co-
herent structures in flows. Physica D: Nonlinear Phenomena, 241(15):1255–
1269, 2012.

[140] M. Budišić, R. Mohr, and I. Mezić. Applied Koopmanism. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 22(4):047510, 2012.

[141] A. Buhr and K. Smetana. Randomized local model order reduction. SIAM
Journal on Scientific Computing, 40(4):A2120–A2151, 2018.

[142] K. P. Burnham and D. R. Anderson. Model Selection and Multimodel Infer-
ence: A Practical Information-Theoretic Approach. Springer, 2003.

[143] D. Burov, D. Giannakis, K. Manohar, and A. Stuart. Kernel analog fore-
casting: Multiscale test problems. Multiscale Modeling and Simulation,
19(2):1011–1040, 2020.

[144] P. A. Businger and G. H. Golub. Algorithm 358: Singular value de-
composition of a complex matrix [F1, 4, 5]. Communications of the ACM,
12(10):564–565, 1969.

[145] J. L. Callaham, S. L. Brunton, and J.-C. Loiseau. On the role of nonlinear
correlations in reduced-order modeling. Preprint arXiv:2106.02409, 2021.

[146] J. L. Callaham, J.-C. Loiseau, G. Rigas, and S. L. Brunton. Nonlinear
stochastic modelling with Langevin regression. Proceedings of the Royal
Society A, 477(2250):20210092, 2021.

[147] J. L. Callaham, K. Maeda, and S. L. Brunton. Robust flow reconstruction
from limited measurements via sparse representation. Physical Review
Fluids, 4:103907, 2019.

[148] J. L. Callaham, G. Rigas, J.-C. Loiseau, and S. L. Brunton. An empirical
mean-field model of symmetry-breaking in a turbulent wake. Preprint
arXiv:2105.13990, 2021.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

682 REFERENCES

[149] E. F. Camacho and C. B. Alba. Model Predictive Control. Springer, 2013.

[150] E. Cambria, G.-B. Huang, L. L. C. Kasun, et al. Extreme learning machines
[trends & controversies]. IEEE Intelligent Systems, 28(6):30–59, 2013.

[151] E. J. Candès. Compressive sensing. Proceedings of the International Congress
of Mathematicians, 2006.

[152] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transac-
tions on Information Theory, 51(12):4203–4215, 2005.

[153] E. J. Candès and T. Tao. Near optimal signal recovery from random pro-
jections: Universal encoding strategies? IEEE Transactions on Information
Theory, 52(12):5406–5425, 2006.

[154] E. J. Candès and M. B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008.

[155] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component
analysis? Journal of the ACM, 58(3):11 (37pp.), 2011.

[156] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information.
IEEE Transactions on Information Theory, 52(2):489–509, 2006.

[157] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Communications on Pure and Applied
Mathematics, 59(8):1207–1223, 2006.

[158] Y. Cao, J. Zhu, Z. Luo, and I. Navon. Reduced-order modeling of the
upper tropical Pacific Ocean model using proper orthogonal decomposi-
tion. Computers and Mathematics with Applications, 52(8):1373–1386, 2006.

[159] Y. Cao, J. Zhu, I. M. Navon, and Z. Luo. A reduced-order approach
to four-dimensional variational data assimilation using proper orthog-
onal decomposition. International Journal for Numerical Methods in Fluids,
53(10):1571–1583, 2007.

[160] K. Carlberg, M. Barone, and H. Antil. Galerkin v. least-squares Petrov–
Galerkin projection in nonlinear model reduction. Journal of Computa-
tional Physics, 330:693–734, 2017.

[161] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model re-
duction via a least-squares Petrov–Galerkin projection and compressive
tensor approximations. International Journal for Numerical Methods in En-
gineering, 86(2):155–181, 2011.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 683

[162] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. The GNAT method
for nonlinear model reduction: Effective implementation and application
to computational fluid dynamics and turbulent flows. Journal of Compu-
tational Physics, 242:623–647, 2013.

[163] T. Carleman. Application de la théorie des équations intégrales linéaires
aux systèmes d’équations différentielles non linéaires. Acta Mathematica,
59(1):63–87, 1932.

[164] T. Carleman. Sur la théorie de l’équation intégrodifférentielle de Boltz-
mann. Acta Mathematica, 60(1):91–146, 1933.

[165] T. Carleman. Sur les systèmes linéaires aux dérivées partielles du premier
ordre à deux variables. Comptes Rendus de l’Académie des Sciences, Paris,
197:471–474, 1933.

[166] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multi-
dimensional scaling via an N -way generalization of “Eckart–Young” de-
composition. Psychometrika, 35:283–319, 1970.

[167] K. P. Champion, S. L. Brunton, and J. N. Kutz. Discovery of nonlinear
multiscale systems: Sampling strategies and embeddings. SIAM Journal
on Applied Dynamical Systems, 18(1):312–333, 2019.

[168] K. P. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven dis-
covery of coordinates and governing equations. Proceedings of the National
Academy of Sciences, USA, 116(45):22 445–22 451, 2019.

[169] R. Chartrand. Numerical differentiation of noisy, nonsmooth data. ISRN
Applied Mathematics, 2011:164564, 2011.

[170] A. Chatterjee. An introduction to the proper orthogonal decomposition.
Current Science, 78(7):808–817, 2000.

[171] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via
discrete empirical interpolation. SIAM Journal on Scientific Computing,
32(5):2737–2764, 2010.

[172] K. K. Chen and C. W. Rowley. Normalized coprime robust stability and
performance guarantees for reduced-order controllers. IEEE Transactions
on Automatic Control, 58(4):1068–1073, 2013.

[173] K. K. Chen, J. H. Tu, and C. W. Rowley. Variants of dynamic mode decom-
position: Boundary condition, Koopman, and Fourier analyses. Journal of
Nonlinear Science, 22(6):887–915, 2012.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

684 REFERENCES

[174] T. Chen and H. Chen. Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems. IEEE Transactions on Neural Networks, 6(4):911–917,
1995.

[175] Y. Chen, K. L. Moore, and H.-S. Ahn. Iterative learning control. In Ency-
clopedia of the Sciences of Learning, pages 1648–1652. Springer, 2012.

[176] S. Cherry. Singular value decomposition analysis and canonical correla-
tion analysis. Journal of Climate, 9(9):2003–2009, 1996.

[177] K. Cho, B. Van Merriënboer, C. Gulcehre, et al. Learning phrase represen-
tations using RNN encoder–decoder for statistical machine translation.
Preprint arXiv:1406.1078, 2014.

[178] J. Choi, M. Krstić, K. Ariyur, and J. Lee. Extremum seeking control for
discrete-time systems. IEEE Transactions on Automatic Control, 47(2):318–
323, 2002.

[179] Y. Choi, D. Amsallem, and C. Farhat. Gradient-based constrained op-
timization using a database of linear reduced-order models. Preprint
arXiv:1506.07849, 2015.

[180] S. Colabrese, K. Gustavsson, A. Celani, and L. Biferale. Flow navigation
by smart microswimmers via reinforcement learning. Physical Review Let-
ters, 118(15):158004, 2017.

[181] T. Colonius and K. Taira. A fast immersed boundary method using
a nullspace approach and multi-domain far-field boundary conditions.
Computer Methods in Applied Mechanics and Engineering, 197:2131–2146,
2008.

[182] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[183] J. W. Cooley, P. A. Lewis, and P. D. Welch. Historical notes on the fast
Fourier transform. Proceedings of the IEEE, 55(10):1675–1677, 1967.

[184] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[185] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilib-
rium. Reviews of Modern Physics, 65(3):851, 1993.

[186] J. P. Crutchfield and B. S. McNamara. Equations of motion from a data
series. Complex Systems, 1:417–452, 1987.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 685

[187] M. Dam, M. Brøns, J. Juul Rasmussen, V. Naulin, and J. S. Hesthaven.
Sparse identification of a predator–prey system from simulation data of
a convection model. Physics of Plasmas, 24(2):022310, 2017.

[188] B. C. Daniels and I. Nemenman. Automated adaptive inference of phe-
nomenological dynamical models. Nature Communications, 6:8133, 2015.

[189] B. C. Daniels and I. Nemenman. Efficient inference of parsimonious phe-
nomenological models of cellular dynamics using S-systems and alter-
nating regression. PloS ONE, 10(3):e0119821, 2015.

[190] S. Das and D. Giannakis. Delay-coordinate maps and the spectra of
Koopman operators. Journal of Statistical Physics, 175(6):1107–1145, 2019.

[191] S. Das and D. Giannakis. Koopman spectra in reproducing kernel Hilbert
spaces. Applied and Computational Harmonic Analysis, 49(2):573–607, 2020.

[192] I. Daubechies. The wavelet transform, time–frequency localization and
signal analysis. IEEE Transactions on Information Theory, 36(5):961–1005,
1990.

[193] L. Davis. Handbook of Genetic Algorithms, volume 115 of VNR Computer
Library. Van Nostrand Reinhold, 1991.

[194] N. D. Daw, J. P. O’Doherty, P. Dayan, B. Seymour, and R. J. Dolan. Cortical
substrates for exploratory decisions in humans. Nature, 441(7095):876–
879, 2006.

[195] S. T. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Charac-
terizing and correcting for the effect of sensor noise in the dynamic mode
decomposition. Experiments in Fluids, 57(3):1–19, 2016.

[196] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. In Computational Neuroscience
Series. MIT Press, 2001.

[197] P. Dayan and T. J. Sejnowski. TD(λ) converges with probability 1. Machine
Learning, 14(3):295–301, 1994.

[198] B. M. de Silva, D. M. Higdon, S. L. Brunton, and J. N. Kutz. Discovery of
physics from data: Universal laws and discrepancies. Frontiers in Artificial
Intelligence, 3:25, 2020.

[199] B. M. de Silva, K. Champion, M. Quade, et al. PySINDy: a Python pack-
age for the sparse identification of nonlinear dynamics from data. Journal
of Open Source Software, 5(49):2104, 2020.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

686 REFERENCES

[200] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Soci-
ety. Series B (Methodological), 39(1):1–38, 1977.

[201] N. Deng, B. R. Noack, M. Morzyński, and L. R. Pastur. Galerkin force
model for transient and post-transient dynamics of the fluidic pinball.
Journal of Fluid Mechanics, 918:A4, 2021.

[202] Z. Deng, C. He, Y. Liu, and K. C. Kim. Super-resolution reconstruction
of turbulent velocity fields using a generative adversarial network-based
artificial intelligence framework. Physics of Fluids, 31(12):125111, 2019.

[203] S. Devasia, D. Chen, and B. Paden. Nonlinear inversion-based output
tracking. IEEE Transactions on Automatic Control, 41(7):930–942, 1996.

[204] D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, 2006.

[205] D. L. Donoho. 50 years of data science. Journal of Computational and Graph-
ical Statistics, 26(4):745-766, 2017 (Based on a Presentation at the Tukey
Centennial Workshop, Princeton, NJ, 2015).

[206] D. L. Donoho and M. Gavish. Code supplement to “The optimal hard
threshold for singular values is 4/

√
3.” http://purl.stanford.edu/

vg705qn9070, 2014.

[207] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81(3):425–455, 1994.

[208] D. L. Donoho, I. M. Johnstone, J. C. Hoch, and A. S. Stern. Maximum
entropy and the nearly black object. Journal of the Royal Statistical Society.
Series B (Methodological), 54(1):41–81, 1992.

[209] J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions
on Automatic Control, 23(4):756–757, 1978.

[210] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory.
Courier Corporation, 2013.

[211] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space
solutions to standard H2 and H∞ control problems. IEEE Transactions on
Automatic Control, 34(8):831–847, 1989.

[212] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg.
Vision-based high-speed driving with a deep dynamic observer. IEEE
Robotics and Automation Letters, 4(2):1564–1571, 2019.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://purl.stanford.edu/vg705qn9070
http://purl.stanford.edu/vg705qn9070

REFERENCES 687

[213] J. Drgona, K. Kis, A. Tuor, D. Vrabie, and M. Klauco. Differentiable pre-
dictive control: An MPC alternative for unknown nonlinear systems us-
ing constrained deep learning. Preprint arXiv:2011.03699, 2020.

[214] P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-
based generalization of the singular value decomposition. Linear Algebra
and Its Applications, 420(2–3):553–571, 2007.

[215] Z. Drmac and S. Gugercin. A new selection operator for the discrete
empirical interpolation method – improved a priori error bound and ex-
tensions. SIAM Journal on Scientific Computing, 38(2):A631–A648, 2016.

[216] Q. Du and M. Gunzburger. Model reduction by proper orthogonal de-
composition coupled with centroidal Voronoi tessellations. In ASME
2002 Joint US–European Fluids Engineering Division Conference, pages
1401–1406. ASME, 2002.

[217] Y. Duan, M. Andrychowicz, B. C. Stadie, et al. One-shot imitation learn-
ing. Preprint arXiv:1703.07326, 2017.

[218] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-
Interscience, 2000.

[219] J. A. Duersch and M. Gu. Randomized QR with column pivoting. SIAM
Journal on Scientific Computing, 39(4):C263–C291, 2017.

[220] D. Duke, D. Honnery, and J. Soria. Experimental investigation of non-
linear instabilities in annular liquid sheets. Journal of Fluid Mechanics,
691:594–604, 2012.

[221] D. Duke, J. Soria, and D. Honnery. An error analysis of the dynamic mode
decomposition. Experiments in Fluids, 52(2):529–542, 2012.

[222] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory: A Con-
vex Approach. In Texts in Applied Mathematics. Springer, 2000.

[223] R. Dunne and B. J. McKeon. Dynamic stall on a pitching and surging
airfoil. Experiments in Fluids, 56(8):1–15, 2015.

[224] K. Duraisamy, G. Iaccarino, and H. Xiao. Turbulence modeling in the age
of data. Annual Reviews of Fluid Mechanics, 51:357–377, 2019.

[225] T. Duriez, S. L. Brunton, and B. R. Noack. Machine Learning Control: Tam-
ing Nonlinear Dynamics and Turbulence. Springer, 2016.

[226] T. Duriez, V. Parezanović, L. Cordier, et al. Closed-loop turbulence con-
trol using machine learning. Preprint arXiv:1404.4589, 2014.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

688 REFERENCES

[227] T. Duriez, V. Parezanovic, J.-C. Laurentie, et al. Closed-loop control of
experimental shear flows using machine learning. AIAA Paper 2014-
2219, 2014 (7th Flow Control Conference).

[228] C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

[229] J. L. Eftang, A. T. Patera, and E. M. Rønquist. An “hp” certified re-
duced basis method for parametrized elliptic partial differential equa-
tions. SIAM Journal on Scientific Computing, 32(6):3170–3200, 2010.

[230] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990.

[231] U. Eren, A. Prach, B. B. Koçer, et al. Model predictive control in aerospace
systems: Current state and opportunities. Journal of Guidance, Control, and
Dynamics, 40(7):1541–1566, 2017.

[232] N. B. Erichson, S. L. Brunton, and J. N. Kutz. Compressed dynamic mode
decomposition for background modeling. Journal of Real-Time Image Pro-
cessing, 16:1479–1492, 2019.

[233] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz. Random-
ized CP tensor decomposition. Machine Learning: Science and Technology,
1(2):025012, 2020.

[234] N. B. Erichson, L. Mathelin, J. N. Kutz, and S. L. Brunton. Randomized
dynamic mode decomposition. SIAM Journal on Applied Dynamical Sys-
tems, 18(4):1867–1891, 2019.

[235] N. B. Erichson, L. Mathelin, Z. Yao, et al. Shallow neural networks for
fluid flow reconstruction with limited sensors. Proceedings of the Royal
Society A, 476(2238):20200097, 2020.

[236] N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz. Randomized
matrix decompositions using R. Journal of Statistical Software, 89(11):1–48,
2019.

[237] T. Esram, J. W. Kimball, P. T Krein, P. L. Chapman, and P. Midya. Dynamic
maximum power point tracking of photovoltaic arrays using ripple cor-
relation control. IEEE Transactions on Power Electronics, 21(5):1282–1291,
2006.

[238] E. Even-Dar, Y. Mansour, and P. Bartlett. Learning rates for Q-learning.
Journal of Machine Learning Research, 5:1–25, 2003.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 689

[239] R. Everson and L. Sirovich. Karhunen–Loeve procedure for gappy data.
Journal of the Optical Society of America A, 12(8):1657–1664, 1995.

[240] N. Fabbiane, O. Semeraro, S. Bagheri, and D. S. Henningson. Adaptive
and model-based control theory applied to convectively unstable flows.
Applied Mechanics Reviews, 66(6):060801 (20pp.), 2014.

[241] D. Fan, L. Yang, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis. Re-
inforcement learning for bluff body active flow control in experiments
and simulations. Proceedings of the National Academy of Sciences, USA,
117(42):26 091–26 098, 2020.

[242] D. D. Fan, A.-A. Agha-Mohammadi, and E. A. Theodorou. Deep learning
tubes for tube MPC. Preprint arXiv:2002.01587, 2020.

[243] B. Feeny. On proper orthogonal co-ordinates as indicators of modal ac-
tivity. Journal of Sound and Vibration, 255(5):805–817, 2002.

[244] R. A. Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society A, 222:309–368, 1922.

[245] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Human Genetics, 7(2):179–188, 1936.

[246] P. J. Fleming and R. C. Purshouse. Evolutionary algorithms in control
systems engineering: A survey. Control Engineering Practice, 10:1223–1241,
2002.

[247] N. Fonzi, S. L. Brunton, and U. Fasel. Data-driven nonlinear aeroelastic
models of morphing wings for control. Proceedings of the Royal Society A,
476(2239):20200079, 2020.

[248] J. Fourier. Théorie Analytique de la Chaleur. Firmin Didot, Père et Fils, 1822.

[249] J. B. J. Fourier. The Analytical Theory of Heat. Cambridge at The University
Press, 1878 (transl. A. Freeman).

[250] J. E. Fowler. Compressive-projection principal component analysis. IEEE
Transactions on Image Processing, 18(10):2230–2242, 2009.

[251] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and Sys-
tem Sciences, 55(1):119–139, 1997.

[252] J. H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29(5):1189–1232, 2001.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

690 REFERENCES

[253] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for
finding low-rank approximations. Journal of the ACM, 51(6):1025–1041,
2004.

[254] G. Froyland, G. A. Gottwald, and A. Hammerlindl. A computational
method to extract macroscopic variables and their dynamics in multi-
scale systems. SIAM Journal on Applied Dynamical Systems, 13(4):1816–
1846, 2014.

[255] G. Froyland, G. A. Gottwald, and A. Hammerlindl. A trajectory-free
framework for analysing multiscale systems. Physica D: Nonlinear Phe-
nomena, 328:34–43, 2016.

[256] X. Fu, S. L. Brunton, and J. N. Kutz. Classification of birefringence in
mode-locked fiber lasers using machine learning and sparse representa-
tion. Optics Express, 22(7):8585–8597, 2014.

[257] K. Fujii and Y. Kawahara. Dynamic mode decomposition in vector-
valued reproducing kernel Hilbert spaces for extracting dynamical struc-
ture among observables. Neural Networks, 117:94–103, 2019.

[258] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approxima-
tion error in actor–critic methods. In Proceedings of the 35th International
Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

[259] K. Fukagata, S. Kern, P. Chatelain, P. Koumoutsakos, and N. Kasagi. Evo-
lutionary optimization of an anisotropic compliant surface for turbulent
friction drag reduction. Journal of Turbulence, 9(35):1–17, 2008.

[260] F. Fukushima. A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernet-
ics, 36:193–202, 1980.

[261] H. Gao, J. Lam, C. Wang, and Y. Wang. Delay-dependent output-feedback
stabilisation of discrete-time systems with time-varying state delay. IEE
Proceedings – Control Theory and Applications, 151(6):691–698, 2004.

[262] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory
and practice – A survey. Automatica, 25(3):335–348, 1989.

[263] J. L. Garriga and M. Soroush. Model predictive control tuning methods:
A review. Industrial and Engineering Chemistry Research, 49(8):3505–3515,
2010.

[264] C.-F. Gauss. Theoria Combinationis Observationum Erroribus Minimis Ob-
noxiae, volume 1. Henricus Dieterich, 1823.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 691

[265] C.-F. Gauss. Theoria Interpolationis Methodo Nova Tractata. Königliche
Gesellschaft der Wissenschaften, Göttingen, 1866.

[266] N. Gautier, J.-L. Aider, T. Duriez, et al. Closed-loop separation control
using machine learning. Journal of Fluid Mechanics, 770:442–457, 2015.

[267] M. Gavish and D. L. Donoho. The optimal hard threshold for singular
values is 4/

√
3. IEEE Transactions on Information Theory, 60(8):5040–5053,

2014.

[268] M. Gazzola, B. Hejazialhosseini, and P. Koumoutsakos. Reinforcement
learning and wavelet adapted vortex methods for simulations of self-
propelled swimmers. SIAM Journal on Scientific Computing, 36(3):B622–
B639, 2014.

[269] M. Gazzola, A. Tchieu, D. Alexeev, A. De Brauer, and P. Koumoutsakos.
Learning to school in the presence of hydrodynamic interactions. Journal
of Fluid Mechanics, 789:726–749, 2016.

[270] M. Gazzola, O. V. Vasilyev, and P. Koumoutsakos. Shape optimization
for drag reduction in linked bodies using evolution strategies. Computers
and Structures, 89(11):1224–1231, 2011.

[271] T. Geijtenbeek, M. Van De Panne, and A. F. Van Der Stappen. Flexi-
ble muscle-based locomotion for bipedal creatures. ACM Transactions on
Graphics, 32(6):1–11, 2013.

[272] G. Gelbert, J. P. Moeck, C. O. Paschereit, and R. King. Advanced al-
gorithms for gradient estimation in one- and two-parameter extremum
seeking controllers. Journal of Process Control, 22(4):700–709, 2012.

[273] P. Gelß, S. Klus, J. Eisert, and C. Schütte. Multidimensional approxima-
tion of nonlinear dynamical systems. Journal of Computational and Nonlin-
ear Dynamics, 14(6):061006 (12pp.), 2019.

[274] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to
many: Illumination cone models for face recognition under variable light-
ing and pose. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(6):643–660, 2001.

[275] J. J. Gerbrands. On the relationships between SVD, KLT and PCA. Pattern
Recognition, 14(1):375–381, 1981.

[276] A. C. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Pro-
ceedings of the IEEE, 98(6):937–947, 2010.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

692 REFERENCES

[277] A. C. Gilbert, J. Y. Park, and M. B. Wakin. Sketched SVD: Recovering spec-
tral features from compressive measurements. Preprint arXiv:1211.0361,
2012.

[278] A. C. Gilbert, M. J. Strauss, and J. A. Tropp. A tutorial on fast Fourier
sampling. IEEE Signal Processing Magazine, 25(2):57–66, 2008.

[279] C. Gin, B. Lusch, S. L. Brunton, and J. N. Kutz. Deep learning models for
global coordinate transformations that linearise PDEs. European Journal
of Applied Mathematics, 32(3):515–539, 2021.

[280] C. R. Gin, D. E. Shea, S. L. Brunton, and J. N. Kutz. DeepGreen: Deep
learning of Green’s functions for nonlinear boundary value problems.
Scientific Reports, 11:21614, 2021.

[281] B. Glaz, L. Liu, and P. P. Friedmann. Reduced-order nonlinear unsteady
aerodynamic modeling using a surrogate-based recurrence framework.
AIAA Journal, 48(10):2418–2429, 2010.

[282] P. W. Glimcher. Understanding dopamine and reinforcement learning:
The dopamine reward prediction error hypothesis. Proceedings of the Na-
tional Academy of Sciences, USA, 108(Supplement 3):15 647–15 654, 2011.

[283] P. J. Goddard and K. Glover. Controller approximation: Approaches
for preserving H∞ performance. IEEE Transactions on Automatic Control,
43(7):858–871, 1998.

[284] D. E. Goldberg. Genetic Algorithms. Pearson Education India, 2006.

[285] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-
inverse of a matrix. Journal of the Society for Industrial and Applied Mathe-
matics, Series B: Numerical Analysis, 2(2):205–224, 1965.

[286] G. H. Golub and C. Reinsch. Singular value decomposition and least
squares solutions. Numerical Mathematics, 14:403–420, 1970.

[287] G. H. Golub and C. F. Van Loan. Matrix Computations, 3rd edition. Johns
Hopkins University Press, 2012.

[288] G. H. Golub, S. Nash, and C. Van Loan. A Hessenberg–Schur method for
the problem ax+xb = c. IEEE Transactions on Automatic Control, 24(6):909–
913, 1979.

[289] R. González-Garcı́a, R. Rico-Martı́nez, and I. G. Kevrekidis. Identification
of distributed parameter systems: A neural net based approach. Comput-
ers and Chemical Engineering, 22:S965–S968, 1998.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 693

[290] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[291] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al. Generative adversarial
nets. Advances in Neural Information Processing Systems, 27, 9pp., 2014.

[292] A. Goza and T. Colonius. Modal decomposition of fluid–structure inter-
action with application to flag flapping. Journal of Fluids and Structures,
81:728–737, 2018.

[293] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for disciplined con-
vex programming, http://cvxr.com/cvx, 2008.

[294] A. Graves, G. Wayne, and I. Danihelka. Neural Turing machines. Preprint
arXiv:1410.5401, 2014.

[295] A. Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

[296] M. S. Grewal. Kalman filtering. In International Encyclopedia of Statistical
Science, pages 705–708. Springer, 2011.

[297] M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams. Analysis of unsteady
behaviour in shockwave turbulent boundary layer interaction. Journal of
Fluid Mechanics, 700:16–28, 2012.

[298] J. Grosek and J. N. Kutz. Dynamic mode decomposition for real-time
background/foreground separation in video. Preprint arXiv:1404.7592,
2014.

[299] M. Gu. Subspace iteration randomization and singular value problems.
SIAM Journal on Scientific Computing, 37(3):1139–1173, 2015.

[300] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017
IEEE International Conference on Robotics and Automation, pages 3389–3396.
IEEE, 2017.

[301] Y. Guan, S. L. Brunton, and I. Novosselov. Sparse nonlinear models of
chaotic electroconvection. Royal Society Open Science, 8(8):202367, 2021.

[302] F. Guéniat, L. Mathelin, and M. Y. Hussaini. A statistical learning strategy
for closed-loop control of fluid flows. Theoretical and Computational Fluid
Dynamics, 30(6):497–510, 2016.

[303] F. Guéniat, L. Mathelin, and L. Pastur. A dynamic mode decomposition
approach for large and arbitrarily sampled systems. Physics of Fluids,
27(2):025113, 2015.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://cvxr.com/cvx

694 REFERENCES

[304] P. Gunnarson, I. Mandralis, G. Novati, P. Koumoutsakos, and J. O.
Dabiri. Learning efficient navigation in vortical flow fields. Preprint
arXiv:2102.10536, 2021.

[305] D. R. Gurevich, P. A. Reinbold, and R. O. Grigoriev. Robust and optimal
sparse regression for nonlinear pde models. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 29(10):103113, 2019.

[306] F. Gustafsson, F. Gunnarsson, N. Bergman, et al. Particle filters for posi-
tioning, navigation, and tracking. IEEE Transactions on Signal Processing,
50(2):425–437, 2002.

[307] A. Haar. Zur Theorie der orthogonalen Funktionensysteme. Mathematis-
che Annalen, 69(3):331–371, 1910.

[308] N. Halko, P.-G. Martinsson, Y. Shkolnisky, and M. Tygert. An algorithm
for the principal component analysis of large data sets. SIAM Journal on
Scientific Computing, 33:2580–2594, 2011.

[309] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM Review, 53(2):217–288, 2011.

[310] S. J. Hammarling. Numerical solution of the stable, non-negative defi-
nite Lyapunov equation. IMA Journal of Numerical Analysis, 2(3):303–323,
1982.

[311] S. Han and B. Feeny. Application of proper orthogonal decomposition
to structural vibration analysis. Mechanical Systems and Signal Processing,
17(5):989–1001, 2003.

[312] N. Hansen, A. S. Niederberger, L. Guzzella, and P. Koumoutsakos. A
method for handling uncertainty in evolutionary optimization with an
application to feedback control of combustion. IEEE Transactions on Evo-
lutionary Computation, 13(1):180–197, 2009.

[313] D. Harrison Jr. and D. L. Rubinfeld. Hedonic housing prices and the
demand for clean air. Journal of Environmental Economics and Management,
5(1):81–102, 1978.

[314] R. A. Harshman. Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory” multi-modal factor analysis. UCLA
Working Papers in Phonetics, 16:1–84, 1970. Available at http://www.
psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf

REFERENCES 695

[315] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing, 2nd edition. Springer, 2009.

[316] M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially ob-
servable MDPs. In 2015 AAAI Fall Symposium Series, 2015.

[317] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[318] M. Heath, A. Laub, C. Paige, and R. Ward. Computing the singular value
decomposition of a product of two matrices. SIAM Journal on Scientific
and Statistical Computing, 7(4):1147–1159, 1986.

[319] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the
fast Fourier transform. IEEE ASSP Magazine, 1(4):14–21, 1984.

[320] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. In Werner Heisenberg Gesammelte Werke (Col-
lected Works): Original Scientific Papers (Wissenschaftliche Originalarbeiten),
pages 478–504. Springer, 1985.

[321] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. De-biasing
the dynamic mode decomposition for applied Koopman spectral analy-
sis. Theoretical and Computational Fluid Dynamics, 31(4):349–368, 2017.

[322] M. S. Hemati, M. O. Williams, and C. W. Rowley. Dynamic mode decom-
position for large and streaming datasets. Physics of Fluids, 26(11):111701,
2014.

[323] K. K. Herrity, A. C. Gilbert, and J. A. Tropp. Sparse approximation via
iterative thresholding. In 2006 IEEE International Conference on Acoustics,
Speech and Signal Processing Proceedings, volume 3. IEEE, 2006.

[324] B. Herrmann, P. J. Baddoo, R. Semaan, S. L. Brunton, and B. J. McKeon.
Data-driven resolvent analysis. Journal of Fluid Mechanics, 918:A10, 2021.

[325] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods
for Parametrized Partial Differential Equations. In Springer Briefs in Mathe-
matics, Springer, 2015.

[326] T. Hey, S. Tansley, and K. M. Tolle. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, 2009.

[327] G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann
machines. In Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, volume 1, Foundations, pages 282–317. ACM, 1986.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

696 REFERENCES

[328] S. M. Hirsh, S. M. Ichinaga, S. L. Brunton, J. N. Kutz, and B. W. Brun-
ton. Structured time-delay models for dynamical systems with connec-
tions to Frenet–Serret frame. Proceedings of the Royal Society A, 477(2254):
20210097, 2021.

[329] B. L. Ho and R. E. Kalman. Effective construction of linear state-variable
models from input/output data. In Proceedings of the 3rd Annual Allerton
Conference on Circuit and System Theory, pages 449–459, 1965.

[330] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances
in Neural Information Processing Systems, 29, pages 4565–4573, 2016.

[331] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[332] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[333] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence.
University of Michigan Press, 1975.

[334] P. Holmes and J. Guckenheimer. Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical
Sciences. Springer, 1983.

[335] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, Coher-
ent Structures, Dynamical Systems and Symmetry, 2nd edition. Cambridge
University Press, 2012.

[336] E. Hopf. The partial differential equation ut+uux = µuxx. Communications
on Pure and Applied Mathematics, 3(3):201–230, 1950.

[337] J. J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of Sci-
ences, USA, 79(8):2554–2558, 1982.

[338] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359–366, 1989.

[339] H. Hotelling. Analysis of a complex of statistical variables into principal
components [to be concluded]. Journal of Educational Psychology, 24:417–
441, 1933.

[340] H. Hotelling. Analysis of a complex of statistical variables into principal
components [concluded]. Journal of Educational Psychology, 24:498–520,
1933.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 697

[341] C. Huang, W. E. Anderson, M. E. Harvazinski, and V. Sankaran. Analysis
of self-excited combustion instabilities using decomposition techniques.
In 51st AIAA Aerospace Sciences Meeting, pages 1–18, 2013.

[342] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. Journal of Physiology,
160:106–154, 1962.

[343] P. J. Huber. Robust statistics. In International Encyclopedia of Statistical
Science, pages 1248–1251. Springer, 2011.

[344] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys, 50(2):1–35, 2017.

[345] S. J. Illingworth, A. S. Morgans, and C. W. Rowley. Feedback control of
flow resonances using balanced reduced-order models. Journal of Sound
and Vibration, 330(8):1567–1581, 2010.

[346] E. Jacobsen and R. Lyons. The sliding DFT. IEEE Signal Processing Maga-
zine, 20(2):74–80, 2003.

[347] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. Science,
304(5667):78–80, 2004.

[348] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Sta-
tistical Learning. Springer, 2013.

[349] M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz. Extremum-
seeking control of a beam pattern of a reconfigurable holographic meta-
material antenna. Journal of the Optical Society of America A, 33(1):59–68,
2016.

[350] R. A. Johnson and D. Wichern. Applied Multivariate Statistical Analysis,
6th edition. Pearson, 2018.

[351] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. Contemporary Mathematics, 26(189-206):1, 1984.

[352] I. Jolliffe. Principal component analysis. In Encyclopedia of Statistics in
Behavioral Science. John Wiley & Sons, 2005.

[353] S. Joshi and S. Boyd. Sensor selection via convex optimization. IEEE
Transactions on Signal Processing, 57(2):451–462, 2009.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

698 REFERENCES

[354] M. R. Jovanović. From bypass transition to flow control and data-driven
turbulence modeling: An input–output viewpoint. Annual Review of Fluid
Mechanics, 53(1):311–345, 2021.

[355] M. R. Jovanović and B. Bamieh. Componentwise energy amplification in
channel flows. Journal of Fluid Mechanics, 534:145–183, 2005.

[356] M. R. Jovanović, P. J. Schmid, and J. W. Nichols. Sparsity-promoting dy-
namic mode decomposition. Physics of Fluids, 26(2):024103, 2014.

[357] J. N. Juang. Applied System Identification. Prentice Hall, 1994.

[358] J. N. Juang and R. S. Pappa. An eigensystem realization algorithm for
modal parameter identification and model reduction. Journal of Guidance,
Control, and Dynamics, 8(5):620–627, 1985.

[359] J. N. Juang, M. Phan, L. G. Horta, and R. W. Longman. Identification
of observer/Kalman filter Markov parameters: Theory and experiments.
Technical Memorandum 104069, NASA, 1991.

[360] S. J. Julier and J. K. Uhlmann. A new extension of the Kalman filter to
nonlinear systems. In International Symposium on Aerospace/Defense Sens-
ing, Simulation and Controls, volume 3, pages 182–193, 1997.

[361] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estima-
tion. Proceedings of the IEEE, 92(3):401–422, 2004.

[362] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[363] K. Kaheman, E. Kaiser, B. Strom, J. N. Kutz, and S. L. Brunton. Learning
discrepancy models from experimental data. Preprint arXiv:1909.08574,
2019.

[364] K. Kaheman, J. N. Kutz, and S. L. Brunton. SINDy-PI: a robust algorithm
for parallel implicit sparse identification of nonlinear dynamics. Proceed-
ings of the Royal Society A, 476(2242):20200279, 2020.

[365] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discovery of Koop-
man eigenfunctions for control. Machine Learning: Science and Technology,
2(3):035023, 2021.

[366] E. Kaiser, J. N. Kutz, and S. L. Brunton. Sparse identification of nonlinear
dynamics for model predictive control in the low-data limit. Proceedings
of the Royal Society A, 474(2219):20180335, 2018.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 699

[367] E. Kaiser, B. R. Noack, L. Cordier, et al. Cluster-based reduced-order
modelling of a mixing layer. Journal of Fluid Mechanics, 754:365–414, 2014.

[368] S. M. Kakade. A natural policy gradient. Advances in Neural Information
Processing Systems, 14, 8pp., 2001.

[369] M. Kalia, S. L. Brunton, H. G. Meijer, C. Brune, and J. N. Kutz. Learn-
ing normal form autoencoders for data-driven discovery of universal,
parameter-dependent governing equations. Preprint arXiv:2106.05102,
2021.

[370] R. E. Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of Fluids Engineering, 82(1):35–45, 1960.

[371] M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz. Time-delay observ-
ables for Koopman: Theory and applications. SIAM Journal on Applied
Dynamical Systems, 19(2):886–917, 2020.

[372] A. A. Kaptanoglu, J. L. Callaham, C. J. Hansen, A. Aravkin, and S. L.
Brunton. Promoting global stability in data-driven models of quadratic
nonlinear dynamics. Physical Review Fluids, 6:094401, 2021.

[373] A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton.
Physics-constrained, low-dimensional models for MHD: First-principles
and data-driven approaches. Physical Review E, 104:015206, 2021.

[374] K. Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrech-
nung. Dissertation, Helsinki. Annales Academiæ Scientiarum Fennicæ, A. I,
37, 1947.

[375] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, et al. Physics-informed ma-
chine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[376] K. Kasper, L. Mathelin, and H. Abou-Kandil. A machine learning ap-
proach for constrained sensor placement. In American Control Conference,
2015, pages 4479–4484. IEEE, 2015.

[377] A. K. Kassam and L. N. Trefethen. Fourth-order time-stepping for stiff
PDEs. SIAM Journal on Scientific Computing, 26(4):1214–1233, 2005.

[378] M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. Journal of the ACM, 41(1):67–95, 1994.

[379] A. R. Kellems, S. Chaturantabut, D. C. Sorensen, and S. J. Cox. Morpho-
logically accurate reduced order modeling of spiking neurons. Journal of
Computational Neuroscience, 28(3):477–494, 2010.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

700 REFERENCES

[380] J. Kepler. Tabulae Rudolphinae, quibus astronomicae scientiae, temporum long-
inquitate collapsae restauratio continentur. Jonas Saur, 1627.

[381] G. Kerschen and J.-C. Golinval. Physical interpretation of the proper or-
thogonal modes using the singular value decomposition. Journal of Sound
and Vibration, 249(5):849–865, 2002.

[382] G. Kerschen, J.-C. Golinval, A. F. Vakakis, and L. A. Bergman. The
method of proper orthogonal decomposition for dynamical characteriza-
tion and order reduction of mechanical systems: An overview. Nonlinear
Dynamics, 41(1–3):147–169, 2005.

[383] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, et al. Equation-free, coarse-
grained multiscale computation: Enabling microscopic simulators to per-
form system-level analysis. Communications in Mathematical Sciences,
1(4):715–762, 2003.

[384] N. J. Killingsworth and M. Krstc. PID tuning using extremum seeking:
Online, model-free performance optimization. IEEE Control Systems Mag-
azine, 26(1):70–79, 2006.

[385] H. J. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng. Autonomous helicopter
flight via reinforcement learning. In Advances in Neural Information Pro-
cessing Systems, 16, pages 799–806, 2003.

[386] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
Preprint arXiv:1412.6980, 2014.

[387] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. Preprint
arXiv:1312.6114, 2013.

[388] M. Kirby and L. Sirovich. Application of the Karhunen–Loève proce-
dure for the characterization of human faces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(1):103–108, 1990.

[389] V. C. Klema and A. J. Laub. The singular value decomposition: Its com-
putation and some applications. IEEE Transactions on Automatic Control,
25(2):164–176, 1980.

[390] S. Klus, P. Gelß, S. Peitz, and C. Schütte. Tensor-based dynamic mode
decomposition. Nonlinearity, 31(7):3359, 2018.

[391] S. Klus, F. Nüske, and B. Hamzi. Kernel-based approximation of the
Koopman generator and Schrödinger operator. Entropy, 22(7):722, 2020.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 701

[392] S. Klus, F. Nüske, P. Koltai, et al. Data-driven model reduction and trans-
fer operator approximation. Journal of Nonlinear Science, 28:985–1010,
2018.

[393] S. Klus, I. Schuster, and K. Muandet. Eigendecompositions of transfer op-
erators in reproducing kernel Hilbert spaces. Journal of Nonlinear Science,
30(1):283–315, 2020.

[394] J. Kober and J. Peters. Reinforcement learning in robotics: A survey. In
Reinforcement Learning, pages 579–610. Springer, 2012.

[395] R. Koch. The 80/20 Principle. Nicholas Brealey, 1997.

[396] R. Koch. Living the 80/20 Way. Audio-Tech Business Book Summaries,
2006.

[397] R. Koch. The 80/20 Principle: The Secret to Achieving More with Less. Crown
Business, 2011.

[398] R. Koch. The 80/20 Principle and 92 Other Powerful Laws of Nature: The
Science of Success. Nicholas Brealey, 2013.

[399] D. Kochkov, J. A. Smith, A. Alieva, et al. Machine learning accelerated
computational fluid dynamics. Preprint arXiv:2102.01010, 2021.

[400] T. Kohonen. The self-organizing map. Neurocomputing, 21(1–3):1–6, 1998.

[401] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

[402] B. O. Koopman. Hamiltonian systems and transformation in Hilbert
space. Proceedings of the National Academy of Sciences, USA, 17(5):315–318,
1931.

[403] B. O. Koopman and J. v. Neumann. Dynamical systems of continuous
spectra. Proceedings of the National Academy of Sciences, USA, 18(3):255,
1932.

[404] M. Korda and I. Mezić. Linear predictors for nonlinear dynamical sys-
tems: Koopman operator meets model predictive control. Automatica,
93(149–160), 2018.

[405] M. Korda and I. Mezić. On convergence of extended dynamic mode
decomposition to the Koopman operator. Journal of Nonlinear Science,
28(2):687–710, 2018.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

702 REFERENCES

[406] P. Koumoutsakos, J. Freund, and D. Parekh. Evolution strategies for au-
tomatic optimization of jet mixing. AIAA Journal, 39(5):967–969, 2001.

[407] N. Kovachki, Z. Li, B. Liu, et al. Neural operator: Learning maps between
function spaces. Preprint arXiv:2108.08481, 2021.

[408] K. Kowalski, W.-H. Steeb, and K. Kowalksi. Nonlinear Dynamical Systems
and Carleman Linearization. World Scientific, 1991.

[409] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[410] J. R. Koza, F. H. Bennett III, and O. Stiffelman. Genetic programming as
a Darwinian invention machine. In Genetic Programming, pages 93–108.
Springer, 1999.

[411] B. Kramer, P. Grover, P. Boufounos, M. Benosman, and S. Nabi. Sparse
sensing and DMD based identification of flow regimes and bifurcations
in complex flows. SIAM Journal on Applied Dynamical Systems, 16(2):1164–
1196, 2017.

[412] J. P. Krieger and M. Krstic. Extremum seeking based on atmospheric tur-
bulence for aircraft endurance. Journal of Guidance, Control, and Dynamics,
34(6):1876–1885, 2011.

[413] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney.
Characterizing possible failure modes in physics-informed neural net-
works. Advances in Neural Information Processing Systems, 34, 2021.

[414] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Informa-
tion Processing Systems, 25, pages 1097–1105, 2012.

[415] M. Krstić and H. Wang. Stability of extremum seeking feedback for gen-
eral nonlinear dynamic systems. Automatica, 36:595–601, 2000.

[416] M. Krstić, A. Krupadanam, and C. Jacobson. Self-tuning control of a non-
linear model of combustion instabilities. IEEE Transactions on Control Sys-
tems Technology, 7(4):424–436, 1999.

[417] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep con-
volutional inverse graphics network. In Advances in Neural Information
Processing Systems, 28, pages 2539–2547, 2015.

[418] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22(1):79–86, 1951.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 703

[419] K. Kunisch and S. Volkwein. Optimal snapshot location for computing
POD basis functions. ESAIM: Mathematical Modelling and Numerical Anal-
ysis, 44(3):509–529, 2010.

[420] J. N. Kutz. Data-Driven Modeling and Scientific Computation: Methods for
Complex Systems and Big Data. Oxford University Press, 2013.

[421] J. N. Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics,
814:1–4, 2017.

[422] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic Mode
Decomposition: Data-Driven Modeling of Complex Systems. SIAM, 2016.

[423] J. N. Kutz, X. Fu, and S. L. Brunton. Multi-resolution dynamic mode
decomposition. SIAM Journal on Applied Dynamical Systems, 15(2):713–
735, 2016.

[424] J. N. Kutz, S. Sargsyan, and S. L. Brunton. Leveraging sparsity and
compressive sensing for reduced order modeling. In Model Reduction of
Parametrized Systems, pages 301–315. Springer, 2017.

[425] S. Lall, J. E. Marsden, and S. Glavaški. Empirical model reduction of
controlled nonlinear systems. In IFAC World Congress, volume F, pages
473–478. International Federation of Automatic Control, 1999.

[426] S. Lall, J. E. Marsden, and S. Glavaški. A subspace approach to balanced
truncation for model reduction of nonlinear control systems. International
Journal of Robust and Nonlinear Control, 12(6):519–535, 2002.

[427] Y. Lan and I. Mezić. Linearization in the large of nonlinear systems and
Koopman operator spectrum. Physica D: Nonlinear Phenomena, 242(1):42–
53, 2013.

[428] H. Lange, S. L. Brunton, and J. N. Kutz. From Fourier to Koopman:
Spectral methods for long-term time series prediction. Journal of Machine
Learning Research, 22(41):1–38, 2021.

[429] S. Lanka and T. Wu. ARCHER: Aggressive rewards to counter bias in
hindsight experience replay. Preprint arXiv:1809.02070, 2018.

[430] A. Laub. A Schur method for solving algebraic Riccati equations. IEEE
Transactions on Automatic Control, 24(6):913–921, 1979.

[431] H. Le, C. Voloshin, and Y. Yue. Batch policy learning under constraints.
In International Conference on Machine Learning, pages 3703–3712. PMLR,
2019.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

704 REFERENCES

[432] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436,
2015.

[433] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[434] J. H. Lee. Model predictive control: Review of the three decades of
development. International Journal of Control, Automation and Systems,
9(3):415–424, 2011.

[435] K. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recog-
nition under variable lighting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(5):684–698, 2005.

[436] A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des
comètes. Didot, 1805.

[437] V. Lenaerts, G. Kerschen, and J.-C. Golinval. Proper orthogonal decom-
position for model updating of non-linear mechanical systems. Mechani-
cal Systems and Signal Processing, 15(1):31–43, 2001.

[438] I. Lenz, R. A. Knepper, and A. Saxena. DeepMPC: Learning deep latent
features for model predictive control. In Robotics: Science and Systems,
9pp., 2015.

[439] R. Leyva, C. Alonso, I. Queinnec, et al. MPPT of photovoltaic systems
using extremum-seeking control. IEEE Transactions on Aerospace and Elec-
tronic Systems, 42(1):249–258, 2006.

[440] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis. Extended dynamic
mode decomposition with dictionary learning: A data-driven adaptive
spectral decomposition of the Koopman operator. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 27(10):103111, 2017.

[441] Z. Li, N. Kovachki, K. Azizzadenesheli, et al. Fourier neural operator
for parametric partial differential equations. Preprint arXiv:2010.08895,
2020.

[442] Z. Li, N. Kovachki, K. Azizzadenesheli, et al. Multipole graph neu-
ral operator for parametric partial differential equations. Preprint
arXiv:2006.09535, 2020.

[443] Z. Li, N. Kovachki, K. Azizzadenesheli, et al. Neural operator: Graph ker-
nel network for partial differential equations. Preprint arXiv:2003.03485,
2020.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 705

[444] Y. Liang, H. Lee, S. Lim, et al. Proper orthogonal decomposition and its
applications – Part I: Theory. Journal of Sound and Vibration, 252(3):527–
544, 2002.

[445] E. Liberty. Simple and deterministic matrix sketching. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 581–588. ACM, 2013.

[446] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Ran-
domized algorithms for the low-rank approximation of matrices. Proceed-
ings of the National Academy of Sciences, USA, 104:20 167–20 172, 2007.

[447] Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier
method for exact recovery of corrupted low-rank matrices. Preprint
arXiv:1009.5055, 2010.

[448] J. Ling, A. Kurzawski, and J. Templeton. Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance. Jour-
nal of Fluid Mechanics, 807:155–166, 2016.

[449] Y. Liu, J. N. Kutz, and S. L. Brunton. Hierarchical deep learning of multi-
scale differential equation time-steppers. Preprint arXiv:2008.09768, 2020.

[450] Y. Liu, C. Ponce, S. L. Brunton, and J. N. Kutz. Multiresolution convolu-
tional autoencoders. Preprint arXiv:2004.04946, 2020.

[451] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999.

[452] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982.

[453] M. Loeve. Probability Theory. Van Nostrand, 1955.

[454] J.-C. Loiseau. Data-driven modeling of the chaotic thermal convection in
an annular thermosyphon. Theoretical and Computational Fluid Dynamics,
34(4):339–365, 2020.

[455] J.-C. Loiseau and S. L. Brunton. Constrained sparse Galerkin regression.
Journal of Fluid Mechanics, 838:42–67, 2018.

[456] J.-C. Loiseau, B. R. Noack, and S. L. Brunton. Sparse reduced-order mod-
eling: Sensor-based dynamics to full-state estimation. Journal of Fluid Me-
chanics, 844:459–490, 2018.

[457] R. W. Longman. Iterative learning control and repetitive control for en-
gineering practice. International Journal of Control, 73(10):930–954, 2000.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

706 REFERENCES

[458] B. T. Lopez, J.-J. E. Slotine, and J. P. How. Dynamic tube MPC for nonlin-
ear systems. In 2019 American Control Conference, pages 1655–1662. IEEE,
2019.

[459] E. N. Lorenz. Empirical orthogonal functions and statistical weather pre-
diction. Technical Report, Massachusetts Institute of Technology, 1956.

[460] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20(2):130–141, 1963.

[461] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlin-
ear operators via DeepONet based on the universal approximation theo-
rem of operators. Nature Machine Intelligence, 3(3):218–229, 2021.

[462] D. M. Luchtenburg and C. W. Rowley. Model reduction using snapshot-
based realizations. Bulletin of the American Physical Society, 56(18), Ab-
stract, 2011 (64th Annual Meeting of the APS Division of Fluid Dynam-
ics).

[463] J. Lumley. Toward a turbulent constitutive relation. Journal of Fluid Me-
chanics, 41(2):413–434, 1970.

[464] B. Lusch, E. C. Chi, and J. N. Kutz. Shape constrained tensor decompo-
sitions using sparse representations in over-complete libraries. Preprint
arXiv:1608.04674, 2016.

[465] B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature Communications, 9(1):4950,
2018.

[466] F. Lusseyran, F. Gueniat, J. Basley, et al. Flow coherent structures and
frequency signature: Application of the dynamic modes decomposition
to open cavity flow. Journal of Physics: Conference Series, 318: 042036, 2011.

[467] J. Lynch, P. Aughwane, and T. M. Hammond. Video games and surgical
ability: A literature review. Journal of Surgical Education, 67(3):184–189,
2010.

[468] Z. Ma, S. Ahuja, and C. W. Rowley. Reduced order models for control of
fluids using the eigensystem realization algorithm. Theoretical and Com-
putational Fluid Dynamics, 25(1):233–247, 2011.

[469] W. Maass, T. Natschläger, and H. Markram. Real-time computing with-
out stable states: A new framework for neural computation based on per-
turbations. Neural Computation, 14(11):2531–2560, 2002.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 707

[470] A. Mackey, H. Schaeffer, and S. Osher. On the compressive spectral
method. Multiscale Modeling and Simulation, 12(4):1800–1827, 2014.

[471] M. W. Mahoney. Randomized algorithms for matrices and data. Founda-
tions and Trends in Machine Learning, 3:123–224, 2011.

[472] A. J. Majda and J. Harlim. Physics constrained nonlinear regression mod-
els for time series. Nonlinearity, 26(1):201, 2012.

[473] A. J. Majda and Y. Lee. Conceptual dynamical models for turbulence.
Proceedings of the National Academy of Sciences, USA, 111(18):6548–6553,
2014.

[474] S. G. Mallat. A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(7):674–693, 1989.

[475] S. G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[476] S. G. Mallat. Understanding deep convolutional networks. Philosophical
Transactions of the Royal Society A, 374(2065):20150203, 2016.

[477] J. Mandel. Use of the singular value decomposition in regression analy-
sis. American Statistician, 36(1):15–24, 1982.

[478] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Infer-
ring biological networks by sparse identification of nonlinear dynamics.
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications,
2(1):52–63, 2016.

[479] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor. Model selec-
tion for dynamical systems via sparse regression and information criteria.
Proceedings of the Royal Society A, 473(2204):1–16, 2017.

[480] J. Mann and J. N. Kutz. Dynamic mode decomposition for financial trad-
ing strategies. Quantitative Finance, 16(11):1643–1655, 2016.

[481] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton. Data-driven
sparse sensor placement for reconstruction: Demonstrating the benefits
of exploiting known patterns. IEEE Control Systems Magazine, 38(3):63–
86, 2018.

[482] K. Manohar, S. L. Brunton, and J. N. Kutz. Environmental identification
in flight using sparse approximation of wing strain. Journal of Fluids and
Structures, 70:162–180, 2017.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

708 REFERENCES

[483] K. Manohar, E. Kaiser, S. L. Brunton, and J. N. Kutz. Optimized sam-
pling for multiscale dynamics. SIAM Multiscale Modeling and Simulation,
17(1):117–136, 2019.

[484] K. Manohar, J. N. Kutz, and S. L. Brunton. Optimized sensor and actuator
placement for balanced models. Preprint arXiv:1812.01574, 2018.

[485] A. Mardt, L. Pasquali, H. Wu, and F. Noé. VAMPnets for deep learning
of molecular kinetics. Nature Communications, 9:5, 2018.

[486] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry, 2nd
edition. Springer, 1999.

[487] P.-G. Martinsson. Randomized methods for matrix computations and
analysis of high dimensional data. Preprint arXiv:1607.01649, 2016.

[488] P.-G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm
for the decomposition of matrices. Applied and Computational Harmonic
Analysis, 30:47–68, 2011.

[489] J. L. Maryak, J. C. Spall, and B. D. Heydon. Use of the Kalman filter for
inference in state-space models with unknown noise distributions. IEEE
Transactions on Automatic Control, 49(1):87–90, 2004.

[490] L. Massa, R. Kumar, and P. Ravindran. Dynamic mode decomposition
analysis of detonation waves. Physics of Fluids, 24(6):066101, 2012.

[491] L. Mathelin, K. Kasper, and H. Abou-Kandil. Observable dictionary
learning for high-dimensional statistical inference. Archives of Computa-
tional Methods in Engineering, 25(1):103–120, 2018.

[492] R. Maulik, O. San, A. Rasheed, and P. Vedula. Subgrid modelling for two-
dimensional turbulence using neural networks. Journal of Fluid Mechanics,
858:122–144, 2019.

[493] R. Maury, M. Keonig, L. Cattafesta, P. Jordan, and J. Delville. Extremum-
seeking control of jet noise. Aeroacoustics, 11(3–4):459–474, 2012.

[494] S. F. McCormick. Multigrid Methods. SIAM, 1987.

[495] B. J. McKeon and A. S. Sharma. A critical-layer framework for turbulent
pipe flow. Journal of Fluid Mechanics, 658:336–382, 2010.

[496] X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis. PPINN: Parareal
physics-informed neural network for time-dependent PDEs. Computer
Methods in Applied Mechanics and Engineering, 370:113250, 2020.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 709

[497] I. Mezić. Spectral properties of dynamical systems, model reduction and
decompositions. Nonlinear Dynamics, 41(1–3):309–325, 2005.

[498] I. Mezić. Analysis of fluid flows via spectral properties of the Koopman
operator. Annual Review of Fluid Mechanics, 45:357–378, 2013.

[499] I. Mezić. Spectral Operator Methods in Dynamical Systems: Theory and Ap-
plications. Springer, 2017.

[500] I. Mezić and A. Banaszuk. Comparison of systems with complex behav-
ior. Physica D: Nonlinear Phenomena, 197(1):101–133, 2004.

[501] I. Mezić and S. Wiggins. A method for visualization of invariant sets of
dynamical systems based on the ergodic partition. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 9(1):213–218, 1999.

[502] M. Milano and P. Koumoutsakos. Neural network modeling for near wall
turbulent flow. Journal of Computational Physics, 182(1):1–26, 2002.

[503] M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE,
49(1):8–30, 1961.

[504] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[505] Y. Mizuno, D. Duke, C. Atkinson, and J. Soria. Investigation of wall-
bounded turbulent flow using dynamic mode decomposition. Journal of
Physics: Conference Series, 318:042040, 2011.

[506] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[507] J. P. Moeck, J.-F. Bourgouin, D. Durox, T. Schuller, and S. Candel. To-
mographic reconstruction of heat release rate perturbations induced by
helical modes in turbulent swirl flames. Experiments in Fluids, 54(4):1–17,
2013.

[508] P. R. Montague, P. Dayan, and T. J. Sejnowski. A framework for mesen-
cephalic dopamine systems based on predictive Hebbian learning. Jour-
nal of Neuroscience, 16(5):1936–1947, 1996.

[509] B. C. Moore. Principal component analysis in linear systems: Controlla-
bility, observability, and model reduction. IEEE Transactions on Automatic
Control, 26(1):17–32, 1981.

[510] C. C. Moore. Ergodic theorem, ergodic theory, and statistical mechan-
ics. Proceedings of the National Academy of Sciences, USA, 112(7):1907–1911,
2015.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

710 REFERENCES

[511] K. L. Moore. Iterative Learning Control for Deterministic Systems. Springer,
2012.

[512] M. Morari and J. H. Lee. Model predictive control: Past, present and
future. Computers and Chemical Engineering, 23(4):667–682, 1999.

[513] J. Morton, A. Jameson, M. J. Kochenderfer, and F. D. Witherden. Deep
dynamical modeling and control of unsteady fluid flows. In Advances in
Neural Information Processing Systems, 31, 11pp., 2018.

[514] T. W. Muld, G. Efraimsson, and D. S. Henningson. Flow structures
around a high-speed train extracted using proper orthogonal decompo-
sition and dynamic mode decomposition. Computers and Fluids, 57:87–97,
2012.

[515] T. W. Muld, G. Efraimsson, and D. S. Henningson. Mode decomposition
on surface-mounted cube. Flow, Turbulence and Combustion, 88(3):279–310,
2012.

[516] S. Müller, M. Milano, and P. Koumoutsakos. Application of machine
learning algorithms to flow modeling and optimization. Annual Research
Briefs, pages 169–178, Center for Turbulence Research, Stanford Univer-
sity, 1999.

[517] I. Munteanu, A. I. Bratcu, and E. Ceanga. Wind turbulence used as
searching signal for MPPT in variable-speed wind energy conversion sys-
tems. Renewable Energy, 34(1):322–327, 2009.

[518] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
2012.

[519] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltz-
mann machines. In Proceedings of the 27th international Conference on Ma-
chine Learning, pages 807–814, 2010.

[520] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples. Communications of the ACM, 53(12):93–
100, 2010.

[521] J. v. Neumann. Proof of the quasi-ergodic hypothesis. Proceedings of the
National Academy of Sciences, USA, 18(1):70–82, 1932.

[522] N. Nguyen, A. Patera, and J. Peraire. A best points interpolation method
for efficient approximation of parametrized functions. International Jour-
nal for Numerical Methods in Engineering, 73(4):521–543, 2008.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 711

[523] Y. Nievergelt. Wavelets Made Easy, volume 174 of Modern Birkhäuser
Classics. Springer, 1999.

[524] B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, and F. Thiele. A
hierarchy of low-dimensional models for the transient and post-transient
cylinder wake. Journal of Fluid Mechanics, 497:335–363, 2003.

[525] B. R. Noack, T. Duriez, L. Cordier, et al. Closed-loop turbulence control
with machine learning methods. Bulletin of the American Physical Society,
58(18):M25.0009, page 418, 2013.

[526] B. R. Noack, M. Morzynski, and G. Tadmor. Reduced-Order Modelling for
Flow Control, volume 528 of CISM Courses and Lectures. Springer, 2011.

[527] B. R. Noack, W. Stankiewicz, M. Morzynski, and P. J. Schmid. Recursive
dynamic mode decomposition of a transient cylinder wake. Journal of
Fluid Mechanics, 809:843–872, 2016.

[528] F. Noé and F. Nuske. A variational approach to modeling slow pro-
cesses in stochastic dynamical systems. Multiscale Modeling and Simu-
lation, 11(2):635–655, 2013.

[529] E. Noether. Invariante variationsprobleme. Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische
Klasse, 235–257, 1918. (Engl. transl.: arXiv:physics/0503066;
http://dx.doi.org/10.1080/00411457108231446).

[530] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos. Automating tur-
bulence modelling by multi-agent reinforcement learning. Nature Ma-
chine Intelligence, 3(1):87–96, 2021.

[531] G. Novati, L. Mahadevan, and P. Koumoutsakos. Controlled gliding and
perching through deep-reinforcement-learning. Physical Review Fluids,
4(9):093902, 2019.

[532] G. Novati, S. Verma, D. Alexeev, et al. Synchronisation through learn-
ing for two self-propelled swimmers. Bioinspiration and Biomimetics,
12(3):aa6311, 2017.

[533] F. Nüske, P. Gelß, S. Klus, and C. Clementi. Tensor based EDMD
for the Koopman analysis of high-dimensional systems. Preprint
arXiv:1908.04741, 2019.

[534] F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. Mey, and F. Noé. Varia-
tional approach to molecular kinetics. Journal of Chemical Theory and Com-
putation, 10(4):1739–1752, 2014.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

712 REFERENCES

[535] F. Nüske, R. Schneider, F. Vitalini, and F. Noé. Variational tensor ap-
proach for approximating the rare-event kinetics of macromolecular sys-
tems. Journal of Chemical Physics, 144(5):054105, 2016.

[536] H. Nyquist. Certain topics in telegraph transmission theory. Transactions
of the AIEE, 47(2):617–644, 1928.

[537] G. Obinata and B. D. Anderson. Model Reduction for Control System Design.
Springer, 2012.

[538] M. Ornik, A. Israel, and U. Topcu. Control-oriented learning on the fly.
Preprint arXiv:1709.04889, 2017.

[539] C. M. Ostoich, D. J. Bodony, and P. H. Geubelle. Interaction of a Mach 2.25
turbulent boundary layer with a fluttering panel using direct numerical
simulation. Physics of Fluids, 25(11):110806, 2013.

[540] S. E. Otto and C. W. Rowley. Linearly-recurrent autoencoder networks
for learning dynamics. SIAM Journal on Applied Dynamical Systems,
18(1):558–593, 2019.

[541] Y. Ou, C. Xu, E. Schuster, et al. Design and simulation of extremum-
seeking open-loop optimal control of current profile in the DIII-D toka-
mak. Plasma Physics and Controlled Fusion, 50:115001 (24pp.), 2008.

[542] V. Ozoliņš, R. Lai, R. Caflisch, and S. Osher. Compressed modes for vari-
ational problems in mathematics and physics. Proceedings of the National
Academy of Sciences, USA, 110(46):18 368–18 373, 2013.

[543] C. Pan, D. Yu, and J. Wang. Dynamical mode decomposition of Gurney
flap wake flow. Theoretical and Applied Mechanics Letters, 1(1):012002, 2011.

[544] S. Pan and K. Duraisamy. Physics-informed probabilistic learning of lin-
ear embeddings of nonlinear dynamics with guaranteed stability. SIAM
Journal on Applied Dynamical Systems, 19(1):480–509, 2020.

[545] X. Pan, Y. You, Z. Wang, and C. Lu. Virtual to real reinforcement learning
for autonomous driving. Preprint arXiv:1704.03952, 2017.

[546] V. Parezanović, T. Duriez, L. Cordier, et al. Closed-loop control of an
experimental mixing layer using machine learning control. Preprint
arXiv:1408.3259, 2014.

[547] V. Parezanović, J.-C. Laurentie, T. Duriez, et al. Mixing layer manipula-
tion experiment – from periodic forcing to machine learning closed-loop
control. Journal of Flow Turbulence and Combustion, 94(1):155–173, 2015.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 713

[548] E. J. Parish and K. T. Carlberg. Time-series machine-learning error mod-
els for approximate solutions to parameterized dynamical systems. Com-
puter Methods in Applied Mechanics and Engineering, 365:112990, 2020.

[549] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International Conference on Ma-
chine Learning, pages 2778–2787. PMLR, 2017.

[550] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott. Using machine
learning to replicate chaotic attractors and calculate Lyapunov exponents
from data. Chaos: An Interdisciplinary Journal of Nonlinear Science,
27(12):121102, 2017.

[551] P. I. Pavlov. Conditioned Reflexes: An Investigation of the Physiological Activ-
ity of the Cerebral Cortex. Oxford University Press, 1927.

[552] K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(7–12):559–572, 1901.

[553] B. Peherstorfer and K. Willcox. Detecting and adapting to parameter
changes for reduced models of dynamic data-driven application systems.
Procedia Computer Science, 51:2553–2562, 2015.

[554] B. Peherstorfer and K. Willcox. Dynamic data-driven reduced-order
models. Computer Methods in Applied Mechanics and Engineering, 291:21–
41, 2015.

[555] B. Peherstorfer and K. Willcox. Online adaptive model reduction for non-
linear systems via low-rank updates. SIAM Journal on Scientific Comput-
ing, 37(4):A2123–A2150, 2015.

[556] B. Peherstorfer, D. Butnaru, K. Willcox, and H.-J. Bungartz. Localized
discrete empirical interpolation method. SIAM Journal on Scientific Com-
puting, 36(1):A168–A192, 2014.

[557] B. Peherstorfer, Z. Drmac, and S. Gugercin. Stability of discrete empiri-
cal interpolation and gappy proper orthogonal decomposition with ran-
domized and deterministic sampling points. SIAM Journal on Scientific
Computing, 42(5):A2837–A2864, 2020.

[558] S. Peitz and S. Klus. Koopman operator-based model reduction for
switched-system control of PDEs. Preprint arXiv:1710.06759, 2017.

[559] S. D. Pendergrass, J. N. Kutz, and S. L. Brunton. Streaming GPU singu-
lar value and dynamic mode decompositions. Preprint arXiv:1612.07875,
2016.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

714 REFERENCES

[560] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings
of the Cambridge Philosophical Society, 51:406–413, 1955.

[561] R. Penrose and J. A. Todd. On best approximate solutions of linear matrix
equations. Mathematical Proceedings of the Cambridge Philosophical Society,
52:17–19, 1956.

[562] L. Perko. Differential Equations and Dynamical Systems, volume 7 of Texts
in Applied Mathematics. Springer, 2013.

[563] M. Phan, L. G. Horta, J. N. Juang, and R. W. Longman. Linear system
identification via an asymptotically stable observer. Journal of Optimiza-
tion Theory and Applications, 79:59–86, 1993.

[564] M. A. Pinsky. Introduction to Fourier Analysis and Wavelets, volume 102 of
Graduate Studies in Mathematics. American Mathematical Society, 2002.

[565] C. Pivot, L. Mathelin, L. Cordier, F. Guéniat, and B. R. Noack. A contin-
uous reinforcement learning strategy for closed-loop control in fluid dy-
namics. In 35th AIAA Applied Aerodynamics Conference, page 3566. AIAA,
2017.

[566] T. Poggio. Deep learning: mathematics and neuroscience. Views & Re-
views, McGovern Center for Brains, Minds and Machines, 7pp., 2016.

[567] P. Poncet, G.-H. Cottet, and P. Koumoutsakos. Control of three-
dimensional wakes using evolution strategies. Comptes Rendus
Mécanique, 333(1):65–77, 2005.

[568] J. L. Proctor and P. A. Eckhoff. Discovering dynamic patterns from in-
fectious disease data using dynamic mode decomposition. International
Health, 7(2):139–145, 2015.

[569] J. L. Proctor, S. L. Brunton, B. W. Brunton, and J. N. Kutz. Exploiting
sparsity and equation-free architectures in complex systems. European
Physical Journal Special Topics, 223(13):2665–2684, 2014.

[570] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposition
with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161,
2016.

[571] H. Qi and S. M. Hughes. Invariance of principal components under low-
dimensional random projection of the data. 19th IEEE International Con-
ference on Image Processing. IEEE, 2012.

[572] S. Qian and D. Chen. Discrete Gabor transform. IEEE Transactions on
Signal Processing, 41(7):2429–2438, 1993.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 715

[573] S. J. Qin and T. A. Badgwell. An overview of industrial model predic-
tive control technology. Chemical Process Control – 5, volume 93 of AIChE
Symposium Series, pages 232–256. AIChE, 1997.

[574] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive
control technology. Control Engineering Practice, 11(7):733–764, 2003.

[575] T. Qin, K. Wu, and D. Xiu. Data driven governing equations approx-
imation using deep neural networks. Journal of Computational Physics,
395:620–635, 2019.

[576] Q. Qu, J. Sun, and J. Wright. Finding a sparse vector in a subspace: Linear
sparsity using alternating directions. In Advances in Neural Information
Processing Systems, 27, pages 3401–3409, 2014.

[577] A. Quarteroni and G. Rozza. Reduced Order Methods for Modeling and Com-
putational Reduction, volume 9 of Modeling, Simulation and Applications.
Springer, 2013.

[578] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial
Differential Equations: An Introduction, volume 92 of UNITEXT book series.
Springer, 2015.

[579] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[580] J. R. Quinlan. C4.5: Programs for Machine Learning. Elsevier, 2014.

[581] J. Rabault and A. Kuhnle. Deep reinforcement learning applied to active
flow control. Preprint, 2020.

[582] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi. Artifi-
cial neural networks trained through deep reinforcement learning dis-
cover control strategies for active flow control. Journal of Fluid Mechanics,
865:281–302, 2019.

[583] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learn-
ing of nonlinear partial differential equations. Journal of Computational
Physics, 357:125–141, 2018.

[584] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686–707, 2019.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

716 REFERENCES

[585] M.’A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning
of sparse representations with an energy-based model. In Advances in
Neural Information Processing Systems, 19, pages 1137–1144, 2006.

[586] C. R. Rao. The utilization of multiple measurements in problems of
biological classification. Journal of the Royal Statistical Society. Series B
(Methodological), 10(2):159–203, 1948.

[587] J. B. Rawlings. Tutorial overview of model predictive control. IEEE Con-
trol Systems, 20(3):38–52, 2000.

[588] S. Raychaudhuri, J. M. Stuart, and R. B. Altman. Principal components
analysis to summarize microarray experiments: application to sporula-
tion time series. In Pacific Symposium on Biocomputing 2000, pages 455–
466. World Scientific, 2000.

[589] B. Recht. A tour of reinforcement learning: The view from continuous
control. Annual Review of Control, Robotics, and Autonomous Systems, 2:253–
279, 2019.

[590] G. Reddy, A. Celani, T. J. Sejnowski, and M. Vergassola. Learning to soar
in turbulent environments. Proceedings of the National Academy of Sciences,
USA, 113(33):E4877–E4884, 2016.

[591] G. Reddy, J. Wong-Ng, A. Celani, T. J. Sejnowski, and M. Vergas-
sola. Glider soaring via reinforcement learning in the field. Nature,
562(7726):236–239, 2018.

[592] S. Reddy, A. D. Dragan, and S. Levine. Shared autonomy via deep rein-
forcement learning. Preprint arXiv:1802.01744, 2018.

[593] A. D. Redish. Addiction as a computational process gone awry. Science,
306(5703):1944–1947, 2004.

[594] W. T. Redman. On Koopman mode decomposition and tensor com-
ponent analysis. Chaos: An Interdisciplinary Journal of Nonlinear Science,
31(5):051101, 2021.

[595] F. Regazzoni, L. Dede, and A. Quarteroni. Machine learning for fast and
reliable solution of time-dependent differential equations. Journal of Com-
putational Physics, 397:108852, 2019.

[596] R. H. Reichle, D. B. McLaughlin, and D. Entekhabi. Hydrologic data
assimilation with the ensemble Kalman filter. Monthly Weather Review,
130(1):103–114, 2002.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 717

[597] P. A. Reinbold, D. R. Gurevich, and R. O. Grigoriev. Using noisy or in-
complete data to discover models of spatiotemporal dynamics. Physical
Review E, 101(1):010203, 2020.

[598] P. A. Reinbold, L. M. Kageorge, M. F. Schatz, and R. O. Grigoriev. Robust
learning from noisy, incomplete, high-dimensional experimental data
via physically constrained symbolic regression. Nature Communications,
12(1):1–8, 2021.

[599] B. Ren, P. Frihauf, R. J. Rafac, and M. Krstić. Laser pulse shaping via
extremum seeking. Control Engineering Practice, 20:674–683, 2012.

[600] A. Richards and J. How. Decentralized model predictive control of co-
operating UAVs. In 2004 43rd IEEE Conference on Decision and Control,
volume 4, pages 4286–4291. IEEE, 2004.

[601] A. Richards and J. P. How. Robust distributed model predictive control.
International Journal of Control, 80(9):1517–1531, 2007.

[602] B. Ristic, S. Arulampalam, and N. J. Gordon. Beyond the Kalman filter:
Particle filters for tracking applications. Artech House, 2004.

[603] A. J. Roberts. Model Emergent Dynamics in Complex Systems. SIAM, 2014.

[604] C. A. Rohde. Generalized inverses of partitioned matrices. Journal of the
Society for Industrial and Applied Mathematics, 13(4):1033–1035, 1965.

[605] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for princi-
pal component analysis. SIAM Journal on Matrix Analysis and Applications,
31:1100–1124, 2009.

[606] S. M. Ross. Introduction to Stochastic Dynamic Programming. Academic
Press, 2014.

[607] J. C. Rosser, P. J. Lynch, L. Cuddihy, et al. The impact of video games on
training surgeons in the 21st century. Archives of Surgery, 142(2):181–186,
2007.

[608] C. Rowley. Model reduction for fluids using balanced proper orthogonal
decomposition. International Journal of Bifurcation and Chaos, 15(3):997–
1013, 2005.

[609] C. W. Rowley and J. E. Marsden. Reconstruction equations and the
Karhunen–Loève expansion for systems with symmetry. Physica D: Non-
linear Phenomena, 142(1):1–19, 2000.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

718 REFERENCES

[610] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for com-
pressible flows using POD and Galerkin projection. Physica D, 189:115–
129, 2004.

[611] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. Henningson. Spec-
tral analysis of nonlinear flows. Journal of Fluid Mechanics, 645:115–127,
2009.

[612] S. Roy, J.-C. Hua, W. Barnhill, G. H. Gunaratne, and J. R. Gord. Deconvo-
lution of reacting-flow dynamics using proper orthogonal and dynamic
mode decompositions. Physical Review E, 91(1):013001, 2015.

[613] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discov-
ery of partial differential equations. Science Advances, 3:e1602614, 2017.

[614] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representa-
tions by back-propagating errors. Nature, 323(6088):533–536, 1986.

[615] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforce-
ment learning framework for autonomous driving. Electronic Imaging,
2017(19):70–76, 2017.

[616] A. L. Samuel. Some studies in machine learning using the game of check-
ers. IBM Journal of Research and Development, 3(3):210–229, 1959.

[617] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, et al. Learning to simulate com-
plex physics with graph networks. In International Conference on Machine
Learning, pages 8459–8468. PMLR, 2020.

[618] T. P. Sapsis and A. J. Majda. Statistically accurate low-order models for
uncertainty quantification in turbulent dynamical systems. Proceedings of
the National Academy of Sciences, USA, 110(34):13 705–13 710, 2013.

[619] S. Sargsyan, S. L. Brunton, and J. N. Kutz. Nonlinear model reduction for
dynamical systems using sparse sensor locations from learned libraries.
Physical Review E, 92:033304, 2015.

[620] S. Sarkar, S. Ganguly, A. Dalal, P. Saha, and S. Chakraborty. Mixed con-
vective flow stability of nanofluids past a square cylinder by dynamic
mode decomposition. International Journal of Heat and Fluid Flow, 44:624–
634, 2013.

[621] T. Sarlos. Improved approximation algorithms for large matrices via ran-
dom projections. In 47th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 143–152, 2006.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 719

[622] D. Sashidhar and J. N. Kutz. Bagging, optimized dynamic mode decom-
position (BOP-DMD) for robust, stable forecasting with spatial and tem-
poral uncertainty-quantification. Preprint arXiv:2107.10878, 2021.

[623] T. Sayadi and P. J. Schmid. Parallel data-driven decomposition algorithm
for large-scale datasets: With application to transitional boundary layers.
Theoretical and Computational Fluid Dynamics, 30:415–428, 2016.

[624] T. Sayadi, P. J. Schmid, J. W. Nichols, and P. Moin. Reduced-order repre-
sentation of near-wall structures in the late transitional boundary layer.
Journal of Fluid Mechanics, 748:278–301, 2014.

[625] S. Schaal. Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences, 3(6):233–242, 1999.

[626] H. Schaeffer. Learning partial differential equations via data discovery
and sparse optimization. Proceedings of the Royal Society A, 473:20160446,
2017.

[627] H. Schaeffer and S. G. McCalla. Sparse model selection via integral terms.
Physical Review E, 96(2):023302, 2017.

[628] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher. Sparse dynamics
for partial differential equations. Proceedings of the National Academy of
Sciences USA, 110(17):6634–6639, 2013.

[629] R. E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197–227, 1990.

[630] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. Preprint arXiv:1511.05952, 2015.

[631] I. Scherl, B. Strom, J. K. Shang, et al. Robust principal component analysis
for particle image velocimetry. Physical Review Fluids, 5:054401, 2020.

[632] M. Schlegel and B. R. Noack. On long-term boundedness of Galerkin
models. Journal of Fluid Mechanics, 765:325–352, 2015.

[633] M. Schlegel, B. R. Noack, and G. Tadmor. Low-dimensional Galerkin
models and control of transitional channel flow. Technical Report
01/2004, Hermann-Föttinger-Institut für Strömungsmechanik, Technis-
che Universität Berlin, 2004.

[634] M. Schmelzer, R. P. Dwight, and P. Cinnella. Discovery of algebraic
Reynolds-stress models using sparse symbolic regression. Flow, Turbu-
lence and Combustion, 104(2):579–603, 2020.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

720 REFERENCES

[635] P. J. Schmid. Dynamic mode decomposition for numerical and experi-
mental data. Journal of Fluid Mechanics, 656:5–28, 2010.

[636] P. J. Schmid and J. Sesterhenn. Dynamic mode decomposition of numer-
ical and experimental data. In 61st Annual Meeting of the APS Division of
Fluid Dynamics. American Physical Society, 2008.

[637] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust. Applications of the dynamic
mode decomposition. Theoretical and Computational Fluid Dynamics, 25(1–
4):249–259, 2011.

[638] P. J. Schmid, D. Violato, and F. Scarano. Decomposition of time-resolved
tomographic PIV. Experiments in Fluids, 52:1567–1579, 2012.

[639] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgle-
ichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen
vorgeschriebener. Mathematische Annalen, 63:433–476, 1907.

[640] M. Schmidt and H. Lipson. Distilling free-form natural laws from exper-
imental data. Science, 324(5923):81–85, 2009.

[641] M. D. Schmidt, R. R. Vallabhajosyula, J. W. Jenkins, et al. Automated
refinement and inference of analytical models for metabolic networks.
Physical Biology, 8(5):055011, 2011.

[642] O. T. Schmidt and T. Colonius. Guide to spectral proper orthogonal de-
composition. AIAA Journal, 58(3):1023–1033, 2020.

[643] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[644] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages
1889–1897. PMLR, 2015.

[645] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of predic-
tion and reward. Science, 275(5306):1593–1599, 1997.

[646] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6(2):461–464, 1978.

[647] A. Seena and H. J. Sung. Dynamic mode decomposition of turbulent
cavity flows for self-sustained oscillations. International Journal of Heat
and Fluid Flow, 32(6):1098–1110, 2011.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 721

[648] E. Sejdić, I. Djurović, and J. Jiang. Time–frequency feature representa-
tion using energy concentration: An overview of recent advances. Digital
Signal Processing, 19(1):153–183, 2009.

[649] O. Semeraro, G. Bellani, and F. Lundell. Analysis of time-resolved PIV
measurements of a confined turbulent jet using POD and Koopman
modes. Experiments in Fluids, 53(5):1203–1220, 2012.

[650] O. Semeraro, F. Lusseyran, L. Pastur, and P. Jordan. Qualitative dynamics
of wavepackets in turbulent jets. Physical Review Fluids, 2:094605, 2017.

[651] G. Shabat, Y. Shmueli, Y. Aizenbud, and A. Averbuch. Randomized LU
decomposition. Applied and Computational Harmonic Analysis, 44(2): 246–
272, 2018.

[652] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, rein-
forcement learning for autonomous driving. Preprint arXiv:1610.03295,
2016.

[653] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

[654] C. E. Shannon. XXII. Programming a computer for playing chess. Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
41(314):256–275, 1950.

[655] A. S. Sharma, I. Mezić, and B. J. McKeon. Correspondence between
Koopman mode decomposition, resolvent mode decomposition, and in-
variant solutions of the Navier–Stokes equations. Physical Review Fluids,
1(3):032402, 2016.

[656] D. E. Shea, S. L. Brunton, and J. N. Kutz. SINDy-BVP: Sparse identifica-
tion of nonlinear dynamics for boundary value problems. Physical Review
Research, 3(2):023255, 2021.

[657] E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz. The proper
orthogonal decomposition for dimensionality reduction in mode-locked
lasers and optical systems. International Journal of Optics, 2012:831604,
2011.

[658] D. Silver, A. Huang, C. J. Maddison, et al. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[659] D. Silver, T. Hubert, J. Schrittwieser, et al. A general reinforcement learn-
ing algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

722 REFERENCES

[660] D. Silver, G. Lever, N. Heess, et al. Deterministic policy gradient algo-
rithms. In International Conference on Machine Learning, pages 387–395.
PMLR, 2014.

[661] D. Silver, J. Schrittwieser, K. Simonyan, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

[662] V. Simoncini. A new iterative method for solving large-scale Lyapunov
matrix equations. SIAM Journal on Scientific Computing, 29(3):1268–1288,
2007.

[663] L. Sirovich. Turbulence and the dynamics of coherent structures. I–III.
Quarterly of Applied Mathematics, 45(3):561–590, 1987.

[664] L. Sirovich and M. Kirby. A low-dimensional procedure for the char-
acterization of human faces. Journal of the Optical Society of America A,
4(3):519–524, 1987.

[665] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. John
Wiley & Sons, 1996.

[666] P. Smolensky. Information processing in dynamical systems: Founda-
tions of harmony theory. Technical Report, Colorado University, Boulder,
Department of Computer Science, 1986.

[667] G. Solari, L. Carassale, and F. Tubino. Proper orthogonal decomposition
in wind engineering. Part 1: A state-of-the-art and some prospects. Wind
and Structures, 10(2):153–176, 2007.

[668] G. Song, F. Alizard, J.-C. Robinet, and X. Gloerfelt. Global and Koopman
modes analysis of sound generation in mixing layers. Physics of Fluids,
25(12):124101, 2013.

[669] D. C. Sorensen and Y. Zhou. Direct methods for matrix Sylvester and Lya-
punov equations. Journal of Applied Mathematics, 2003(6):277–303, 2003.

[670] M. Sorokina, S. Sygletos, and S. Turitsyn. Sparse identification for non-
linear optical communication systems: SINO method. Optics Express,
24(26):30 433–30 443, 2016.

[671] J. C. Spall. The Kantorovich inequality for error analysis of the Kalman
filter with unknown noise distributions. Automatica, 31(10):1513–1517,
1995.

[672] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 723

[673] I. Stakgold and M. J. Holst. Green’s Functions and Boundary Value Problems,
3rd edition, volume 99 of Pure and Applied Mathematics. John Wiley &
Sons, 2011.

[674] W.-H. Steeb and F. Wilhelm. Non-linear autonomous systems of differ-
ential equations and Carleman linearization procedure. Journal of Mathe-
matical Analysis and Applications, 77(2):601–611, 1980.

[675] R. F. Stengel. Optimal Control and Estimation. Courier Corporation, 2012.

[676] G. W. Stewart. On the early history of the singular value decomposition.
SIAM Review, 35(4):551–566, 1993.

[677] G. Sugihara, R. May, H. Ye, et al. Detecting causality in complex ecosys-
tems. Science, 338(6106):496–500, 2012.

[678] C. Sun, E. Kaiser, S. L. Brunton, and J. N. Kutz. Deep reinforcement learn-
ing for optical systems: A case study of mode-locked lasers. Machine
Learning: Science and Technology, 1(4):045013, 2020.

[679] A. Surana. Koopman operator based observer synthesis for control-affine
nonlinear systems. In 55th IEEE Conference on Decision and Control, pages
6492–6499, 2016.

[680] A. Surana and A. Banaszuk. Linear observer synthesis for nonlin-
ear systems using Koopman operator framework. IFAC-PapersOnLine,
49(18):716–723, 2016 (10th IFAC Symposium on Nonlinear Control Sys-
tems, NOLCOS).

[681] Y. Susuki and I. Mezić. A prony approximation of Koopman mode de-
composition. In 2015 IEEE 54th Annual Conference on Decision and Control,
pages 7022–7027. IEEE, 2015.

[682] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44, 1988.

[683] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[684] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gra-
dient methods for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems, 12, pages 1057–1063,
1999.

[685] A. Svenkeson, B. Glaz, S. Stanton, and B. J. West. Spectral decomposition
of nonlinear systems with memory. Physical Review E, 93:022211, 2016.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

724 REFERENCES

[686] S. Svoronos, D. Papageorgiou, and C. Tsiligiannis. Discretization of non-
linear control systems via the Carleman linearization. Chemical Engineer-
ing Science, 49(19):3263–3267, 1994.

[687] D. L. Swets and J. Weng. Using discriminant eigenfeatures for image
retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(8):831–836, 1996.

[688] K. Taira and T. Colonius. The immersed boundary method: A projection
approach. Journal of Computational Physics, 225(2):2118–2137, 2007.

[689] K. Taira, S. L. Brunton, S. T. Dawson, et al. Modal analysis of fluid flows:
An overview. AIAA Journal, 55(12):4013–4041, 2017.

[690] K. Taira, M. S. Hemati, S. L. Brunton, et al. Modal analysis of fluid flows:
Applications and outlook. AIAA Journal, 58(3):998–1022, 2020.

[691] N. Takeishi, Y. Kawahara, Y. Tabei, and T. Yairi. Bayesian dynamic mode
decomposition. Twenty-Sixth International Joint Conference on Artificial In-
telligence, 2017.

[692] N. Takeishi, Y. Kawahara, and T. Yairi. Learning Koopman invariant sub-
spaces for dynamic mode decomposition. In Advances in Neural Informa-
tion Processing Systems, 30, pages 1130–1140, 2017.

[693] N. Takeishi, Y. Kawahara, and T. Yairi. Subspace dynamic mode decom-
position for stochastic Koopman analysis. Physical Review E, 96(033310),
2017.

[694] F. Takens. Detecting strange attractors in turbulence. In Dynamical Sys-
tems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages
366–381. Springer, 1981.

[695] Z. Q. Tang and N. Jiang. Dynamic mode decomposition of hairpin vor-
tices generated by a hemisphere protuberance. Science China: Physics, Me-
chanics and Astronomy, 55(1):118–124, 2012.

[696] A. Taylor, A. Singletary, Y. Yue, and A. Ames. Learning for safety-critical
control with control barrier functions. In Learning for Dynamics and Con-
trol, pages 708–717. PMLR, 2020.

[697] R. Taylor, J. N. Kutz, K. Morgan, and B. Nelson. Dynamic mode decom-
position for plasma diagnostics and validation. Review of Scientific Instru-
ments, 89:053501, 2018.

[698] R. Tedrake, Z. Jackowski, R. Cory, J. W. Roberts, and W. Hoburg. Learning
to fly like a bird. In 14th International Symposium on Robotics Research, 2009.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 725

[699] G. Tesauro. Practical issues in temporal difference learning. Machine
Learning, 8(3):257–277, 1992.

[700] G. Tesauro. Temporal difference learning and TD-Gammon. Communica-
tions of the ACM, 38(3):58–68, 1995.

[701] S. Thaler, L. Paehler, and N. A. Adams. Sparse identification of truncation
errors. Journal of Computational Physics, 397:108851, 2019.

[702] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[703] Z. Ting and J. Hui. EEG signal processing based on proper orthogonal
decomposition. In 2012 International Conference on Audio, Language and
Image Processing, pages 636–640. IEEE, 2012.

[704] S. Tirunagari, N. Poh, K. Wells, et al. Movement correction in DCE-MRI
through windowed and reconstruction dynamic mode decomposition.
Machine Vision and Applications, 28(3–4):393–407, 2017.

[705] J. Tithof, B. Suri, R. K. Pallantla, R. O. Grigoriev, and M. F. Schatz. Bi-
furcations in a quasi-two-dimensional Kolmogorov-like flow. Journal of
Fluid Mechanics, 828:837–866, 2017.

[706] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

[707] C. Torrence and G. P. Compo. A practical guide to wavelet analysis. Bul-
letin of the American Meteorological Society, 79(1):61–78, 1998.

[708] A. Towne, O. T. Schmidt, and T. Colonius. Spectral proper orthogonal
decomposition and its relationship to dynamic mode decomposition and
resolvent analysis. Journal of Fluid Mechanics, 847:821–867, 2018.

[709] G. Tran and R. Ward. Exact recovery of chaotic systems from highly cor-
rupted data. SIAM Multiscale Modeling and Simulation, 15(3):1108–1129,
2017.

[710] L. N. Trefethen. Spectral Methods in MATLAB. SIAM, 2000.

[711] L. N. Trefethen and D. Bau III. Numerical Linear Algebra, volume 50 of
Other Titles in Applied Mathematics. SIAM, 1997.

[712] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll. Hydro-
dynamic stability without eigenvalues. Science, 261(5121):578–584, 1993.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

726 REFERENCES

[713] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation.
IEEE Transactions on Information Theory, 50(10):2231–2242, 2004.

[714] J. A. Tropp. Recovery of short, complex linear combinations via l1 mini-
mization. IEEE Transactions on Information Theory, 51(4):1568–1570, 2005.

[715] J. A. Tropp. Algorithms for simultaneous sparse approximation. Part II:
Convex relaxation. Signal Processing, 86(3):589–602, 2006.

[716] J. A. Tropp. Just relax: Convex programming methods for identify-
ing sparse signals in noise. IEEE Transactions on Information Theory,
52(3):1030–1051, 2006.

[717] J. A. Tropp and A. C. Gilbert. Signal recovery from random measure-
ments via orthogonal matching pursuit. IEEE Transactions on Information
Theory, 53(12):4655–4666, 2007.

[718] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simulta-
neous sparse approximation. Part I: Greedy pursuit. Signal Processing,
86(3):572–588, 2006.

[719] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk.
Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE
Transactions on Information Theory, 56(1):520–544, 2010.

[720] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Randomized
single-view algorithms for low-rank matrix approximation. Preprint
arXiv:1609.00048, 2016.

[721] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Elsevier, 2000.

[722] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning.
Machine Learning, 16(3):185–202, 1994.

[723] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, 1995.

[724] J. H. Tu and C. W. Rowley. An improved algorithm for balanced POD
through an analytic treatment of impulse response tails. Journal of Com-
putational Physics, 231(16):5317–5333, 2012.

[725] J. H. Tu, C. W. Rowley, E. Aram, and R. Mittal. Koopman spectral analysis
of separated flow over a finite-thickness flat plate with elliptical leading
edge. AIAA Paper 2011-2864, 2011.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 727

[726] J. H. Tu, C. W. Rowley, J. N. Kutz, and J. K. Shang. Spectral analysis
of fluid flows using sub-Nyquist-rate PIV data. Experiments in Fluids,
55(9):1–13, 2014.

[727] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz.
On dynamic mode decomposition: Theory and applications. Journal of
Computational Dynamics, 1(2):391–421, 2014.

[728] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1):71–86, 1991.

[729] R. Van Der Merwe. Sigma-point Kalman filters for probabilistic inference
in dynamic state-space models. Dissertation, Oregon Health & Science
University, 2004.

[730] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double Q-learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

[731] C. Van Loan. Computational Frameworks for the Fast Fourier Transform.
SIAM, 1992.

[732] D. Venturi and G. E. Karniadakis. Gappy data and reconstruction pro-
cedures for flow past a cylinder. Journal of Fluid Mechanics, 519:315–336,
2004.

[733] S. Verma, G. Novati, and P. Koumoutsakos. Efficient collective swimming
by harnessing vortices through deep reinforcement learning. Proceedings
of the National Academy of Sciences, USA, 115(23):5849–5854, 2018.

[734] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings
of the 25th International Conference on Machine Learning, pages 1096–1103.
ACM, 2008.

[735] O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al. Grandmaster
level in Starcraft II using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

[736] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos.
Data-driven forecasting of high-dimensional chaotic systems with long
short-term memory networks. Proceedings of the Royal Society A,
474(2213):20170844, 2018.

[737] S. Volkwein. Model reduction using proper orthogonal decomposition.
Lecture Notes, Institute of Mathematics and Scientific Computing, Uni-
versity of Graz, 2011.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

728 REFERENCES

[738] S. Volkwein. Proper orthogonal decomposition: Theory and reduced-
order modelling. Lecture Notes, Department of Mathematics and Statis-
tics, University of Konstanz, 2013.

[739] S. Voronin and P.-G. Martinsson. RSVDPACK: Subroutines for comput-
ing partial singular value decompositions via randomized sampling on
single core, multi core, and GPU architectures. Preprint arXiv:1502.05366,
2015.

[740] A. L.-C. Wang. An industrial strength audio search algorithm. In Proceed-
ings of the 4th International Conference on Music Information Retrieval, pages
7–13, 2003.

[741] H. H. Wang, M. Krstić, and G. Bastin. Optimizing bioreactors by ex-
tremum seeking. Adaptive Control and Signal Processing, 13(8):651–669,
1999.

[742] H. H. Wang, S. Yeung, and M. Krstić. Experimental application of ex-
tremum seeking on an axial-flow compressor. IEEE Transactions on Con-
trol Systems Technology, 8(2):300–309, 2000.

[743] W. X. Wang, R. Yang, Y. C. Lai, V. Kovanis, and C. Grebogi. Predicting
catastrophes in nonlinear dynamical systems by compressive sensing.
Physical Review Letters, 106:154101 (4pp.), 2011.

[744] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu. Proper orthogonal de-
composition closure models for turbulent flows: A numerical compari-
son. Computer Methods in Applied Mechanics and Engineering, 237:10–26,
2012.

[745] Z. Wang, T. Schaul, M. Hessel, et al. Dueling network architectures for
deep reinforcement learning. In International Conference on Machine Learn-
ing, pages 1995–2003. PMLR, 2016.

[746] C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3–4):279–292,
1992.

[747] C. Wehmeyer and F. Noé. Time-lagged autoencoders: Deep learning
of slow collective variables for molecular kinetics. Journal of Chemical
Physics, 148:241703, 2018.

[748] E. Weinan. Principles of Multiscale Modeling. Cambridge University Press,
2011.

[749] E. Weinan and B. Engquist. The heterogeneous multiscale methods. Com-
munications in Mathematical Sciences, 1(1):87–132, 2003.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 729

[750] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical
Report, University of North Carolina at Chapel Hill, 1995.

[751] P. Whittle. Hypothesis Testing in Time Series Analysis, volume 4 of Statistics.
Almqvist & Wiksells, 1951.

[752] O. Wiederhold, R. King, B. R. Noack, et al. Extensions of extremum-
seeking control to improve the aerodynamic performance of axial turbo-
machines. AIAA Paper 092407, 2009 (39th AIAA Fluid Dynamics Con-
ference).

[753] S. Wiggins, S. Wiggins, and M. Golubitsky. Introduction to Applied Non-
linear Dynamical Systems and Chaos, volume 2 of Texts in Applied Mathe-
matics. Springer, 1990.

[754] K. Willcox. Unsteady flow sensing and estimation via the gappy proper
orthogonal decomposition. Computers and Fluids, 35(2):208–226, 2006.

[755] K. Willcox and J. Peraire. Balanced model reduction via the proper or-
thogonal decomposition. AIAA Journal, 40(11):2323–2330, 2002.

[756] G. Williams, N. Wagener, B. Goldfain, et al. Information theoretic MPC
for model-based reinforcement learning. In 2017 IEEE International Con-
ference on Robotics and Automation, pages 1714–1721. IEEE, 2017.

[757] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data-driven ap-
proximation of the Koopman operator: Extending dynamic mode decom-
position. Journal of Nonlinear Science, 6:1307–1346, 2015.

[758] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis. A kernel approach to
data-driven Koopman spectral analysis. Journal of Computational Dynam-
ics, 2(2):247–265, 2015.

[759] R. J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3):229–256, 1992.

[760] D. M. Witten and R. Tibshirani. Penalized classification using Fisher’s lin-
ear discriminant. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(5):753–772, 2011.

[761] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algo-
rithm for the approximation of matrices. Journal of Applied and Computa-
tional Harmonic Analysis, 25:335–366, 2008.

[762] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recogni-
tion via sparse representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(2):210–227, 2009.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

730 REFERENCES

[763] C. F. J. Wu. On the convergence properties of the EM algorithm. Annals
of Statistics, 11(1):95–103, 1983.

[764] X. Wu, V. Kumar, J. R. Quinlan, et al. Top 10 algorithms in data mining.
Knowledge and Information Systems, 14(1):1–37, 2008.

[765] H. Ye, R. J. Beamish, S. M. Glaser, et al. Equation-free mechanistic ecosys-
tem forecasting using empirical dynamic modeling. Proceedings of the Na-
tional Academy of Sciences, USA, 112(13):E1569–E1576, 2015.

[766] E. Yeung, S. Kundu, and N. Hodas. Learning deep neural network rep-
resentations for Koopman operators of nonlinear dynamical systems.
Preprint arXiv:1708.06850, 2017.

[767] B. Yildirim, C. Chryssostomidis, and G. Karniadakis. Efficient sen-
sor placement for ocean measurements using low-dimensional concepts.
Ocean Modelling, 27(3):160–173, 2009.

[768] X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via al-
ternating direction methods. Preprint, 2009.

[769] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero. Extending
the OpenAI Gym for robotics: A toolkit for reinforcement learning using
ROS and Gazebo. Preprint arXiv:1608.05742, 2016.

[770] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional
networks. In IEEE Computer Vision and Pattern Recognition, pages 2528–
2535, 2010.

[771] C. Zhang and R. Ordóñez. Numerical optimization-based extremum
seeking control with application to ABS design. IEEE Transactions on Au-
tomatic Control, 52(3):454–467, 2007.

[772] H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. On-
line dynamic mode decomposition for time-varying systems. Preprint
arXiv:1707.02876, 2017.

[773] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep control poli-
cies for autonomous aerial vehicles with MPC-guided policy search. In
2016 IEEE International Conference on Robotics and Automation, pages 528–
535. IEEE, 2016.

[774] W. Zhang, B. Wang, Z. Ye, and J. Quan. Efficient method for limit cycle
flutter analysis based on nonlinear aerodynamic reduced-order models.
AIAA Journal, 50(5):1019–1028, 2012.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

REFERENCES 731

[775] P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y. Aravkin. Sparse
relaxed regularized regression: SR3. IEEE Access, 7(1):1404–1423, 2019.

[776] S. Zlobec. An explicit form of the Moore–Penrose inverse of an arbitrary
complex matrix. SIAM Review, 12(1):132–134, 1970.

[777] H. Zou and T. Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2005.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Index

N -way arrays, 55, 56
Q-learning, 513, 517, 518, 522, 523,

526
k-fold cross-validation, 191–193
k-means, 215, 216, 219, 245
k-nearest neighbors (kNN), 246

activation function, 257–259, 267, 271,
272

actor–critic, 527, 528
actuator, 391, 393
adjoint, 396, 447–451, 454, 455, 462
agent, 505–507, 510–512, 523, 529, 531,

533
Akaike information criterion (AIC),

197, 228, 344
alternating descent method, 173
autoencoder, 280, 285, 286, 289, 295,

365–367, 530, 629, 632–634, 654

backpropagation (backprop), 260, 262–
264, 267, 268

balanced input–output model, 453
Bayesian information criterion (BIC),

197, 198
Bellman optimality, 509, 514, 536–538
boosting, 244, 247

classification, 34, 40, 95, 142–145, 244–
246, 252–254, 256, 258–260, 263,
267, 275, 326, 496

classification trees, 239, 244
closed-loop control, 377, 381, 382
clustering, 32, 33, 48, 239, 245, 246
coherent structure, 4, 120, 313, 326,

396, 436, 437

compressed sensing, 21, 123–128, 132,
135, 314

compression, 12, 13, 79, 102, 105, 109,
118–120, 123, 132, 325

control, 8, 64, 75, 124, 204, 310, 326,
345, 357, 396, 397, 437, 438,
469

control theory, 124, 314, 376, 430, 436,
474, 477

controllability, 64, 389–392, 394, 395,
438, 440, 441, 445, 450

convex optimization, 128, 177, 336,
398, 484

convolutional neural network (CNN),
245, 271

cost function, 378, 399, 402, 411, 428,
469, 481, 488, 496

CP tensor decomposition, 56–59
cross-validation, 139, 140, 188, 190,

191, 203, 214, 216, 225, 231,
262, 327, 358

curve fitting, 160, 162, 168

data arrays, 55
data labels, 203, 210, 211, 213, 266,

274
data matrix, 42, 47, 56, 58, 145, 217,

256, 316, 328, 475, 562
deep convolutional neural network

(DCNN), 271–273
deep learning, 252, 253, 271
deep reinforcement learning, 505, 507,

525, 527
DeepONet, 639, 642, 643
dendrogram, 219, 220

732

INDEX 733

dimensionality reduction, 4, 8, 229,
314, 316, 376, 475, 542, 547

discrete cosine transform (DCT), 130
discrete empirical interpolation method

(DEIM), 586, 603
discrete wavelet transform, 103, 104,

109
DMD eigenvalue, 317, 319
DMD mode (also dynamic mode), 314,

316, 325, 326
dynamic mode decomposition (DMD),

313, 324
dynamic programming, 513–515, 519,

520, 528, 535
dynamical system, 9, 64, 275, 305–

314, 331, 338, 344, 376–378,
402, 437, 586

eigensystem realization algorithm (ERA),
326, 361, 451–453

ensemble learning, 244, 247
environment, 505–507, 510, 511, 513,

518, 525
expectation-maximization algorithm

(EM), 223–226, 245
extremum-seeking control (ESC), 491–

493, 497

fast Fourier transform, 3, 64, 76, 79,
119, 545

feature engineering, 204, 210, 272, 619
feedback control, 363, 376, 378, 380,

435
feedforward control, 377, 426
Fourier transform, 18, 65, 72, 74, 356,

418, 556, 588, 610

Gabor transform, 91–93
Galerkin projection, 332, 337, 436, 545,

549, 550, 605
gappy POD, 550, 585, 605
gated recurrent unit (GRU), 283, 294
Gaussian mixture models (GMM), 223,

225, 227

generative adversarial network (GAN),
289, 297

gradient descent, 160, 167–169, 235,
255, 259, 266

Gramian, 395, 438, 440, 443, 445

Hankel matrix, 361, 448, 450, 454
Hilbert space, 64, 344–346, 348, 360
hindsight experience replay, 528, 529

imitation learning, 523
incoherent measurements, 133, 135
information theory, 195
inner product, 47, 55, 65, 133, 349,

356, 435, 440, 550, 552, 561,
587, 589

Johnson–Lindenstrauss (JL), 136

Kalman filter, 401, 403, 404, 413, 457,
458, 501

kernel methods, 237, 327, 358
Koopman eigenfunction, 359, 361
Koopman operator, 349–351, 357

Laplace transform, 75, 98, 100–102,
418–420, 422

LASSO, 138, 139, 184, 191, 257, 264
least-squares fit, 137, 162, 190
linear discriminant, 228, 229
linear system, 19, 128, 166, 256, 310,

327, 339, 398, 419, 427, 548
linear–quadratic regulator (LQR), 396–

398, 477, 488
long short-term memory (LSTM), 283,

294, 299, 574, 576
low rank, 10, 146, 148, 203, 204, 436,

438, 549, 550, 553, 554, 560,
567, 585, 586

machine learning, 26, 32, 105, 162,
188, 206, 208, 216, 232, 237,
239, 244, 252, 266, 451

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

734 INDEX

Markov decision process (MDP), 507,
508, 510, 514, 517, 522, 524,
535

Markov parameters, 458
max pooling, 273
mixture models, 223, 225, 227, 245
model predictive control (MPC), 473,

474, 477, 478
model reduction, 395, 435–437, 607,

608
model selection, 160, 163, 184, 190,

195
Moore’s law, 124
multi-resolution analysis (MRA), 102
multi-scale, 77, 327, 376

naive Bayes, 245, 246
neural networks, 169, 245, 252, 253,

268, 365
neural operator, 639, 642, 643, 652
noise, 128

observability, 64, 345, 389, 391, 396,
412, 438, 440, 441, 445, 450

observable function, 345, 346, 356
off-policy reinforcement learning, 513,

522, 523, 527
on-policy reinforcement learning, 513,

521, 522
open loop, 485
optimization

gradient descent, 170
steepest descent, 170

outliers, 26, 137, 145, 164, 184
over-determined system, 4, 20, 139,

160, 178, 333

pagerank, 244, 247
Pareto front, 186–188
Perron–Frobenius operator, 313, 356
physics-informed neural network (PINN),

644–646
policy function, 513–515, 517, 518, 524,

525, 527

policy iteration, 513–515, 517, 523
polynomial basis functions, 236, 238
principal component, 29, 33
principal component analysis (PCA),

3, 8, 27, 49, 136, 145, 252, 450
principal components, 28, 31, 145
proper orthogonal decomposition (POD),

4, 136, 313, 329, 435, 436, 438,
541, 548, 604

pseudo-inverse, 4, 19, 21–23, 129, 190,
191, 256–258, 315–317, 459

quality function, 513, 517–519, 524–
528, 530

radial basis function (RBF), 238, 294
random forest, 239, 244
randomized algorithms, 49, 51
randomized SVD, 49, 50
rank truncation, 204, 354
recurrent neural network (RNN), 271,

281, 294, 574
reduced-order model (ROM), 326, 566,

603
reference tracking, 379, 382, 426, 487
regression, 19, 23, 137, 160, 162, 165,

211, 214, 264, 326, 331, 333,
334, 338, 452, 580

reinforcement learning (RL), 203, 211,
469, 473, 482, 505–507, 509,
510, 512, 514, 517, 521, 525,
527, 528, 530, 535

restricted isometry property (RIP), 126,
134

reward, 505, 508–512, 515, 516, 518–
521, 524, 529, 531

reward shaping, 528
ridge regression, 184
robust control, 406, 410, 418, 427
robust fit, 184
robust principal component analy-

sis (rPCA), 145
robust statistics, 184

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

INDEX 735

sampling rate, 126, 130
SARSA, 521–523
sensor, 328, 363, 409, 412, 416, 430,

453, 454, 481, 492, 494, 499
singular value decomposition (SVD),

3, 4, 48, 51, 135, 136, 206, 313,
315, 316, 356, 437, 447, 549,
553, 606, 609

snapshot, 55, 315, 339, 396, 447–450,
475, 549, 554, 560, 605, 608

sparse identification of nonlinear dy-
namics (SINDy), 331, 332

sparse regression, 137, 332–334, 338,
344, 580

sparse representation, 118, 123, 142,
325, 326

sparsity, 128
spectrogram, 91, 92, 94
state space, 360, 435, 452
stochastic gradient descent (SGD), 260,

262, 268
supervised learning, 210–212
support vector machine (SVM), 232,

245
system identification (system ID), 314,

326, 338, 362, 435, 436, 438,
451, 452, 473, 474, 482

temporal difference (TD) learning, 511,
512, 519–521, 530

temporal difference error, 528
temporal difference target, 527
tensors, 55
test data, 216, 219, 246
training data, 228, 230, 233, 271, 274

uncertainty principle, 95, 97
under-determined system, 4, 20, 124,

128, 143, 160, 181, 253, 255
unitary matrix, 18
unsupervised learning, 203, 210, 211,

244, 245

value function, 509, 513–521, 524, 525,
527, 528, 530, 536, 538

value iteration, 513, 514, 516, 517, 523

wavelet, 102, 135
windowed FFT (Gabor transform),

92
withhold data, 228

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

	Preface
	Acknowledgments
	Optimization, Equations, Symbols, and Acronyms
	I Dimensionality Reduction and Transforms
	Singular Value Decomposition (SVD)
	Overview
	Matrix Approximation
	Mathematical Properties and Manipulations
	Pseudo-Inverse, Least-Squares, and Regression
	Principal Component Analysis (PCA)
	Eigenfaces Example
	Truncation and Alignment
	Randomized Singular Value Decomposition
	Tensor Decompositions and N-Way Data Arrays

	Fourier and Wavelet Transforms
	Fourier Series and Fourier Transforms
	Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)
	Transforming Partial Differential Equations
	Gabor Transform and the Spectrogram
	Laplace Transform
	Wavelets and Multi-Resolution Analysis
	Two-Dimensional Transforms and Image Processing

	Sparsity and Compressed Sensing
	Sparsity and Compression
	Compressed Sensing
	Compressed Sensing Examples
	The Geometry of Compression
	Sparse Regression
	Sparse Representation
	Robust Principal Component Analysis (RPCA)
	Sparse Sensor Placement

	II Machine Learning and Data Analysis
	Regression and Model Selection
	Classic Curve Fitting
	Nonlinear Regression and Gradient Descent
	Regression and Ax=b: Over- and Under-Determined Systems
	Optimization as the Cornerstone of Regression
	The Pareto Front and Lex Parsimoniae
	Model Selection: Cross-Validation
	Model Selection: Information Criteria

	Clustering and Classification
	Feature Selection and Data Mining
	Supervised versus Unsupervised Learning
	Unsupervised Learning: k-Means Clustering
	Unsupervised Hierarchical Clustering: Dendrogram
	Mixture Models and the Expectation-Maximization Algorithm
	Supervised Learning and Linear Discriminants
	Support Vector Machines (SVM)
	Classification Trees and Random Forest
	Top 10 Algorithms of Data Mining circa 2008 (Before the Deep Learning Revolution)

	Neural Networks and Deep Learning
	Neural Networks: Single-Layer Networks
	Multi-Layer Networks and Activation Functions
	The Backpropagation Algorithm
	The Stochastic Gradient Descent Algorithm
	Deep Convolutional Neural Networks
	Neural Networks for Dynamical Systems
	Recurrent Neural Networks
	Autoencoders
	Generative Adversarial Networks (GANs)
	The Diversity of Neural Networks

	III Dynamics and Control
	Data-Driven Dynamical Systems
	Overview, Motivations, and Challenges
	Dynamic Mode Decomposition (DMD)
	Sparse Identification of Nonlinear Dynamics (SINDy)
	Koopman Operator Theory
	Data-Driven Koopman Analysis

	Linear Control Theory
	Closed-Loop Feedback Control
	Linear Time-Invariant Systems
	Controllability and Observability
	Optimal Full-State Control: Linear–Quadratic Regulator (LQR)
	Optimal Full-State Estimation: the Kalman Filter
	Optimal Sensor-Based Control: Linear–Quadratic Gaussian (LQG)
	Case Study: Inverted Pendulum on a Cart
	Robust Control and Frequency-Domain Techniques

	Balanced Models for Control
	Model Reduction and System Identification
	Balanced Model Reduction
	System Identification

	IV Advanced Data-Driven Modeling and Control
	Data-Driven Control
	Model Predictive Control (MPC)
	Nonlinear System Identification for Control
	Machine Learning Control
	Adaptive Extremum-Seeking Control

	Reinforcement Learning
	Overview and Mathematical Formulation
	Model-Based Optimization and Control
	Model-Free Reinforcement Learning and Q-Learning
	Deep Reinforcement Learning
	Applications and Environments
	Optimal Nonlinear Control

	Reduced-Order Models (ROMs)
	Proper Orthogonal Decomposition (POD) for Partial Differential Equations
	Optimal Basis Elements: the POD Expansion
	POD and Soliton Dynamics
	Continuous Formulation of POD
	POD with Symmetries: Rotations and Translations
	Neural Networks for Time-Stepping with POD
	Leveraging DMD and SINDy for POD-Galerkin

	Interpolation for Parametric Reduced-Order Models
	Gappy POD
	Error and Convergence of Gappy POD
	Gappy Measurements: Minimize Condition Number
	Gappy Measurements: Maximal Variance
	POD and the Discrete Empirical Interpolation Method (DEIM)
	DEIM Algorithm Implementation
	Decoder Networks for Interpolation
	Randomization and Compression for ROMs
	Machine Learning ROMs

	Physics-Informed Machine Learning
	Mathematical Foundations
	SINDy Autoencoder: Coordinates and Dynamics
	Koopman Forecasting
	Learning Nonlinear Operators
	Physics-Informed Neural Networks (PINNs)
	Learning Coarse-Graining for PDEs
	Deep Learning and Boundary Value Problems

	Glossary
	References
	Index

